1
|
Thawabteh AM, Naseef HA, Karaman D, Bufo SA, Scrano L, Karaman R. Understanding the Risks of Diffusion of Cyanobacteria Toxins in Rivers, Lakes, and Potable Water. Toxins (Basel) 2023; 15:582. [PMID: 37756009 PMCID: PMC10535532 DOI: 10.3390/toxins15090582] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
Blue-green algae, or cyanobacteria, may be prevalent in our rivers and tap water. These minuscule bacteria can grow swiftly and form blooms in warm, nutrient-rich water. Toxins produced by cyanobacteria can pollute rivers and streams and harm the liver and nervous system in humans. This review highlights the properties of 25 toxin types produced by 12 different cyanobacteria genera. The review also covered strategies for reducing and controlling cyanobacteria issues. These include using physical or chemical treatments, cutting back on fertilizer input, algal lawn scrubbers, and antagonistic microorganisms for biocontrol. Micro-, nano- and ultrafiltration techniques could be used for the removal of internal and extracellular cyanotoxins, in addition to powdered or granular activated carbon, ozonation, sedimentation, ultraviolet radiation, potassium permanganate, free chlorine, and pre-treatment oxidation techniques. The efficiency of treatment techniques for removing intracellular and extracellular cyanotoxins is also demonstrated. These approaches aim to lessen the risks of cyanobacterial blooms and associated toxins. Effective management of cyanobacteria in water systems depends on early detection and quick action. Cyanobacteria cells and their toxins can be detected using microscopy, molecular methods, chromatography, and spectroscopy. Understanding the causes of blooms and the many ways for their detection and elimination will help the management of this crucial environmental issue.
Collapse
Affiliation(s)
- Amin Mahmood Thawabteh
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah 00972, Palestine; (A.M.T.); (H.A.N.)
- General Safety Section, General Services Department, Birzeit University, Bir Zeit 71939, Palestine
| | - Hani A Naseef
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah 00972, Palestine; (A.M.T.); (H.A.N.)
| | - Donia Karaman
- Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
| | - Sabino A. Bufo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
- Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2092, South Africa
| | - Laura Scrano
- Department of European and Mediterranean Cultures, University of Basilicata, Via Lanera 20, 75100 Matera, Italy;
| | - Rafik Karaman
- Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| |
Collapse
|
2
|
Bashir F, Bashir A, Bouaïcha N, Chen L, Codd GA, Neilan B, Xu WL, Ziko L, Rajput VD, Minkina T, Arruda RS, Ganai BA. Cyanotoxins, biosynthetic gene clusters, and factors modulating cyanotoxin biosynthesis. World J Microbiol Biotechnol 2023; 39:241. [PMID: 37394567 DOI: 10.1007/s11274-023-03652-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/17/2023] [Indexed: 07/04/2023]
Abstract
Cyanobacterial harmful algal blooms (CHABs) are a global environmental concern that encompasses public health issues, water availability, and water quality owing to the production of various secondary metabolites (SMs), including cyanotoxins in freshwater, brackish water, and marine ecosystems. The frequency, extent, magnitude, and duration of CHABs are increasing globally. Cyanobacterial species traits and changing environmental conditions, including anthropogenic pressure, eutrophication, and global climate change, together allow cyanobacteria to thrive. The cyanotoxins include a diverse range of low molecular weight compounds with varying biochemical properties and modes of action. With the application of modern molecular biology techniques, many important aspects of cyanobacteria are being elucidated, including aspects of their diversity, gene-environment interactions, and genes that express cyanotoxins. The toxicological, environmental, and economic impacts of CHABs strongly advocate the need for continuing, extensive efforts to monitor cyanobacterial growth and to understand the mechanisms regulating species composition and cyanotoxin biosynthesis. In this review, we critically examined the genomic organization of some cyanobacterial species that lead to the production of cyanotoxins and their characteristic properties discovered to date.
Collapse
Affiliation(s)
- Fahim Bashir
- Department of Environmental Science, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Arif Bashir
- Department of Clinical Biochemistry and Biotechnology, Government College for Women, Nawa-Kadal, Srinagar, Jammu & Kashmir, India
| | - Noureddine Bouaïcha
- Laboratory Ecology, Systematic, and Evolution, UMR 8079 Univ. Paris-Sud, CNRS, AgroParisTech, University Paris-Saclay, 91190, Gif-sur-Yvette, France.
| | - Liang Chen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science (SEES), Yunnan University (YNU), 650500, Kunming, China.
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China.
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Geoffrey A Codd
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Brett Neilan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Wen-Li Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology (IHB), Chinese Academy of Sciences (CAS), Wuhan, 430072, China
| | - Laila Ziko
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Cairo, Egypt
- Biology Department, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, Russia
| | - Renan Silva Arruda
- Laboratory of Ecology and Physiology of Phytoplankton, Department of Plant Biology, University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - Bashir Ahmad Ganai
- Center of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| |
Collapse
|
3
|
Zhang Y, Vo Duy S, Munoz G, Sauvé S. Phytotoxic effects of microcystins, anatoxin-a and cylindrospermopsin to aquatic plants: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152104. [PMID: 34863769 DOI: 10.1016/j.scitotenv.2021.152104] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/12/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Global warming and eutrophication may lead to increased incidence of harmful algal blooms and related production of cyanotoxins that can be toxic to aquatic plants. Previous studies have evaluated the phytotoxic effects of cyanotoxins on aquatic plants. However, most studies have evaluated only a limited number of plant species and cyanotoxins; there is also considerable variability between studies, which obscures general patterns and hinders understanding of the phytotoxic effects of cyanotoxins. Here, we conducted a comprehensive meta-analysis by compiling 41 published papers to estimate the phytotoxic effects of anatoxin-a, cylindrospermopsin, and microcystins in 34 species of aquatic plants, with the aim of 1) investigating the phytotoxicity of different cyanotoxins to aquatic plants; 2) determining the aquatic plant species most sensitive to the phytotoxic effects of cyanotoxins; and 3) evaluating the bioaccumulation potential of cyanotoxins in aquatic plants. Most aquatic plants were negatively affected by cyanotoxin exposure and their response was dose-dependent; however, morphological indicators and photosynthesis of certain aquatic plants were marginally stimulated under low concentrations of anatoxin-a and cylindrospermopsin. Anatoxin-a showed the greatest bioaccumulation capacity in aquatic plants compared to cylindrospermopsin and microcystin variants. Bioaccumulation factors of cyanotoxins in aquatic plants generally decreased with increasing water exposure concentrations. Our study supports the One Health goal to manage the risk of public exposure to toxic substances, and indicates that cyanotoxins warrant further investigations in aquatic plants. Environmental managers and public health authorities need to be alert to the long-term exposure and chronic toxicity of cyanotoxins, and the potential trophic transfer of cyanotoxins from aquatic plants to higher-order organisms.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; Department of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada.
| |
Collapse
|
4
|
Kaminski A, Edwards C, Chrapusta-Srebrny E, Lawton LA. Anatoxin-a degradation by using titanium dioxide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143590. [PMID: 33250246 DOI: 10.1016/j.scitotenv.2020.143590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Advanced oxidation processes, such as using titanium dioxide (TiO2) photocatalysis, are being developed to reduce or eliminate the toxicity of treated water. In this study, the removal of purified anatoxin-a (ANTX-a), live Dolichospermum flos-aquae cells, and a cell extract of this organism under UV-A/TiO2 photocatalysis, creation of decomposition products and their toxicity were investigated. Total degradation of purified ANTX-a from the initial concentration of 10 mg·L-1 with the addition of TiO2 under UV-A irradiation was achieved in 30 min. Under these conditions several decomposition products were noted with m/z ratio from 156.11 to 216.1. Analysis of the completely degraded ANTX-a sample using Thamnotoxkit F™ toxicity test showed that it was no longer toxic. TiO2 photocatalysis was also efficient in the decomposition of the living cyanobacterial cells. Degradation of their cell structures and degradation of released toxin was also achieved in 30 min. Earlier homogenization of cyanobacteria culture significantly accelerated degradation of ANTX-a to 10 min.
Collapse
Affiliation(s)
- Ariel Kaminski
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Development, Gronostajowa 7, 30-387 Krakow, Poland; Robert Gordon University, School of Pharmacy and Life Sciences, Garthdee Road, Aberdeen AB10 7GJ, United Kingdom.
| | - Christine Edwards
- Robert Gordon University, School of Pharmacy and Life Sciences, Garthdee Road, Aberdeen AB10 7GJ, United Kingdom
| | - Ewelina Chrapusta-Srebrny
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Development, Gronostajowa 7, 30-387 Krakow, Poland
| | - Linda A Lawton
- Robert Gordon University, School of Pharmacy and Life Sciences, Garthdee Road, Aberdeen AB10 7GJ, United Kingdom
| |
Collapse
|
5
|
Zhong Y, Shen L, Ye X, Zhou D, He Y, Li Y, Ding Y, Zhu W, Ding J, Zhang H. Neurotoxic Anatoxin-a Can Also Exert Immunotoxicity by the Induction of Apoptosis on Carassius auratus Lymphocytes in vitro When Exposed to Environmentally Relevant Concentrations. Front Physiol 2020; 11:316. [PMID: 32351401 PMCID: PMC7174720 DOI: 10.3389/fphys.2020.00316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/20/2020] [Indexed: 12/17/2022] Open
Abstract
Hazardous anatoxin-a (ANTX-a) is produced by freshwater algal blooms worldwide, which greatly increases the risk of consumer exposure. Although ANTX-a shows widespread neurotoxicity in aquatic animals, little is known about its mechanism of action and biotransformation in biological systems, especially in immunobiological models. In this study, transmission electron microscopy results showed that ANTX-a can destroy lymphocytes of Carassius auratus in vitro by inducing cytoplasmic concentration, vacuolation, and swollen mitochondria. DNA fragmentations clearly showed a ladder pattern in agarose gel electrophoresis, which demonstrated that the apoptosis of fish lymphocytes was caused by exposure to ANTX-a. Flow cytometry results showed that the apoptotic percentage of fish lymphocytes exposed to 0.01, 0.1, 1, and 10 mg/L of ANTX-a for 12 h reached 18.89, 22.89, 39.23, and 35.58%, respectively. ANTX-a exposure induced a significant increase in reactive oxygen species (ROS) and malonaldehyde (MDA) in lymphocytes. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), and the glutathione (GSH) content of the 0.01 mg/L ANTX-a-treated group decreased significantly by about 41, 46, 67, and 54% compared with that of the control group (p < 0.01), respectively. Although these observations were dose-dependent, these results suggested that ANTX-a can induce lymphocyte apoptosis via intracellular oxidative stress and destroy the antioxidant system after a short exposure time of only 12 h. Besides neurotoxicity, ANTX-a may also be toxic to the immune system of fish, even when the fish are exposed to environmentally relevant concentrations, which clearly demonstrated that the potential health risks induced by ANTX-a in aquatic organisms requires attention.
Collapse
Affiliation(s)
- Yuchi Zhong
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Lilai Shen
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xueping Ye
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Dongren Zhou
- Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Yunyi He
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yan Li
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ying Ding
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Weiqin Zhu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jiafeng Ding
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hangjun Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
6
|
Kaminski A, Chrapusta E, Adamski M, Bober B, Zabaglo K, Bialczyk J. Determination of the time-dependent response of Lemna trisulca to the harmful impact of the cyanotoxin anatoxin-a. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Sabart M, Crenn K, Perrière F, Abila A, Leremboure M, Colombet J, Jousse C, Latour D. Co-occurrence of microcystin and anatoxin-a in the freshwater lake Aydat (France): Analytical and molecular approaches during a three-year survey. HARMFUL ALGAE 2015; 48:12-20. [PMID: 29724471 DOI: 10.1016/j.hal.2015.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 06/08/2023]
Abstract
Cyanobacterial mass occurrence is becoming a growing concern worldwide. They notably pose a threat to water users when cyanotoxins are produced. The aim of this study was to evaluate the occurrence and the dynamics of two cyanotoxins: microcystin (MC) and anatoxin-a (ANTX-a), and of two of the genes responsible for their production (respectively mcyA and anaC) during three consecutive bloom periods (2011, 2012 and 2013) in Lake Aydat (Auvergne, France). MC was detected at all sampling dates, but its concentration showed strong inter- and intra-annual variations. MC content did not correlate with cyanobacterial abundance, nor with any genera taken individually, but it significantly correlated with mcyA gene abundance (R2=0.51; p=0.042). MC content and mcyA gene abundance were maximal when cyanobacterial abundance was low, either at the onset of the bloom or during a trough of biomass. The LC-MS/MS analysis showed the presence of ANTX-a in the 2011 samples. To our knowledge, this is the first report of the presence of this neurotoxin in a French lake. The presence of ANTX-a corresponded to the only year for which Anabaena did not dominate the cyanobacterial community alone, and several cyanobacterial genera were present, including notably Aphanizomenon. anaC gene detection by PCR was not coherent with ANTX-a presence, both gene and toxin were never found for a same sample. This implies that molecular tools to study genes responsible for the production of anatoxin-a are still imperfect and the development of new primers is needed. This study also highlights the need for better monitoring practices that would not necessarily focus only on the peak of cyanobacterial abundance and that would take cyanotoxins other than MC into account.
Collapse
Affiliation(s)
- Marion Sabart
- Université Clermont Auvergne, Université Blaise Pascal, LMGE, BP 10448, Clermont-Ferrand, F-63000, France; CNRS, UMR 6023, LMGE, BP 80026, Aubiere Cedex, F-63171, France.
| | - Kristell Crenn
- Université Clermont Auvergne, Université Blaise Pascal, LMGE, BP 10448, Clermont-Ferrand, F-63000, France; CNRS, UMR 6023, LMGE, BP 80026, Aubiere Cedex, F-63171, France
| | - Fanny Perrière
- Université Clermont Auvergne, Université Blaise Pascal, LMGE, BP 10448, Clermont-Ferrand, F-63000, France; CNRS, UMR 6023, LMGE, BP 80026, Aubiere Cedex, F-63171, France
| | - Angélique Abila
- Université Clermont Auvergne, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand (ICCF) and Mass Spectrometry Facility (UBP-START), BP 10448, Clermont-Ferrand, F-63000 FRANCE; CNRS, UMR 6296, ICCF, F-63171 Aubiere, FRANCE
| | - Martin Leremboure
- Université Clermont Auvergne, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand (ICCF) and Mass Spectrometry Facility (UBP-START), BP 10448, Clermont-Ferrand, F-63000 FRANCE; CNRS, UMR 6296, ICCF, F-63171 Aubiere, FRANCE
| | - Jonathan Colombet
- Université Clermont Auvergne, Université Blaise Pascal, LMGE, BP 10448, Clermont-Ferrand, F-63000, France; CNRS, UMR 6023, LMGE, BP 80026, Aubiere Cedex, F-63171, France
| | - Cyril Jousse
- Université Clermont Auvergne, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand (ICCF) and Mass Spectrometry Facility (UBP-START), BP 10448, Clermont-Ferrand, F-63000 FRANCE; CNRS, UMR 6296, ICCF, F-63171 Aubiere, FRANCE
| | - Delphine Latour
- Université Clermont Auvergne, Université Blaise Pascal, LMGE, BP 10448, Clermont-Ferrand, F-63000, France; CNRS, UMR 6023, LMGE, BP 80026, Aubiere Cedex, F-63171, France
| |
Collapse
|
8
|
Beversdorf LJ, Miller TR, McMahon KD. Long-term monitoring reveals carbon-nitrogen metabolism key to microcystin production in eutrophic lakes. Front Microbiol 2015; 6:456. [PMID: 26029192 PMCID: PMC4428211 DOI: 10.3389/fmicb.2015.00456] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/27/2015] [Indexed: 02/04/2023] Open
Abstract
The environmental drivers contributing to cyanobacterial dominance in aquatic systems have been extensively studied. However, understanding of toxic vs. non-toxic cyanobacterial population dynamics and the mechanisms regulating cyanotoxin production remain elusive, both physiologically and ecologically. One reason is the disconnect between laboratory and field-based studies. Here, we combined 3 years of temporal data, including microcystin (MC) concentrations, 16 years of long-term ecological research, and 10 years of molecular data to investigate the potential factors leading to the selection of toxic Microcystis and MC production. Our analysis revealed that nitrogen (N) speciation and inorganic carbon (C) availability might be important drivers of Microcystis population dynamics and that an imbalance in cellular C: N ratios may trigger MC production. More specifically, precipitous declines in ammonium concentrations lead to a transitional period of N stress, even in the presence of high nitrate concentrations, that we call the “toxic phase.” Following the toxic phase, temperature and cyanobacterial abundance remained elevated but MC concentrations drastically declined. Increases in ammonium due to lake turnover may have led to down regulation of MC synthesis or a shift in the community from toxic to non-toxic species. While total phosphorus (P) to total N ratios were relatively low over the time-series, MC concentrations were highest when total N to total P ratios were also highest. Similarly, high C: N ratios were also strongly correlated to the toxic phase. We propose a metabolic model that corroborates molecular studies and reflects our ecological observations that C and N metabolism may regulate MC production physiologically and ecologically. In particular, we hypothesize that an imbalance between 2-oxoglutarate and ammonium in the cell regulates MC synthesis in the environment.
Collapse
Affiliation(s)
- Lucas J Beversdorf
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison Madison, WI, USA ; Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| | - Todd R Miller
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| | - Katherine D McMahon
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison Madison, WI, USA ; Department of Bacteriology, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
9
|
Beversdorf LJ, Chaston SD, Miller TR, McMahon KD. Microcystin mcyA and mcyE Gene Abundances Are Not Appropriate Indicators of Microcystin Concentrations in Lakes. PLoS One 2015; 10:e0125353. [PMID: 25945933 PMCID: PMC4422731 DOI: 10.1371/journal.pone.0125353] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 03/11/2015] [Indexed: 11/19/2022] Open
Abstract
Cyanobacterial harmful algal blooms (cyanoHABs) are a primary source of water quality degradation in eutrophic lakes. The occurrence of cyanoHABs is ubiquitous and expected to increase with current climate and land use change scenarios. However, it is currently unknown what environmental parameters are important for indicating the presence of cyanoHAB toxins making them difficult to predict or even monitor on time-scales relevant to protecting public health. Using qPCR, we aimed to quantify genes within the microcystin operon (mcy) to determine which cyanobacterial taxa, and what percentage of the total cyanobacterial community, were responsible for microcystin production in four eutrophic lakes. We targeted Microcystis-16S, mcyA, and Microcystis, Planktothrix, and Anabaena-specific mcyE genes. We also measured microcystins and several biological, chemical, and physical parameters--such as temperature, lake stability, nutrients, pigments and cyanobacterial community composition (CCC)--to search for possible correlations to gene copy abundance and MC production. All four lakes contained Microcystis-mcyE genes and high percentages of toxic Microcystis, suggesting Microcystis was the dominant microcystin producer. However, all genes were highly variable temporally, and in few cases, correlated with increased temperature and nutrients as the summer progressed. Interestingly, toxin gene abundances (and biomass indicators) were anti-correlated with microcystin in all lakes except the largest lake, Lake Mendota. Similarly, gene abundance and microcystins differentially correlated to CCC in all lakes. Thus, we conclude that the presence of microcystin genes are not a useful tool for eliciting an ecological role for toxins in the environment, nor are microcystin genes (e.g. DNA) a good indicator of toxins in the environment.
Collapse
Affiliation(s)
- Lucas J. Beversdorf
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin, 53706, United States of America
| | - Sheena D. Chaston
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin, 53706, United States of America
| | - Todd R. Miller
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin, 53706, United States of America
| | - Katherine D. McMahon
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin, 53706, United States of America
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin, 53706, United States of America
| |
Collapse
|
10
|
Scientific Opinion on the safety of astaxanthin-rich ingredients (AstaREAL A1010 and AstaREAL L10) as novel food ingredients. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3757] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
11
|
Al-Sammak MA, Hoagland KD, Cassada D, Snow DD. Co-occurrence of the cyanotoxins BMAA, DABA and anatoxin-a in Nebraska reservoirs, fish, and aquatic plants. Toxins (Basel) 2014; 6:488-508. [PMID: 24476710 PMCID: PMC3942747 DOI: 10.3390/toxins6020488] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/19/2013] [Accepted: 01/17/2014] [Indexed: 11/17/2022] Open
Abstract
Several groups of microorganisms are capable of producing toxins in aquatic environments. Cyanobacteria are prevalent blue green algae in freshwater systems, and many species produce cyanotoxins which include a variety of chemical irritants, hepatotoxins and neurotoxins. Production and occurrence of potent neurotoxic cyanotoxins β-N-methylamino-l-alanine (BMAA), 2,4-diaminobutyric acid dihydrochloride (DABA), and anatoxin-a are especially critical with environmental implications to public and animal health. Biomagnification, though not well understood in aquatic systems, is potentially relevant to both human and animal health effects. Because little is known regarding their presence in fresh water, we investigated the occurrence and potential for bioaccumulation of cyanotoxins in several Nebraska reservoirs. Collection and analysis of 387 environmental and biological samples (water, fish, and aquatic plant) provided a snapshot of their occurrence. A sensitive detection method was developed using solid phase extraction (SPE) in combination with high pressure liquid chromatography-fluorescence detection (HPLC/FD) with confirmation by liquid chromatography-tandem mass spectrometry (LC/MS/MS). HPLC/FD detection limits ranged from 5 to 7 µg/L and LC/MS/MS detection limits were <0.5 µg/L, while detection limits for biological samples were in the range of 0.8–3.2 ng/g depending on the matrix. Based on these methods, measurable levels of these neurotoxic compounds were detected in approximately 25% of the samples, with detections of BMAA in about 18.1%, DABA in 17.1%, and anatoxin-a in 11.9%.
Collapse
Affiliation(s)
- Maitham Ahmed Al-Sammak
- Environmental Health, Occupational Health, & Toxicology, Tropical Biological Researches Unit, College of Science, University of Baghdad, Baghdad 10071, Iraq; E-Mail:
- Nebraska Water Center and School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; E-Mail:
| | - Kyle D. Hoagland
- School of Natural Resources, University of Nebraska, Lincoln, NE 68583, USA; E-Mail:
| | - David Cassada
- Nebraska Water Center and School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; E-Mail:
| | - Daniel D. Snow
- Nebraska Water Center and School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; E-Mail:
- Author to whom correspondence should be addressed: E-Mail: ; Tel.: +1-402-472-7539; Fax: +1-402-472-9599
| |
Collapse
|
12
|
Weirich CA, Miller TR. Freshwater harmful algal blooms: toxins and children's health. Curr Probl Pediatr Adolesc Health Care 2014; 44:2-24. [PMID: 24439026 DOI: 10.1016/j.cppeds.2013.10.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 10/04/2013] [Accepted: 10/05/2013] [Indexed: 11/18/2022]
Abstract
Massive accumulations of cyanobacteria (a.k.a. "blue-green algae"), known as freshwater harmful algal blooms (FHABs), are a common global occurrence in water bodies used for recreational purposes and drinking water purification. Bloom prevalence is increased due to anthropogenic changes in land use, agricultural activity, and climate change. These photosynthetic bacteria produce a range of toxic secondary metabolites that affect animals and humans at both chronic and acute dosages. Children are especially at risk because of their lower body weight, behavior, and toxic effects on development. Here we review common FHAB toxins, related clinical symptoms, acceptable concentrations in drinking water, case studies of children's and young adults' exposures to FHAB toxins through drinking water and food, methods of environmental and clinical detection in potential cases of intoxication, and best practices for FHAB prevention.
Collapse
Affiliation(s)
- Chelsea A Weirich
- Joseph J. Zilber School of Public Health, University of Wisconsin, Milwaukee, WI
| | - Todd R Miller
- Joseph J. Zilber School of Public Health, University of Wisconsin, Milwaukee, WI
| |
Collapse
|
13
|
Methods for simultaneous detection of the cyanotoxins BMAA, DABA, and anatoxin-a in environmental samples. Toxicon 2013; 76:316-25. [DOI: 10.1016/j.toxicon.2013.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 10/02/2013] [Accepted: 10/08/2013] [Indexed: 11/19/2022]
|
14
|
Assessment of the mutagenic potential of cyanobacterial extracts and pure cyanotoxins. Toxicon 2013; 74:76-82. [DOI: 10.1016/j.toxicon.2013.07.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 07/24/2013] [Accepted: 07/30/2013] [Indexed: 11/23/2022]
|
15
|
Lemoine P, Roy-Lachapelle A, Prévost M, Tremblay P, Solliec M, Sauvé S. Ultra-fast analysis of anatoxin-A using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry: Validation and resolution from phenylalanine. Toxicon 2013; 61:165-74. [DOI: 10.1016/j.toxicon.2012.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 10/19/2012] [Accepted: 10/30/2012] [Indexed: 11/16/2022]
|
16
|
Cytotoxic activity of the neurotoxin anatoxin-a on fish leukocytes in vitro and in vivo studies. ACTA VET BRNO 2012. [DOI: 10.2754/avb201281020175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this study was to investigate the potential cytotoxic effects of different concentrations (0.01, 0.025, 0.05, 0.1 and 1 µg/ml medium) of pure anatoxin-a on carp immune cells (in vitro study). Furthermore, changes in the cell immune functions isolated from 10 carp exposed by immersion to anatoxin-a (25 µg/l) for 5 days have been examined. Cytotoxicity of the toxin to leukocytes was determined by measuring intracellular adenosine triphosphate and glutathione concentrations. Lymphocyte proliferation was determined by measurement of bromodeoxyuridine incorporation during DNA synthesis. The phagocytes were assayed for intracellular production of reactive oxygen species. The in vitro results showed that pure toxin induced adverse effects on immune cells only after application of the higher concentrations (0.05, 0.1 and 1 µg/ml). Phagocytes exposed to anatoxin-a exhibited a significant (P < 0.05) reduction in glutathione concentration. The lymphocyte proliferation was decreased by the toxin, and B cells were more sensitive than T cells. The present study showed for the first time that anatoxin-a administered to fish by immersion, had suppressive effects on lymphocyte proliferation and the antioxidant potential of phagocytes.
Collapse
|
17
|
Miller TR, McMahon KD. Genetic diversity of cyanobacteria in four eutrophic lakes. FEMS Microbiol Ecol 2011; 78:336-48. [DOI: 10.1111/j.1574-6941.2011.01162.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
18
|
Affiliation(s)
- Daniel M Evans
- School of Chemistry, Bangor University, Bangor, Gwynedd, UK
| | | |
Collapse
|
19
|
Klitzke S, Beusch C, Fastner J. Sorption of the cyanobacterial toxins cylindrospermopsin and anatoxin-a to sediments. WATER RESEARCH 2011; 45:1338-1346. [PMID: 21112603 DOI: 10.1016/j.watres.2010.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/08/2010] [Accepted: 10/14/2010] [Indexed: 05/30/2023]
Abstract
The occurrence of the cyanobacterial toxins anatoxin-a (ATX) and cylindrospermopsin (CYN) in surface waters has been reported throughout the world. Beside degradation, sorption is an important pathway for toxin elimination if these resources are used for drinking water production via sediment passage. However, to date studies that systematically investigated sorption of these toxins onto sediments are lacking. Therefore, the aim of our work was (i) to determine the adsorption coefficients of ATX and CYN according to the Freundlich and Langmuir model for sediments of various textures and (ii) to derive sorption-relevant sediment characteristics. We determined sorption parameters in air-dried samples of eight differently textured sediments using batch experiments. Results for both toxins showed best fits with the Langmuir model. Organic C proved to be the main sediment parameter determining CYN sorption. There was no or little CYN sorption on sandy and silty sediments (0-39 μg kg(-1)), respectively, presumably due to charge repulsion from the negatively charged surfaces. Sorption of ATX (max. sorbent loading ranging from 47 to 656 μg kg(-1)) was much stronger than that of CYN (max. sorbent loading ranging from 0 to 361 μg kg(-1)) and predominantly controlled by clay and to a minor degree also by organic C and silt. While ATX sorption to most sediments occurred mainly through cation exchange this mechanism played only a minor role in CYN sorption to organic C. Hence, high mobility for CYN and moderate mobility for ATX during sediment passage has to be expected.
Collapse
Affiliation(s)
- Sondra Klitzke
- Federal Environment Agency, Section Drinking Water Treatment and Resource Protection, Schichauweg 58, D-12307 Berlin, Germany.
| | | | | |
Collapse
|
20
|
Graham JL, Loftin KA, Meyer MT, Ziegler AC. Cyanotoxin mixtures and taste-and-odor compounds in cyanobacterial blooms from the Midwestern United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:7361-8. [PMID: 20831209 DOI: 10.1021/es1008938] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The mixtures of toxins and taste-and-odor compounds present during cyanobacterial blooms are not well characterized and of particular concern when evaluating potential human health risks. Cyanobacterial blooms were sampled in twenty-three Midwestern United States lakes and analyzed for community composition, thirteen cyanotoxins by liquid chromatography/mass spectrometry and immunoassay, and two taste-and-odor compounds by gas chromatography/mass spectrometry. Aphanizomenon, Cylindrospermopsis and/or Microcystis were dominant in most (96%) blooms, but community composition was not strongly correlated with toxin and taste-and-odor occurrence. Microcystins occurred in all blooms. Total microcystin concentrations measured by liquid chromatography/mass spectrometry and immunoassay were linearly related (r(s) = 0.76, p < 0.01) and LC/MS/MS concentrations were lower than or similar to ELISA in most (85%) samples. Geosmin (87%), 2-methylisoborneol (39%), anatoxin-a (30%), saxitoxins (17%), cylindrospermopsins (9%), and nodularin-R (9%) also were present in these blooms. Multiple classes of cyanotoxins occurred in 48% of blooms and 95% had multiple microcystin variants. Toxins and taste-and-odor compounds frequently co-occurred (91% of blooms), indicating odor may serve as a warning that cyanotoxins likely are present. However, toxins occurred more frequently than taste-and-odor compounds, so odor alone does not provide sufficient warning to ensure human-health protection.
Collapse
Affiliation(s)
- Jennifer L Graham
- United States Geological Survey, Kansas Water Science Center, 4821 Quail Crest Place, Lawrence, Kansas 66049, USA.
| | | | | | | |
Collapse
|
21
|
Aráoz R, Vilariño N, Botana LM, Molgó J. Ligand-binding assays for cyanobacterial neurotoxins targeting cholinergic receptors. Anal Bioanal Chem 2010; 397:1695-704. [DOI: 10.1007/s00216-010-3533-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/28/2010] [Accepted: 01/30/2010] [Indexed: 11/30/2022]
|
22
|
Sierosławska A, Rymuszka A, Kalinowska R, Skowroński T, Bownik A, Pawlik-Skowrońska B. Toxicity of cyanobacterial bloom in the eutrophic dam reservoir (Southeast Poland). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:556-560. [PMID: 20821478 DOI: 10.1002/etc.86] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cyanobacterial bloom was observed in a highly eutrophic dam reservoir, Zemborzycki, near Lublin (SE Poland) over a warm period in the year 2007. The water bloom consisted of several cyanobacterial taxa: Anabaena circinalis, Anabaena spiroides, Anabaena flos-aquae, Planktothrix agardhii, Aphanizomenon flos-aquae, Aphanizomenon gracile, and Microcystis flos-aquae. Anabaena spp., and Aphanizomenon spp., potential producers of neurotoxic anatoxin-a, quantitatively predominated in the studied bloom. High-performance liquid chromatography (HPLC) analysis of surface scum sampled during Anabaena circinalis domination revealed the presence of anatoxin-a at a high concentration (1,035.59 microg per liter of surface scum). At the same time, neither gas chromatography/mass spectrometry (GC/MS) nor microcystin enzyme-linked immunosorbent assay (ELISA) test showed the presence of other frequently found cyanotoxins, microcystins. Toxicity of cyanobacterial bloom was assessed by the crustacean acute toxicity test Daphtoxkit F pulex using Daphnia pulex, and by the chronic toxicity test Protoxkit F with a ciliate protozoan Tetrahymena thermophila. The crude extract of cyanobacterial scum showed high toxicity for Daphnia pulex, with 24-h median effective concentration (EC50) value of 90.3 microg/L of anatoxin-a, which corresponded to the cyanobacterial density in the scum of 1.01 g dry weight/L. For Tetrahymena thermophila, 24-h EC50 was lower, evaluated to be 60.48 microg/L of anatoxin-a, which corresponded to a cyanobacterial density of 0.68 g dry weight/L of the scum. On the basis of evaluated toxicity units, the cyanobacterial extract was classified at class IV toxicity, which means high toxic hazard.
Collapse
Affiliation(s)
- Anna Sierosławska
- The John Paul II Catholic University of Lublin, Department of Physiology and Ecotoxicology, Norwida 4, Lublin, Poland.
| | | | | | | | | | | |
Collapse
|