1
|
Yang Q, Lu T, Zhang Q, Farooq U, Wang B, Qi Z, Miao R. Transport of sulfanilamide in saturated porous media under different solution chemistry conditions: role of physicochemical characteristics of soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11622-11632. [PMID: 38221561 DOI: 10.1007/s11356-024-31966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Identification of the transport of sulfonamide antibiotics in soils facilitates a better understanding of the environmental fate and behaviors of these ubiquitous contaminants. In this study, the mobility properties of sulfanilamide (SNM, a typical sulfonamide antibiotic) through saturated soils with different physicochemical characteristics were investigated. The results showed that the physicochemical characteristics controlled SNM mobility. Generally, the mobility of SNM was positively correlated with CEC values and soil organic matter content, which was mainly related to the interactions between the organic matter in soils and SNM molecules via π-π stacking, H-bonding, ligand exchange, and hydrophobic interaction. Furthermore, higher clay mineral content and lower sand content were beneficial for restraining SNM transport in the soils. Unlike Na+, Cu2+ ions could act as bridging agents between the soil grains and SNM molecules, contributing to the relatively weak transport of SNM. Furthermore, the trend of SNM mobility in different soil columns was unaffected by solution pH (5.0-9.0). Meanwhile, for a given soil, the SNM mobility was promoted as the solution pH values increased, which was caused by the enhanced electrostatic repulsion between SNM- species and soil particles as well as the declined hydrophobic interaction between SNM and soil organic matter. The obtained results provide helpful information for the contribution of soil physicochemical characteristics to the transport behaviors of sulfonamide antibiotics in soil-water systems.
Collapse
Affiliation(s)
- Qingxin Yang
- Dabieshan National Observation and Research Field Station of Forest Ecosystem at Henan, International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Taotao Lu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Qiang Zhang
- Ecology institute of the Shandong academy of sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Bin Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Renhui Miao
- Dabieshan National Observation and Research Field Station of Forest Ecosystem at Henan, International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
2
|
Xu B, Lu L, Liu M, Zhang Q, Farooq U, Lu T, Qi Z, Ge C. Low-molecular-weight organic acids-mediated transport of neonicotinoid pesticides through saturated soil porous media: Combined effects of the molecular structures of organic acids and the chemical properties of contaminants. CHEMOSPHERE 2024; 349:140870. [PMID: 38056716 DOI: 10.1016/j.chemosphere.2023.140870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Empirical information about the transport properties of neonicotinoid pesticides through the soil as affected by the ubiquitous low molecular weight organic acids (LMWOAs) is lacking. Herein, the impacts of three LMWOAs with different molecular structures, including citric acid, acetic acid, and malic acid, on the mobility characteristics of two typical neonicotinoid pesticides (Dinotefuran (DTF) and Nitenpyram (NTP)) were explored. Interestingly, under acidic conditions, different mechanisms were involved in transporting DTF and NTP by adding exogenous LMWOAs. Concretely, acetic acid and malic acid inhibited DTF transport, ascribed to the enhanced electrostatic attraction between DTF and porous media and the additional binding sites provided by the deposited LMWOAs. However, citric acid slightly enhanced DTF mobility due to the fact that the inhibitory effect was weakened by the steric hindrance effect induced by the deposited citric acid with a large molecular size. In comparison, all three LMWOAs promoted NTP transport at pH 5.0. Because the interaction between NTP with soil organic matter (e.g., via π-π stacking interaction) was masked by the LMWOAs coating on soil surfaces. Nevertheless, LMWOAs could promote the mobility of both neonicotinoid pesticides at pH 7.0 due to the steric hindrance effect caused by the deposited organic acids and the competitive retention between LMWOAs and pesticides for effective surface deposition sites of soil particles. Furthermore, the extent of the promotion effects of LMWOAs generally followed the order of citric acid > malic acid > acetic acid. This pattern was highly related to their molecular structures (e.g., number and type of functional groups and molecular size). Additionally, when the background solutions contained Ca2+, the bridging effect of cations also contributed to the transport-enhancement effects of LMWOAs. The findings provide valuable information about the mobility behaviors of neonicotinoid pesticides co-existing with LMWOAs in soil-water systems.
Collapse
Affiliation(s)
- Bingyao Xu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Lulu Lu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Mengya Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Qiang Zhang
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Taotao Lu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou, 570228, China.
| |
Collapse
|
3
|
Cheng D, Chen J, Wang J, Liu X. Adsorption behaviors and influencing factors of antibiotic norfloxacin on natural kaolinite-humic composite colloids in aquatic environment. Heliyon 2023; 9:e15979. [PMID: 37215810 PMCID: PMC10195911 DOI: 10.1016/j.heliyon.2023.e15979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Particles are ubiquitous and abundant in natural waters and play a crucial role in the fate and bioavailability of organic pollution. In the present study, natural mineral (kaolinites, KL), organic (humic/fulvic acid, HA/FA) and their composite particles were further separated into particles fractions (PFs, >1 μm) and colloidal fractions (CFs, 1 kDa-1 μm) by cross-flow ultrafiltration (CFUF). This research demonstrated the role of kaolinite-humic composite colloids on the adsorption of fluoroquinolone norfloxacin (NOR). The Freundlich model satisfactory described adsorption curves, showing strong affinity of NOR to CFs, with sorption capacity (KF) between 8975.50 and 16638.13 for NOR. The adsorption capacities of NOR decreased with the particle size increasing from CFs to PFs. In addition, composite CFs showed excellent adsorption capacity, which was mainly attributed to the larger specific surface area of composite CFs and electronegativity and numerous oxygen-containing functional groups on the surfaces of the complexes, and electrostatic attraction, hydrogen bond and cation exchange could dominate the NOR adsorption onto the composite CFs. The best pH value under adsorption condition of composite CFs varied from weakly acidic to neutral with the increase of load amount of humic and fulvic acids on the surface of inorganic particles. The adsorption decreased with higher cation strength, larger cation radius and higher cation valence, which depended on the surface charge of colloids and the molecular shape of NOR. These results provided insight into the interfacial behaviors of NOR on the surfaces of natural colloids and promoted the understanding of the migration and transport of antibiotics in environmental systems.
Collapse
Affiliation(s)
- Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Jianyu Chen
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Jing Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Xinhui Liu
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai, 519087, PR China
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| |
Collapse
|
4
|
Cui S, Qi Y, Zhu Q, Wang C, Sun H. A review of the influence of soil minerals and organic matter on the migration and transformation of sulfonamides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160584. [PMID: 36455724 DOI: 10.1016/j.scitotenv.2022.160584] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Sulfonamides (SAs) are common antibiotics that are widely present in the environment and can easily migrate in the environment, so they pose an environmental risk. Minerals and organic matter influence the antibiotic migration and transformation in sewage treatment plants, activated sludge, surface water, and soil environment. In the present paper, the influence of the process and mechanism of minerals and organic matter on the adsorption, degradation, and plant uptake of SAs in soil were summarized. In the impact process of mineral and organic matter on the SAs migration and transformation, the pH value is undoubtedly the most important factor because it determines the ionic state of SAs. In terms of influence mechanisms, the minerals absorb SAs well via cation exchange, complexation, H-bonding, and cation bridging. Mineral photodegradation is also one of the primary removal methods for SAs. Soil organic matter (SOM) can significantly increase the SAs adsorption. The adsorption forces of SAs and SOM or dissolved organic matter (DOM) were very similar, but SOM decreased SAs mobility in the environment, while DOM increased SAs availability. DOM generated active substances and aided in the photodegradation of SAs. This review describes the effects of minerals and organic matter on the fate of SAs in soil, which is useful in controlling the migration and transformation of SAs in the soil environment.
Collapse
Affiliation(s)
- Shengyan Cui
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yuwen Qi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qing Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Moody AH, Lerch RN, Goyne KW, Anderson SH, Mendoza-Cózatl DG, Alvarez DA. Vegetative buffer strips show limited effectiveness for reducing antibiotic transport in surface runoff. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:137-148. [PMID: 36417934 DOI: 10.1002/jeq2.20441] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Vegetative buffer strips (VBS) have been demonstrated to effectively reduce loads of sediment, nutrients, and herbicides in surface runoff, but their effectiveness for reducing veterinary antibiotic (VA) loads in runoff has not been well documented. The objective of this study was to determine the effectiveness of VBS vegetation and width on surface runoff loads of the VAs sulfamethazine (SMZ) and lincomycin (LIN). Experimental design of the plots (1.5 × 25 m) was a two-way factorial with four vegetation treatments (tall fescue [Festuca aruninacea Schreb.]; tall fescue with switchgrass [Panicum virgatum L.] hedge; warm-season native grass mix; and continuous fallow control), and four buffer widths (0, 2, 5, and 9 m). Turkey litter spiked with SMZ and LIN was applied to the source area (upper 7 m) of each plot, and runoff was collected at each width. Runoff was generated with a rotating boom simulator. Results showed VA loads in runoff at the 0-m sampler ranged from 3.8 to 5.9% of applied, and overall VA transport in runoff was predominately in the dissolved phase (90% for SMZ and 99% for LIN). Among vegetation treatments, only tall fescue significantly reduced loads of SMZ and LIN compared with the control, with load reductions of ∼30% for both VAs. Estimated field-scale reductions in VA loads showed that source-to-buffer area ratios (SBARs) of 10:1 to 20:1 reduced VA loads by only 7 to 16%. Overall, the grass VBS tested here were less effective at reducing SMZ and LIN loads in surface runoff than has been previously demonstrated for sediment, nutrients, and herbicides.
Collapse
Affiliation(s)
- Adam H Moody
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA
| | - Robert N Lerch
- U.S. Department of Agriculture - Agricultural Research Service, Cropping Systems and Water Quality Research Unit, 1406 Rollins St., Columbia, MO, USA
| | - Keith W Goyne
- Virginia Polytechnic Institute and State Univ, Blacksburg, VA, USA
| | | | | | - David A Alvarez
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA
| |
Collapse
|
6
|
Hu J, Tang X, Qi M, Cheng J. New Models for Estimating the Sorption of Sulfonamide and Tetracycline Antibiotics in Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16771. [PMID: 36554653 PMCID: PMC9778684 DOI: 10.3390/ijerph192416771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Sulfonamides (SAs) and tetracyclines (TCs) are two classes of widely used antibiotics. There is a lack of easy models for estimating the parameters of antibiotic sorption in soils. In this work, a dataset of affinity coefficients (Kf and Kd) of seven SA/TC antibiotics (i.e., sulfachlorpyridazine, sulfamethazine, sulfadiazine, sulfamethoxazole, oxytetracycline, tetracycline, and chlortetracycline) and associated soil properties was generated. Correlation analysis of these data showed that the affinity coefficients of the SAs were predominantly affected by soil organic matter and cation exchange capacity, while those of the TCs were largely affected by soil organic matter and pH. Pedotransfer functions for estimating Kf and Kd were built by multiple linear regression analysis and were satisfactorily validated. Their performances would be better for soils having higher organic matter content and lower pH. These pedotransfer functions can be used to aid environmental risk assessment, prioritization of antibiotics and identification of vulnerable soils.
Collapse
Affiliation(s)
- Jinsheng Hu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiangyu Tang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Minghui Qi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Jianhua Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
7
|
Hatch KM, Lerch RN, Kremer RJ, Willett CD, Roberts CA, Goyne KW. Evaluating phytochemical and microbial contributions to atrazine degradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115840. [PMID: 35994960 DOI: 10.1016/j.jenvman.2022.115840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The inclusion of warm-season grasses, such as switchgrass (Panicum virgatum) and eastern gamagrass (EG) (Tripsacum dactyloides), in vegetated buffer strips has been shown to mitigate herbicide contamination in runoff and increase herbicide degradation in soil. The mode of action by which buffer strip rhizospheres enhance herbicide degradation remains unclear, but microorganisms and phytochemicals are believed to facilitate degradation processes. The objectives of this study were to: 1) screen root extracts from seven switchgrass cultivars for the ability to degrade the herbicide atrazine (ATZ) in solution; 2) determine sorption coefficients (Kd) of the ATZ-degrading phytochemical 2-β-D-glucopyranosyloxy-4-hydroxy-1,4-benzoxazin-3-one (DBG) to soil and Ca-montmorillonite, and investigate if DBG or ATZ sorption alters degradation processes; and 3) quantify ATZ degradation rates and soil microbial response to ATZ application in mesocosms containing soil and select warm-season grasses. Phytochemicals extracted from the roots of switchgrass cultivars degraded 44-85% of ATZ in 16-h laboratory assays, demonstrating that some switchgrass cultivars could rapidly degrade ATZ under laboratory conditions. However, attempts to isolate ATZ-degrading phytochemicals from plant roots were unsuccessful. Sorption studies revealed that DBG was strongly sorbed to soil (Kd = 87.2 L kg-1) and Ca-montmorillonite (Kd = 31.7 L kg-1), and DBG driven hydrolysis of ATZ was entirely inhibited when either ATZ or DBG were sorbed to Ca-montmorillonite. Atrazine degradation rates in mesocosm soils were rapid (t0.5 = 8.2-11.2 d), but not significantly different between soils collected from the two switchgrass cultivar mesocosms, the eastern gamagrass cultivar mesocosm, and the unvegetated mesocosm (control). Significant changes in three phospholipid fatty acid biomarkers were observed among the treatments. These changes indicated that different ATZ-degrading microbial consortia resulted in equivalent ATZ degradation rates between treatments. Results demonstrated that soil microbial response was the dominant mechanism controlling ATZ degradation in the soil studied, rather than root phytochemicals.
Collapse
Affiliation(s)
- K M Hatch
- University of Missouri, 1406 E. Rollins St., Columbia, MO, 65211, USA.
| | - R N Lerch
- USDA-ARS, 1406 E. Rollins St., Columbia, MO, 65211, USA.
| | - R J Kremer
- USDA-ARS, 902 S. College Ave., Columbia, MO, 65211, USA.
| | - C D Willett
- University of Arkansas, 1 University of Arkansas, Fayetteville, AK, 72701, USA.
| | - C A Roberts
- University of Missouri, 1112 University Ave, Columbia, MO, 65211, USA.
| | - K W Goyne
- University of Missouri, 902 S. College Ave., Columbia, MO, 65211, USA.
| |
Collapse
|
8
|
Gbadegesin LA, Tang X, Liu C, Cheng J. Transport of Veterinary Antibiotics in Farmland Soil: Effects of Dissolved Organic Matter. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1702. [PMID: 35162725 PMCID: PMC8834935 DOI: 10.3390/ijerph19031702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/04/2022]
Abstract
The application of manure as a fertiliser to farmland is regarded as a major source of veterinary antibiotic (VA) contamination in the environment. The frequent detection of such emerging contaminants and their potential adverse impacts on the ecosystem and human health have provoked increasing concern for VA transport and fate. Extrinsic dissolved organic matter (DOM) may be introduced into farmland soil along with Vas, and thus exert significant effects on the transport of VAs via hydrological processes upon rainfall. The leaching of VAs can be either enhanced or reduced by DOM, depending on the nature, mobility, and interactions of VAs with DOM of different origins. From the aspect of the diversity and reactivity of DOM, the state-of-the-art knowledge of DOM-VA interactions and their resulting effects on the sorption-desorption and leaching of VAs in farmland soil was reviewed. Spectroscopic techniques for examining the extent of binding and reactive components of DOM with VAs are summarized and their usefulness is highlighted. Models for simulating VA transport under the effects of DOM were also reviewed. It is suggested that distinct impacts of DOM of various organic fertiliser/amendment origins should be considered for predicting the transport of VAs in farmland soil.
Collapse
Affiliation(s)
- Lanre Anthony Gbadegesin
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China;
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyu Tang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China;
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China;
| | - Chen Liu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China;
| | - Jianhua Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China;
| |
Collapse
|
9
|
Zhang W, Tang X, Thiele-Bruhn S. Interaction of pig manure-derived dissolved organic matter with soil affects sorption of sulfadiazine, caffeine and atenolol pharmaceuticals. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4299-4313. [PMID: 33860411 PMCID: PMC8473328 DOI: 10.1007/s10653-021-00904-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/19/2021] [Indexed: 05/26/2023]
Abstract
Pharmaceutically active compounds (PhACs) released into the environment have an adverse impact on the soil and water ecosystem as well as human health. Sorption of PhACs by soils and its potential modification through introduced DOM in the applied animal manure or treated wastewater (TWW) determines the mobility and environmental relevance of PhACs. Sulfadiazine, caffeine and atenolol were selected as target PhACs to investigate their sorption behaviors by five selected arable soils in the absence and presence of pig manure DOM. Sulfadiazine was least sorbed, followed by caffeine and atenolol according to the Freundlich sorption isotherm fit (soil average Kf [μg(1-n) mLn g-1] 4.07, 9.06, 18.92, respectively). The addition of manure DOM (31.34 mg C L-1) decreased the sorption of sulfadiazine and especially of caffeine and atenolol (average Kf 3.04, 6.17, 5.79, respectively). Freundlich sorption isotherms of the PhACs became more nonlinear in the presence of manure DOM (Freundlich exponent n changed from 0.74-1.40 to 0.62-1.12), implying more heterogeneous sorption of PhACs in soil-DOM binary systems. Sorption competition of DOM molecules with sulfadiazine and caffeine mostly contributed to their decreased soil sorption when DOM was present. In contrast, the formation of DOM-atenolol associates in the solution phase caused the largely decreased soil sorption of atenolol in the presence of DOM. It is suggested that DOM concentration (e.g., ≥ 60 mg C L-1) and its interaction with PhACs should be taken into consideration when assessing the environmental impact of land application of animal manure or irrigation with TWW.
Collapse
Affiliation(s)
- Wei Zhang
- Soil Science, University of Trier, Behringstraße 21, 54296 Trier, Germany
- Present Address: School of Tourism and Land Resource, Chongqing Technology and Business University, Xuefu Avenue 19, Nan’an District, Chongqing, 400067 China
| | - Xiangyu Tang
- Department of Soil and Environment, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, No. 9, Block 4, Renminnanlu Road, Chengdu, 610041 China
| | - Sören Thiele-Bruhn
- Soil Science, University of Trier, Behringstraße 21, 54296 Trier, Germany
| |
Collapse
|
10
|
Alvarez-Esmorís C, Conde-Cid M, Fernández-Sanjurjo MJ, Núñez-Delgado A, Álvarez-Rodríguez E, Arias-Estévez M. Environmental relevance of adsorption of doxycycline, enrofloxacin, and sulfamethoxypyridazine before and after the removal of organic matter from soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112354. [PMID: 33735681 DOI: 10.1016/j.jenvman.2021.112354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
In this work batch-type experiments were used to study the adsorption of the antibiotics doxycycline (DC), enrofloxacin (ENR), and sulfamethoxypyridazine (SMP) in cultivation soils, before and after the removal of soil organic matter. Organic matter removal by calcination resulted not only in C and N removal, but also in increased soil pH, exchangeable basic cations and surface area values. The results indicate a very different behavior depending on the type of antibiotic, showing the adsorption sequence DC > ENR > SMP. Specifically, DC adsorption was very high in untreated soil samples (with organic matter), and was still high (although decreased) after the removal of soil organic matter. Furthermore, the adsorption behavior of DC was clearly dependent on the pH of the medium. Regarding ENR, it also showed high adsorption, although to a lesser extent than DC. However, when soil organic matter was removed, ENR adsorption significantly decreased in all soil samples. As regards SMP, it was adsorbed to a much lesser extent, and the removal of soil organic matter caused an additional drastic decrease in adsorption, reaching negligible values in some samples. Desorption followed the reverse sequence of adsorption, specifically in the order DC < ENR < SMP. In the case of DC, desorption was negligible, both in samples with and without organic matter, while for ENR and SMP, desorption clearly increased for soil samples where organic matter was removed. These results may be of relevance as regards environmental quality and public health, especially to facilitate a correct use of soils and organic amendments in areas that receive the application of substances containing the investigated antibiotics.
Collapse
Affiliation(s)
- C Alvarez-Esmorís
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain
| | - M Conde-Cid
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain
| | - M J Fernández-Sanjurjo
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - A Núñez-Delgado
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - E Álvarez-Rodríguez
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - M Arias-Estévez
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain.
| |
Collapse
|
11
|
Conde-Cid M, Ferreira-Coelho G, Fernández-Calviño D, Núñez-Delgado A, Fernández-Sanjurjo MJ, Arias-Estévez M, Álvarez-Rodríguez E. Single and simultaneous adsorption of three sulfonamides in agricultural soils: Effects of pH and organic matter content. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140872. [PMID: 32711315 DOI: 10.1016/j.scitotenv.2020.140872] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Veterinary antibiotics reaching the environment have become a matter of global concern, since they can cause serious negative impacts on human and ecological health. Therefore, a deep understanding of their behavior and fate once they reach the soil environment is of utmost importance to design and implement appropriate measures that could reduce their potential risks. With this aim, batch-type experiments were carried out to study competitive adsorption and desorption for three sulfonamide antibiotics (sulfadiazine -SDZ-, sulfamethazine -SMT-, and sulfachloropyridazine -SCP-) in six crop soils presenting different characteristics. The results obtained showed that sulfonamides have a low retention in soils, with average adsorption percentages of 40% for SDZ, 44% for SMT and 54% for SCP, and with desorption percentages up to 36% for SDZ and SCP and up to 29% for SMT. The retention of sulfonamides was strongly influenced by the soil organic carbon content (SOC), with higher adsorption and less desorption associated to higher SOC contents. In addition, the hydrophobicity of sulfonamides also had an influence, as higher hydrophobicity resulted in higher affinity for soils, showing the affinity sequences: SDZ ~ SMT <SCP in acid soils, and SDZ ~ SCP <SMT in neutral soils. The results obtained in the ternary systems were very similar to those found in simple systems, indicating the absence of substantial competition for adsorption sites among the three sulfonamides. Despite the low competition among them, these antibiotics have high mobility in soils and, therefore, they imply a significant risk of contamination of water bodies, as well as of entering the food chain, generating serious hazards for human and environmental health. Therefore, fertilization of soils with sulfonamide polluted manures should be controlled, implementing new measurements for the pretreatment of manures before their application, thus contributing to a reduction of potential risks.
Collapse
Affiliation(s)
- M Conde-Cid
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004 Ourense, Spain.
| | - G Ferreira-Coelho
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002 Lugo, Spain
| | - D Fernández-Calviño
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004 Ourense, Spain
| | - A Núñez-Delgado
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002 Lugo, Spain
| | - M J Fernández-Sanjurjo
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002 Lugo, Spain
| | - M Arias-Estévez
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004 Ourense, Spain
| | - E Álvarez-Rodríguez
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
12
|
Tetracycline and Sulfonamide Antibiotics in Soils: Presence, Fate and Environmental Risks. Processes (Basel) 2020. [DOI: 10.3390/pr8111479] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Veterinary antibiotics are widely used worldwide to treat and prevent infectious diseases, as well as (in countries where allowed) to promote growth and improve feeding efficiency of food-producing animals in livestock activities. Among the different antibiotic classes, tetracyclines and sulfonamides are two of the most used for veterinary proposals. Due to the fact that these compounds are poorly absorbed in the gut of animals, a significant proportion (up to ~90%) of them are excreted unchanged, thus reaching the environment mainly through the application of manures and slurries as fertilizers in agricultural fields. Once in the soil, antibiotics are subjected to a series of physicochemical and biological processes, which depend both on the antibiotic nature and soil characteristics. Adsorption/desorption to soil particles and degradation are the main processes that will affect the persistence, bioavailability, and environmental fate of these pollutants, thus determining their potential impacts and risks on human and ecological health. Taking all this into account, a literature review was conducted in order to shed light on the current knowledge about the occurrence of tetracycline and sulfonamide antibiotics in manures/slurries and agricultural soils, as well as on their fate in the environment. For that, the adsorption/desorption and the degradation (both abiotic and biotic) processes of these pollutants in soils were deeply discussed. Finally, the potential risks of deleterious effects on human and ecological health associated with the presence of these antibiotic residues were assessed. This review contributes to a deeper understanding of the lifecycle of tetracycline and sulfonamide antibiotics in the environment, thus facilitating decision-making for the application of preventive and mitigation measures to reduce its negative impacts and risks to public health.
Collapse
|
13
|
Conde-Cid M, Fernández-Calviño D, Fernández-Sanjurjo MJ, Núñez-Delgado A, Álvarez-Rodríguez E, Arias-Estévez M. Effects of pine bark amendment on the transport of sulfonamide antibiotics in soils. CHEMOSPHERE 2020; 248:126041. [PMID: 32028162 DOI: 10.1016/j.chemosphere.2020.126041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
In the present work, laboratory column experiments were carried out to study the effect of pine bark amendment (at doses of 0, 12, 48 and 96 Mg ha-1) on the transport of three sulfonamide antibiotics (sulfadiazine -SDZ-, sulfamethazine -SMT-, and sulfachloropyridazine -SCP-) through two crop soils. All three sulfonamides showed high mobility in the unamend soils, with absence of retention in most cases. However, some differences were detected regarding the degree of interactions between sulfonamides and soils, being higher for soil 1, which was attributed to its higher organic carbon content. For both soils, interactions with the antibiotics studied followed the sequence SDZ < SMT < SCP, indicating an increase as a function of the hydrophobicity of sulfonamides. Pine bark amendment significantly increased the retention of the three sulfonamides in both soils. Specifically, in the case of soil 1, the incorporation of the highest dose of pine bark (96 Mg ha-1) caused that retention increased from 0% to 70.3% for SDZ, from 2.7% to 71.3% for SMT, and from 0% to 85.4% for SCP. This effect of pine bark is mainly attributed to its high organic carbon content (48.6%), including substances with potential to interact and retain antibiotics, as well as to its acidic pH (4.5). Therefore, pine bark amendment would be an effective alternative to reduce the transport of sulfonamides in soils and, thus, decrease risks of passing to other environmental compartments, as well as harmful effects on the environment and public health.
Collapse
Affiliation(s)
- M Conde-Cid
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain
| | - D Fernández-Calviño
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain
| | - M J Fernández-Sanjurjo
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - A Núñez-Delgado
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - E Álvarez-Rodríguez
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - M Arias-Estévez
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain.
| |
Collapse
|
14
|
Conde-Cid M, Fernández-Calviño D, Núñez-Delgado A, Fernández-Sanjurjo MJ, Arias-Estévez M, Álvarez-Rodríguez E. Influence of mussel shell, oak ash and pine bark on the adsorption and desorption of sulfonamides in agricultural soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 261:110221. [PMID: 32148292 DOI: 10.1016/j.jenvman.2020.110221] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/03/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Taking into account the high mobility and environmental risks due to sulfonamide antibiotics as emerging pollutants, batch-type experiments were performed to study adsorption/desorption of three sulfonamides (sulfadiazine -SDZ-, sulfamethazine -SMT- and sulfachloropyridazine -SCP-) in three agricultural soils. The study was carried out both for un-amended and amended soil samples, using different doses (0, 12, 24 and 48 Mg ha-1) of three different by-products (mussel shell, oak ash and pine bark). Adsorption on un-amended soils was rather low, with percentages between 11 and 45% for SDZ, 20-64% for SMT, and 19-65% for SCP. Both the Linear and Freundlich models fitted well to adsorption curves. In the case of un-amended soils, and regarding the Linear model, the values of the coefficient of distribution (Kd, expressed in L kg-1) were between 0.6 and 1.3 for SDZ, between 0.7 and 1.1 for SMT, and between 0.6 and 2.6 for SCP. As regards the Freundlich model, the values of the adsorption constant (KF, expressed in L1/n μmol1-1/n kg-1), were in the range 0.4-1.9 for SDZ, 0.9-2.9 for SMT, and 1.2-3.8 for SCP. Simultaneously, desorption percentages were high, reaching 13.7-47.7% for SDZ, 12.6-35.1% for SMT, and 13.7-34.3% for SCP, when the highest initial antibiotic concentration (50 μmol L-1) was added, thus indicating low retention and high mobility for these compounds in soils. Mussel shell and oak ash amendments did not increase retention of any of the three sulfonamides. However, the incorporation of pine bark resulted in an increase in the adsorption and decrease in desorption for all three antibiotics. Specifically, for soils amended with pine bark at 48 Mg ha-1, Kd values (expressed in L kg-1) were between 2.1 and 2.9 for SDZ, between 3.4 and 3.6 for SMT, and between 2.5 and 8.2 for SCP. Regarding KF (expressed in L1/n μmol1-1/n kg-1), its values ranged from 5.6 to 6.3 for SDZ, 6.2-8.8 for SMT, and 5.3-7.1 for SCP. These scores were clearly higher than those of un-amended soils, and pine bark amendment also resulted in lower desorption percentages, ranging 8.7-11.4% for SDZ, 4.0-10.7% for SMT, and 6.5-16.9% for SCP. This positive effect on the retention of sulfonamides due to pine bark can be attributed to its high organic carbon content (48.6%), as well as to its acidic pHw (4.0). Therefore, pine bark amendment can be considered an effective alternative to increase the retention of sulfonamides in soils, thus reducing their bioavailability and transport to other environmental compartments, and subsequent risks of negative impacts on human and environmental health.
Collapse
Affiliation(s)
- M Conde-Cid
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004 Ourense, Spain.
| | - D Fernández-Calviño
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004 Ourense, Spain
| | - A Núñez-Delgado
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002 Lugo, Spain
| | - M J Fernández-Sanjurjo
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002 Lugo, Spain
| | - M Arias-Estévez
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004 Ourense, Spain
| | - E Álvarez-Rodríguez
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
15
|
Álvarez-Esmorís C, Conde-Cid M, Ferreira-Coelho G, Fernández-Sanjurjo MJ, Núñez-Delgado A, Álvarez-Rodríguez E, Arias-Estévez M. Adsorption/desorption of sulfamethoxypyridazine and enrofloxacin in agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:136015. [PMID: 31855641 DOI: 10.1016/j.scitotenv.2019.136015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Adsorption and desorption processes were studied for the antibiotics sulfamethoxypyridazine (SMP) and enrofloxacin (ENR) in 20 agricultural soils devoted to wheat-potato and vine cultivation. Batch experiments were used to conduct kinetic studies, as well as to evaluate adsorption and desorption for different concentrations of antibiotics. The results indicated that adsorption curves were linear for SMP, while presented a certain curvature in the case of ENR. The adsorption of both antibiotics was fitted to a linear equation and to the Freundlich model. In the case of the linear equation, the values of the distribution coefficient Kd were lower for SMP (0.9-26.0 L kg-1) than for ENR (121-2345 L kg-1). In the Freundlich model, the values of the adsorption constant KF ranged between 1.7 and 34.0 Ln μmol1-n kg-1 for SMP, and between 829 and 3019 Ln μmol1-n kg-1 for ENR. A multiple regression analysis showed that, in the case of SMP, 78% of the variance of the adsorption parameter Kd was explained by soil organic carbon (SOC) and exchangeable magnesium (Mge) contents, while for ENR no significant relation was found. In addition, for SMP, 66% of the variance of KF was explained by SOC, and for ENR 45% of the variability of KF was explained by nitrogen content. Desorption rates were higher for SMP (reaching up to 24%) than for ENR (which reached up to 7%). Desorption percentages showed a potential relation with the adsorption parameter Kd for both SMP and ENR. These results could be useful to elucidate the evolution and dynamics of these emerging pollutants in soils and other environmental compartments, which could be of aid in controlling public health risks associated to them.
Collapse
Affiliation(s)
- C Álvarez-Esmorís
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004 Ourense, Spain
| | - M Conde-Cid
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004 Ourense, Spain
| | - G Ferreira-Coelho
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002 Lugo, Spain
| | - M J Fernández-Sanjurjo
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002 Lugo, Spain
| | - A Núñez-Delgado
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002 Lugo, Spain
| | - E Álvarez-Rodríguez
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002 Lugo, Spain
| | - M Arias-Estévez
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004 Ourense, Spain.
| |
Collapse
|
16
|
Yang W, Feng T, Flury M, Li B, Shang J. Effect of sulfamethazine on surface characteristics of biochar colloids and its implications for transport in porous media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113482. [PMID: 31679872 DOI: 10.1016/j.envpol.2019.113482] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/11/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Antibiotics are contaminants of emerging concern due to their potential effect on antibiotic resistance and human health. Antibiotics tend to sorb strongly to organic materials, and biochar, a high efficient agent for adsorbing and immobilizing pollutants, can thus be used for remediation of antibiotic-contaminated soil and water. The effect of ionizable antibiotics on surface characteristics and transport of biochar colloids (BC) in the environment is poorly studied. Column experiments of BC were conducted in 1 mM NaCl solution under three pH (5, 7, and 10) conditions in the presence of sulfamethazine (SMT). Additionally, the adsorption of SMT by BC and the zeta potential of BC were also studied. The experimental results showed that SMT sorption to BC was enhanced at pH 5 and 7, but reduced at pH 10. SMT sorption reduced the surface charge of BC at pH 5 and 7 due to charge shielding, but increased surface charge at pH 10 due to adsorption of the negatively charged SMT species. The mobility of BC was inhibited by SMT under acidic or neutral conditions, while enhanced by SMT under alkaline conditions, which can be well explained by the change of electrostatic repulsion between BC and sand grains. These findings imply that pH conditions played a crucial role in deciding whether the transport of BC would be promoted by SMT or not. Biochar for antibiotics remediation will be more effective under acidic and neutral soil conditions, and the mobility of BC will be less than in alkaline soils.
Collapse
Affiliation(s)
- Wen Yang
- Department of Soil and Water Sciences, China Agricultural University, Key Laboratory of Plant-Soil Interactions, The Ministry of Education, Key Laboratory of Arable Land Conservation in North China, The Ministry of Agriculture, Beijing 100193, PR China
| | - Tongtong Feng
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Markus Flury
- Department of Crop and Soil Sciences, Washington State University, Puyallup, WA 98374, United States
| | - Baoguo Li
- Department of Soil and Water Sciences, China Agricultural University, Key Laboratory of Plant-Soil Interactions, The Ministry of Education, Key Laboratory of Arable Land Conservation in North China, The Ministry of Agriculture, Beijing 100193, PR China
| | - Jianying Shang
- Department of Soil and Water Sciences, China Agricultural University, Key Laboratory of Plant-Soil Interactions, The Ministry of Education, Key Laboratory of Arable Land Conservation in North China, The Ministry of Agriculture, Beijing 100193, PR China.
| |
Collapse
|
17
|
Hu S, Hu H, Li W, Hong X, Cai D, Lin J, Li M, Zhao Y. Investigating the biodegradation of sulfadiazine in soil using Enterobacter cloacae T2 immobilized on bagasse. RSC Adv 2020. [DOI: 10.1039/c9ra07302g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The application of the antibiotic sulfadiazine (SD) in veterinary medicine has created serious environmental issues due to its high mobility and non-degradability. A novel immobilized cell system has been developed and showed significant SD biodegradation potential in soil.
Collapse
Affiliation(s)
- Shengbing Hu
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Huimin Hu
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Wenlong Li
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Xiaxiao Hong
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Daihong Cai
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Jiawei Lin
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Minghua Li
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Yuechun Zhao
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| |
Collapse
|
18
|
Conde-Cid M, Fernández-Calviño D, Fernández-Sanjurjo MJ, Núñez-Delgado A, Álvarez-Rodríguez E, Arias-Estévez M. Adsorption/desorption and transport of sulfadiazine, sulfachloropyridazine, and sulfamethazine, in acid agricultural soils. CHEMOSPHERE 2019; 234:978-986. [PMID: 31519107 DOI: 10.1016/j.chemosphere.2019.06.121] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/11/2019] [Accepted: 06/16/2019] [Indexed: 06/10/2023]
Abstract
Batch-type experiments were used to study adsorption-desorption of three sulfonamides: sulfadiazine (SDZ) sulfachloropyridazine (SCP), and sulfamethazine (SMT), in five crop soils, whereas laboratory soil column experiments were employed to obtain data on transport processes. Adsorption results were satisfactorily adjusted to Linear and Feundlich equations, with R2 values above 0.95. Adsorption followed the sequence SDZ < SMT < SCP, showing higher values for soils with higher levels of organic carbon (OC) content. Conversely, desorption was higher in soils with less OC, and lower in soils with higher OC contents. The temporal moment analysis method gave values for the transport parameters τ and R which were significantly correlated with soil parameters related to organic matter, specifically OC and N concentrations. The higher retention of the three sulfonamides in soils with high organic matter content is a relevant fact, with value when programming management practices in agricultural soils, and specifically in relation to the spreading of animal manures, slurries, or waste containing these emerging pollutants.
Collapse
Affiliation(s)
- M Conde-Cid
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain
| | - D Fernández-Calviño
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain
| | - M J Fernández-Sanjurjo
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - A Núñez-Delgado
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - E Álvarez-Rodríguez
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - M Arias-Estévez
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain.
| |
Collapse
|
19
|
D'Alessio M, Durso LM, Miller DN, Woodbury B, Ray C, Snow DD. Environmental fate and microbial effects of monensin, lincomycin, and sulfamethazine residues in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:60-68. [PMID: 30529942 DOI: 10.1016/j.envpol.2018.11.093] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 11/22/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
The impact of commonly-used livestock antibiotics on soil nitrogen transformations under varying redox conditions is largely unknown. Soil column incubations were conducted using three livestock antibiotics (monensin, lincomycin and sulfamethazine) to better understand the fate of the antibiotics, their effect on nitrogen transformation, and their impact on soil microbial communities under aerobic, anoxic, and denitrifying conditions. While monensin was not recovered in the effluent, lincomycin and sulfamethazine concentrations decreased slightly during transport through the columns. Sorption, and to a limited extent degradation, are likely to be the primary processes leading to antibiotic attenuation during leaching. Antibiotics also affected microbial respiration and clearly impacted nitrogen transformation. The occurrence of the three antibiotics as a mixture, as well as the occurrence of lincomycin alone affected, by inhibiting any nitrite reduction, the denitrification process. Discontinuing antibiotics additions restored microbial denitrification. Metagenomic analysis indicated that Proteobacteria, Bacteroidetes, Actinobacteria, and Chloroflexi were the predominant phyla observed throughout the study. Results suggested that episodic occurrence of antibiotics led to a temporal change in microbial community composition in the upper portion of the columns while only transient changes occurred in the lower portion. Thus, the occurrence of high concentrations of veterinary antibiotic residues could impact nitrogen cycling in soils receiving wastewater runoff or manure applications with potential longer-term microbial community changes possible at higher antibiotic concentrations.
Collapse
Affiliation(s)
- Matteo D'Alessio
- University of Nebraska-Lincoln, Water Sciences Laboratory, 202 Water Sciences Laboratory, 1840 North 37th Street, Lincoln, NE, 68583-0844, USA; University of Nebraska-Lincoln, Nebraska Water Center, 2021 Transformation Drive, Suite 3220, Lincoln, NE, 68583-0979, USA.
| | - Lisa M Durso
- USDA-ARS, Agroecosystem Management Research Unit, 251 Filley Hall, UNL East Campus, Lincoln, NE, 68583, USA
| | - Daniel N Miller
- USDA-ARS, Agroecosystem Management Research Unit, 251 Filley Hall, UNL East Campus, Lincoln, NE, 68583, USA
| | - Brian Woodbury
- USDA, U.S. Meat Animal Waste Management Center, Clay Center, NE, 68933, USA
| | - Chittaranjan Ray
- University of Nebraska-Lincoln, Nebraska Water Center, 2021 Transformation Drive, Suite 3220, Lincoln, NE, 68583-0979, USA
| | - Daniel D Snow
- University of Nebraska-Lincoln, Water Sciences Laboratory, 202 Water Sciences Laboratory, 1840 North 37th Street, Lincoln, NE, 68583-0844, USA
| |
Collapse
|
20
|
Cheng D, Liu X, Zhao S, Cui B, Bai J, Li Z. Influence of the natural colloids on the multi-phase distributions of antibiotics in the surface water from the largest lake in North China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 578:649-659. [PMID: 27842965 DOI: 10.1016/j.scitotenv.2016.11.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
Understanding antibiotic adsorption on natural colloids is crucial for prediction of the behavior, bioavailability and toxicity of antibiotics in natural waters. In the present study, the filtered water (dissolved phase, <0.7μm) was further separated into colloidal phase (1kDa-0.7μm) and soluble phase (<1kDa) by cross-flow ultrafiltration (CFUF), and the spatial-temporal variation and distribution of six antibiotics in multi-phases were investigated in Baiyangdian Lake. Results indicated that antibiotic concentrations differed significantly with sampling location and time. The mean concentrations of antibiotics ranged between 13.65 and 320.44ngL-1 in the dissolved phase, and the colloidal phase accounted for 4.7-49.8% of all antibiotics, suggesting that natural colloids play an important role as carriers of antibiotics in aquatic environments. Because of the influence of colloids, the partition coefficients of antibiotics between suspended particulate matter (SPM) and soluble phase (intrinsic partition coefficients, Kpint) were found to be 6.18-109.60% higher than corresponding observed partition coefficients (Kpobs, between SPM and dissolved phase). The mean partition coefficients between colloidal and soluble phase (Kcol.) ranged between 6218 and 117,374Lkg-1, which were 1-2 orders of magnitude greater than Kpint values. In order to explore the adsorption mechanism of antibiotics on colloids, Pearson's correlations were performed. The results showed that log Kcol. were negatively correlated with cations in natural colloids; especially with Mg (r, -0.643, P<0.01) for oxytetracycline (OTC), and with both Ca (-0.595, P<0.01) and Mg (-0.593, P<0.01) in the case of ofloxacin (OFL). This result revealed that the competitive effect between cations and antibiotics was the main factor influencing the adsorption behavior of antibiotics on natural colloids in the lake.
Collapse
Affiliation(s)
- Dengmiao Cheng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing 100081, PR China
| | - Xinhui Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Shengnan Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Baoshan Cui
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Zhaojun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing 100081, PR China
| |
Collapse
|
21
|
Nordenholt RM, Goyne KW, Kremer RJ, Lin CH, Lerch RN, Veum KS. Veterinary Antibiotic Effects on Atrazine Degradation and Soil Microorganisms. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:565-575. [PMID: 27065404 DOI: 10.2134/jeq2015.05.0235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Veterinary antibiotics (VAs) in manure applied to agricultural lands may change agrichemical degradation by altering soil microbial community structure or function. The objectives of this study were to investigate the influence of two VAs, sulfamethazine (SMZ) and oxytetracycline (OTC), on atrazine (ATZ) degradation, soil microbial enzymatic activity, and phospholipid fatty acid (PLFA) markers. Sandy loam soil with and without 5% swine manure (w/w) was amended with 0 or 500 μg kgC radiolabeled ATZ and with 0, 100, or 1000 μg kg SMZ or OTC and incubated at 25°C in the dark for 96 d. The half-life of ATZ was not significantly affected by VA treatment in the presence or absence of manure; however, the VAs significantly ( < 0.05) inhibited ATZ mineralization in soil without manure (25-50% reduction). Manure amendment decreased ATZ degradation by 22%, reduced ATZ mineralization by 50%, and increased the half-life of ATZ by >10 d. The VAs had limited adverse effects on the microbial enzymes β-glucosidase and dehydrogenase in soils with and without manure. In contrast, manure application stimulated dehydrogenase activity and altered chlorinated ATZ metabolite profiles. Concentrations of PLFA markers were reduced by additions of ATZ, manure, OTC, and SMZ; adverse additive effects of combined treatments were noted for arbuscular mycorrhizal fungi and actinobacteria. In this work, the VAs did not influence persistence of the ATZ parent compound or chlorinated ATZ metabolite formation and degradation. However, reduced CO evolved from VA-treated soil suggests an inhibition to the degradation of other ATZ metabolites due to an altered soil microbial community structure.
Collapse
|
22
|
Duan M, Yang J, Gu J, Qian X, Sun W, Gao H, Wang X. Effects of sulphamethazine and zinc on the functional diversity of microbial communities during composting. ENVIRONMENTAL TECHNOLOGY 2015; 37:1357-1368. [PMID: 26540188 DOI: 10.1080/09593330.2015.1115131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The changes in the functional diversity of the microbial community in a compost matrix with a single or compound addition of zinc (Zn; 0, 600, and 1800 mg/kg) and sulphamethazine (SM2; 0, 1, and 25 mg/kg) were studied with the Biolog method during composting. The microbial community was extracted from the compost matrix comprising swine manure and wheat straw at day 6 (themophilic period) and day 25 (mature period) of composting. Results proved that the Shannon index, average well-colour development, and substrate utilization significantly decreased as the concentrations of SM2 and Zn increased on day 6. The negative effect of the combined addition of SM2 and Zn was lower than that of the individual addition of SM2 and Zn. On day 25, the inhibition effect disappeared, and microbial metabolic activities were higher than those on day 6. The effects of SM2 and Zn could be further differentiated via the principal component analysis (PCA) and cluster analysis. On day 6, the treatments were divided into three groups by PC1 and PC2. The separation of the different treatments in the PCA plots became increasingly apparent on day 25. In conclusion, the effects of SM2 and Zn on the microbial community during composting became evident in the themophilic period and that the microbial activity recovered in the mature period. The combination of SM2 and Zn decreased the inhibition with the addition of individual additive.
Collapse
Affiliation(s)
- Manli Duan
- a College of Natural Resources and Environment , Northwest A&F University , Yangling , People's Republic of China
| | - Jiu Yang
- a College of Natural Resources and Environment , Northwest A&F University , Yangling , People's Republic of China
| | - Jie Gu
- a College of Natural Resources and Environment , Northwest A&F University , Yangling , People's Republic of China
| | - Xun Qian
- a College of Natural Resources and Environment , Northwest A&F University , Yangling , People's Republic of China
| | - Wei Sun
- a College of Natural Resources and Environment , Northwest A&F University , Yangling , People's Republic of China
| | - Hua Gao
- a College of Natural Resources and Environment , Northwest A&F University , Yangling , People's Republic of China
| | - Xiaojuan Wang
- a College of Natural Resources and Environment , Northwest A&F University , Yangling , People's Republic of China
| |
Collapse
|
23
|
Xu Y, Yu W, Ma Q, Zhou H. Interactive effects of sulfadiazine and Cu(II) on their sorption and desorption on two soils with different characteristics. CHEMOSPHERE 2015; 138:701-707. [PMID: 26247413 DOI: 10.1016/j.chemosphere.2015.07.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 07/16/2015] [Accepted: 07/19/2015] [Indexed: 06/04/2023]
Abstract
Antibiotics and heavy metals often coexist in soils due to land application of animal wastes and other sources of inputs. The aim of this study is to evaluate the interaction of Cu(II) and sulfadiazine (SDZ) regarding to their sorption and desorption on Brown soil (BS, luvisols) and Red soil (RS, Udic Ferrosols) using batch experiments. The presence of Cu(II) significantly enhanced sorption of SDZ on BS at pH>5.0, and this trend increased with increasing pH, which was mainly ascribed to the formation of ternary complexes of Cu-SDZ-soil and/or SDZ-Cu-soil. In contrast, Cu(II) only slightly increased SDZ sorption on RS at pH<5.0 due to the decrease of equilibrium solution pH, whereas it hardly affected SDZ sorption at pH>5.0 because RS had high oxides contents and low affinity for Cu(II). In addition, Cu(II) inhibited SDZ desorption from BS but promoted SDZ desorption from RS, which was related to their different sorption mechanisms. The presence of SDZ exerted no significant effect on the sorption of Cu(II) on the two soils at pH<6.5 because of its low sorption coefficients (Kd), while slightly decreased Cu(II) sorption at pH>6.5 by forming water-soluble complexes. Furthermore, SDZ had little effect on Cu(II) desorption from the two soils at natural pH. These results indicate that soil characteristics strongly influence the interactions of Cu(II) and SDZ on their sorption and desorption on soils.
Collapse
Affiliation(s)
- Yonggang Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Wantai Yu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Qiang Ma
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Hua Zhou
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
24
|
Peng FJ, Ying GG, Liu YS, Su HC, He LY. Joint antibacterial activity of soil-adsorbed antibiotics trimethoprim and sulfamethazine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 506-507:58-65. [PMID: 25460939 DOI: 10.1016/j.scitotenv.2014.10.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/27/2014] [Accepted: 10/31/2014] [Indexed: 06/04/2023]
Abstract
Trimethoprim (TMP) and sulfamethazine (SMZ) are two antibiotics that are often administered in combination. We investigated the sorption and desorption behaviors of TMP and SMZ individually as single solute and in combination as co-solute in three representative soils, and evaluated joint antibacterial activity of the soil-adsorbed antibiotics to a reference strain Escherichia coli ATCC 25922. Comparative sorption tests showed that co-solute sorption of TMP and SMZ was not considerably different from their single sorption. Soil-adsorbed TMP was found to effectively inhibit the growth of E. coli at environmentally relevant concentrations in all three soils, and moreover co-presence of SMZ enhanced the antibacterial effects on bacteria both in its dissolved form and soil-adsorbed form. Overall, the results from this study suggest that various soil-adsorbed antibiotic residues could play a joint influencing role in soil bacterial community activity.
Collapse
Affiliation(s)
- Feng-Jiao Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guang-Guo Ying
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - You-Sheng Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Hao-Chang Su
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Liang-Ying He
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
25
|
Sorption of hydrophobic organic compounds on natural sorbents and organoclays from aqueous and non-aqueous solutions: a mini-review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:5020-48. [PMID: 24821385 PMCID: PMC4053894 DOI: 10.3390/ijerph110505020] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/16/2014] [Accepted: 04/30/2014] [Indexed: 12/04/2022]
Abstract
Renewed focus on the sorption of hydrophobic organic chemicals (HOCs) onto mineral surfaces and soil components is required due to the increased and wider range of organic pollutants being released into the environment. This mini-review examines the possibility of the contribution and mechanism of HOC sorption onto clay mineral sorbents such as kaolinite, and soil organic matter and the possible role of both in the prevention of environmental contamination by HOCs. Literature data indicates that certain siloxane surfaces can be hydrophobic. Therefore soils can retain HOCs even at low soil organic levels and the extent will depend on the structure of the pollutant and the type and concentration of clay minerals in the sorbent. Clay minerals are wettable by nonpolar solvents and so sorption of HOCs onto them from aqueous and non-aqueous solutions is possible. This is important for two reasons: firstly, the movement and remediation of soil environments will be a function of the concentration and type of clay minerals in the soil. Secondly, low-cost sorbents such as kaolinite and expandable clays can be added to soils or contaminated environments as temporary retention barriers for HOCs. Inorganic cations sorbed onto the kaolinite have a strong influence on the rate and extent of sorption of hydrophobic organic pollutants onto kaolinite. Structural sorbate classes that can be retained by the kaolinite matrix are limited by hydrogen bonding between hydroxyl groups of the octahedral alumosilicate sheet and the tetrahedral sheet with silicon. Soil organic carbon plays a key role in the sorption of HOCs onto soils, but the extent will be strongly affected by the structure of the organic soil matter and the presence of soot. Structural characterisation of soil organic matter in a particular soil should be conducted during a particular contamination event. Contamination by mining extractants and antibiotics will require renewed focus on the use of the QSAR approaches in the context of the sorption of HOCs onto clay minerals from aqueous and non-aqueous solutions.
Collapse
|
26
|
Assessing antibiotic sorption in soil: a literature review and new case studies on sulfonamides and macrolides. Chem Cent J 2014; 8:5. [PMID: 24438473 PMCID: PMC3905979 DOI: 10.1186/1752-153x-8-5] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 01/14/2014] [Indexed: 11/10/2022] Open
Abstract
The increased use of veterinary antibiotics in modern agriculture for therapeutic uses and growth promotion has raised concern regarding the environmental impacts of antibiotic residues in soil and water. The mobility and transport of antibiotics in the environment depends on their sorption behavior, which is typically predicted by extrapolating from an experimentally determined soil-water distribution coefficient (Kd). Accurate determination of Kd values is important in order to better predict the environmental fate of antibiotics. In this paper, we examine different analytical approaches in assessing Kd of two major classes of veterinary antibiotics (sulfonamides and macrolides) and compare the existing literature data with experimental data obtained in our laboratory. While environmental parameters such as soil pH and organic matter content are the most significant factors that affect the sorption of antibiotics in soil, it is important to consider the concentrations used, the analytical method employed, and the transformations that can occur when determining Kd values. Application of solid phase extraction and liquid chromatography/mass spectrometry can facilitate accurate determination of Kd at environmentally relevant concentrations. Because the bioavailability of antibiotics in soil depends on their sorption behavior, it is important to examine current practices in assessing their mobility in soil.
Collapse
|