1
|
Levenstein MA, Chevallard C, Malloggi F, Testard F, Taché O. Micro- and milli-fluidic sample environments for in situ X-ray analysis in the chemical and materials sciences. LAB ON A CHIP 2025. [PMID: 39775751 DOI: 10.1039/d4lc00637b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
X-ray-based methods are powerful tools for structural and chemical studies of materials and processes, particularly for performing time-resolved measurements. In this critical review, we highlight progress in the development of X-ray compatible microfluidic and millifluidic platforms that enable high temporal and spatial resolution X-ray analysis across the chemical and materials sciences. With a focus on liquid samples and suspensions, we first present the origins of microfluidic sample environments for X-ray analysis by discussing some alternative liquid sample holder and manipulator technologies. The bulk of the review is then dedicated to micro- and milli-fluidic devices designed for use in the three main areas of X-ray analysis: (1) scattering/diffraction, (2) spectroscopy, and (3) imaging. While most research to date has been performed at synchrotron radiation facilities, the recent progress made using commercial and laboratory-based X-ray instruments is then reviewed here for the first time. This final section presents the exciting possibility of performing in situ and operando X-ray analysis in the 'home' laboratory and transforming microfluidic and millifluidic X-ray analysis into a routine method in physical chemistry and materials research.
Collapse
Affiliation(s)
- Mark A Levenstein
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-sur-Yvette, France.
| | - Corinne Chevallard
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-sur-Yvette, France.
| | - Florent Malloggi
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-sur-Yvette, France.
| | - Fabienne Testard
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-sur-Yvette, France.
| | - Olivier Taché
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
2
|
Do VH, Lee JM. Surface engineering for stable electrocatalysis. Chem Soc Rev 2024; 53:2693-2737. [PMID: 38318782 DOI: 10.1039/d3cs00292f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
In recent decades, significant progress has been achieved in rational developments of electrocatalysts through constructing novel atomistic structures and modulating catalytic surface topography, realizing substantial enhancement in electrocatalytic activities. Numerous advanced catalysts were developed for electrochemical energy conversion, exhibiting low overpotential, high intrinsic activity, and selectivity. Yet, maintaining the high catalytic performance under working conditions with high polarization and vigorous microkinetics that induce intensive degradation of surface nanostructures presents a significant challenge for commercial applications. Recently, advanced operando and computational techniques have provided comprehensive mechanistic insights into the degradation of surficial functional structures. Additionally, various innovative strategies have been devised and proven effective in sustaining electrocatalytic activity under harsh operating conditions. This review aims to discuss the most recent understanding of the degradation microkinetics of catalysts across an entire range of anodic to cathodic polarizations, encompassing processes such as oxygen evolution and reduction, hydrogen reduction, and carbon dioxide reduction. Subsequently, innovative strategies adopted to stabilize the materials' structure and activity are highlighted with an in-depth discussion of the underlying rationale. Finally, we present conclusions and perspectives regarding future research and development. By identifying the research gaps, this review aims to inspire further exploration of surface degradation mechanisms and rational design of durable electrocatalysts, ultimately contributing to the large-scale utilization of electroconversion technologies.
Collapse
Affiliation(s)
- Viet-Hung Do
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141
| |
Collapse
|
3
|
James AK, Popescu BF, Weng M, Myers GJ, O'Donoghue JL, Watson GE, Pickering IJ, George GN. Synchrotron X-ray methods in the study of mercury neurotoxicology. Neurotoxicology 2023; 99:129-138. [PMID: 37802190 DOI: 10.1016/j.neuro.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/22/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023]
Abstract
In situ methods are valuable in all fields of research. In toxicology, the importance of dose is well known, elevating the need for in situ techniques to measure levels of toxicants and their byproducts in precise anatomically identifiable locations. More recently, additional emphasis has been placed on the value of techniques which can detect chemical form or speciation, which is equally important in the toxicology of a chemical compound. Many important but conventional methods risk losing valuable information due to extractions, digestions, or the general reliance on mobile phases. Few analytical tools possess the power and diversity of X-ray methods as in-situ methods. Here we present an overview, intended for toxicologists and pathologists, of a variety of synchrotron X-ray methods for determining in situ chemical form and distribution of heavier elements. The versatility and range of these synchrotron techniques, which are both established and emerging, is demonstrated in the context of the study of neurotoxicology of mercury, a global pollutant with the ability to harm both human health and the environment.
Collapse
Affiliation(s)
- Ashley K James
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon City Hospital, Saskatoon, SK S7K 0M7, Canada; Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada.
| | - Bogdan F Popescu
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon City Hospital, Saskatoon, SK S7K 0M7, Canada
| | - Monica Weng
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Gary J Myers
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Departments of Neurology and Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - John L O'Donoghue
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Gene E Watson
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Eastman Institute for Oral Health, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Ingrid J Pickering
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Graham N George
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
4
|
Manivannan N, Subirana MA, Boada R, Marini C, Llugany M, Valiente M, Simonelli L. Mercury speciation in selenium enriched wheat plants hydroponically exposed to mercury pollution. Sci Rep 2023; 13:21132. [PMID: 38036518 PMCID: PMC10689832 DOI: 10.1038/s41598-023-46056-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Mercury (Hg) pollution in agricultural soils and its potential pathway to the human food chain can pose a serious health concern. Understanding the pathway of Hg in plants and how the speciation may change upon interaction with other elements used for biofortification can be critical to assess the real implications for the final plant-based product. In that respect, selenium (Se) biofortification of crops grown in Se-poor soil regions is becoming a common practice to overcome Se deficient diets. Therefore, it is important to assess the interplay between these two elements since Se may form complexes with Hg reducing its bioavailability and toxicity. In this work, the speciation of Hg in wheat plants grown hydroponically under the presence of Hg (HgCl2) and biofortified with Se (selenite, selenate, or a 1:1 mixture of both) has been investigated by X-ray absorption spectroscopy at the Hg L3-edge. The main Hg species found in wheat grains was the highly toxic methylmercury. It was found that the Se-biofortification of wheat did not prevent, in general, the Hg translocation to grains. Only the 1:1 mixture treatment seemed to have an effect in reducing the levels of Hg and the presence of methylmercury in grains.
Collapse
Affiliation(s)
- Nithyapriya Manivannan
- ALBA Synchrotron, Carrer de la llum 2-26, Cerdanyola del Vallès, 08290, Barcelona, Spain
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Maria Angels Subirana
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Roberto Boada
- ALBA Synchrotron, Carrer de la llum 2-26, Cerdanyola del Vallès, 08290, Barcelona, Spain
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Carlo Marini
- ALBA Synchrotron, Carrer de la llum 2-26, Cerdanyola del Vallès, 08290, Barcelona, Spain
| | - Mercè Llugany
- Plant Physiology Group (BABVE), Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Manuel Valiente
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Laura Simonelli
- ALBA Synchrotron, Carrer de la llum 2-26, Cerdanyola del Vallès, 08290, Barcelona, Spain.
| |
Collapse
|
5
|
Wang J, Hsu CS, Wu TS, Chan TS, Suen NT, Lee JF, Chen HM. In situ X-ray spectroscopies beyond conventional X-ray absorption spectroscopy on deciphering dynamic configuration of electrocatalysts. Nat Commun 2023; 14:6576. [PMID: 37852958 PMCID: PMC10584842 DOI: 10.1038/s41467-023-42370-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
Realizing viable electrocatalytic processes for energy conversion/storage strongly relies on an atomic-level understanding of dynamic configurations on catalyst-electrolyte interface. X-ray absorption spectroscopy (XAS) has become an indispensable tool to in situ investigate dynamic natures of electrocatalysts but still suffers from limited energy resolution, leading to significant electronic transitions poorly resolved. Herein, we highlight advanced X-ray spectroscopies beyond conventional XAS, with emphasis on their unprecedented capabilities of deciphering key configurations of electrocatalysts. The profound complementarities of X-ray spectroscopies from various aspects are established in a probing energy-dependent "in situ spectroscopy map" for comprehensively understanding the solid-liquid interface. This perspective establishes an indispensable in situ research model for future studies and offers exciting research prospects for scientists and spectroscopists.
Collapse
Affiliation(s)
- Jiali Wang
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| | - Chia-Shuo Hsu
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| | - Tai-Sing Wu
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.
| | - Nian-Tzu Suen
- College of Chemistry & Chemical Engineering, Yangzhou University, 225002, Yangzhou, China
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Hao Ming Chen
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan.
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
6
|
Pagano L, Rossi R, White JC, Marmiroli N, Marmiroli M. Nanomaterials biotransformation: In planta mechanisms of action. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120834. [PMID: 36493932 DOI: 10.1016/j.envpol.2022.120834] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/25/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Research on engineered nanomaterials (ENMs) exposure has continued to expand rapidly, with a focus on uncovering the underlying mechanisms. The EU largely limits the number and the type of organisms that can be used for experimental testing through the 3R normative. There are different routes through which ENMs can enter the soil-plant system: this includes the agricultural application of sewage sludges, and the distribution of nano-enabled agrochemicals. However, a thorough understanding of the physiological and molecular implications of ENMs dispersion and chronic low-dose exposure remains elusive, thus requiring new evidence and a more mechanistic overview of pathways and major effectors involved in plants. Plants can offer a reliable alternative to conventional model systems to elucidate the concept of ENM biotransformation within tissues and organs, as a crucial step in understanding the mechanisms of ENM-organism interaction. To facilitate the understanding of the physico-chemical forms involved in plant response, synchrotron-based techniques have added new potential perspectives in studying the interactions between ENMs and biota. These techniques are providing new insights on the interactions between ENMs and biomolecules. The present review discusses the principal outcomes for ENMs after intake by plants, including possible routes of biotransformation which make their final fate less uncertain, and therefore require further investigation.
Collapse
Affiliation(s)
- Luca Pagano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Riccardo Rossi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy; Centro Interdipartimentale per L'Energia e L'Ambiente (CIDEA), University of Parma, 43124, Parma, Italy
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy; Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA), University of Parma, 43124, Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy; Interdepartmental Centre for Food Safety, Technologies and Innovation for Agri-food (SITEIA.PARMA), 43124, Parma, Italy.
| |
Collapse
|
7
|
Hodeau JL, Prat A, Boudet N, Blanc N, Arnaud S, Hazemann JL, Lahéra E, Proux O, Jacquet M, Autran PO, Dejoie C, Martinetto P. A compact-rigid multi-analyser for energy and angle filtering of high-resolution X-ray experiments. Part 2. Efficiency of a single-crystal-comb. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:126-136. [PMID: 36601932 PMCID: PMC9814061 DOI: 10.1107/s1600577522011250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Diffraction instruments using filtering by one or several analyser crystals exist since the 1980s and 1990s at synchrotron radiation sources, but, due to its low efficiency, this filtering is little used on laboratory sources. In order to overcome this limitation, the efficiency of a small diffraction filtering multi-analyzer block (MAD block) realized with a `single-crystal-comb' curved on a rigid support is demonstrated here. The geometry of this curved surface is logarithmic spiral and is optimized to allow multi-filtering over a relatively important diffraction angular range and to be also applicable over an X-ray spectral range. The efficiency of such a small rigid-compact MAD block consisting of this single-crystal-comb generating 20-50 Si(111) single-crystal blades, associated with a block of Soller collimators, is demonstrated. The angle between each crystal is 0.1°, so the measurement range of the comb is 2-5°. The geometry of this system has been optimized for operation with a synchrotron X-ray source over an energy range of 22 keV to 46 keV and could be used with laboratory X-ray sources (Ag Kα1, 22.1 keV). This MAD block complements and exploits the qualities of the `photon-counting' detectors which have very low intrinsic noise. Their joint efficacy is supported by powder pattern measurements of a LaB6 reference sample and of several heterogeneous samples of cultural heritage materials, carried out at 22 keV on the D2AM beamline at the ESRF. Their signal-to-noise ratio is excellent (1000/1) and allows the detection thresholds of the measurements (from 3-1% to 0.1%) to detect minor phases in the studies of `real' heterogeneous materials to be drastically improved.
Collapse
Affiliation(s)
- J.-L. Hodeau
- Institut Néel CNRS-UGA, 25 Avenue des Martyrs, 38042 Grenoble, France
| | - A. Prat
- Institut Néel CNRS-UGA, 25 Avenue des Martyrs, 38042 Grenoble, France
| | - N. Boudet
- Institut Néel CNRS-UGA, 25 Avenue des Martyrs, 38042 Grenoble, France
| | - N. Blanc
- Institut Néel CNRS-UGA, 25 Avenue des Martyrs, 38042 Grenoble, France
| | - S. Arnaud
- Institut Néel CNRS-UGA, 25 Avenue des Martyrs, 38042 Grenoble, France
| | - J.-L. Hazemann
- Institut Néel CNRS-UGA, 25 Avenue des Martyrs, 38042 Grenoble, France
| | - E. Lahéra
- OSUG-FAME, CNRS-UGA-IRD-INRAe-MétéoFrance, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - O. Proux
- OSUG-FAME, CNRS-UGA-IRD-INRAe-MétéoFrance, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - M. Jacquet
- LAL, Univ. Paris-Sud XI, CNRS-IN2P3, Orsay, France
| | - P.-O. Autran
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - C. Dejoie
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - P. Martinetto
- Institut Néel CNRS-UGA, 25 Avenue des Martyrs, 38042 Grenoble, France
| |
Collapse
|
8
|
Prat A, Hodeau JL. A compact-rigid multi-analyser for energy and angle filtering of high-resolution X-ray experiments. Part 1. Principles and implementation. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:111-125. [PMID: 36601931 PMCID: PMC9814050 DOI: 10.1107/s160057752201116x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Diffraction and spectroscopy instruments using a filtering process with several analyser crystals have existed for about 30 years at synchrotron radiation sources, but they are difficult to use on laboratory sources. Several diffraction multi-filtering systems for powder diffraction experiments have been studied and optimized, in order to show the relevance, simplicity and efficiency of their implementation. Optical filter systems containing one or many diffracting elements, precisely positioned in a rigid manner on a logarithmic spiral surface and having a stability that allows high resolution and high sensitivity to powder diffraction experiments, have been developed. After having tested prototypes with various geometries, we present in particular the realization of a small rigid-compact multi-analyser comb that allows 20-50 measurements on synchrotron radiation sources to be filtered in parallel, but also and especially that can be adapted on laboratory X-ray sources (Ag Kα1) to increase by an order of magnitude the intensities and resolutions of the measurements. Such a rigid-compact multi-analyser block can advantageously be associated with `photon-counting' 1D and 2D detectors in order to drastically improve the detection thresholds of powder diffraction measurements to better than 0.1%, which allows the detection/quantification/analysis of minor phases in studies of `real' complex materials.
Collapse
Affiliation(s)
- A. Prat
- Institut Néel CNRS-UGA, 25 Avenue des Martyrs, 38042 Grenoble, France
| | - J.-L. Hodeau
- Institut Néel CNRS-UGA, 25 Avenue des Martyrs, 38042 Grenoble, France
| |
Collapse
|
9
|
Collin B, Auffan M, Doelsch E, Proux O, Kieffer I, Ortet P, Santaella C. Bacterial Metabolites and Particle Size Determine Cerium Oxide Nanomaterial Biotransformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16838-16847. [PMID: 36350260 DOI: 10.1021/acs.est.2c05280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Soil is a major receptor of manufactured nanomaterials (NMs) following unintentional releases or intentional uses. Ceria NMs have been shown to undergo biotransformation in plant and soil organisms with a partial Ce(IV) reduction into Ce(III), but the influence of environmentally widespread soil bacteria is poorly understood. We used high-energy resolution fluorescence-detected X-ray absorption spectroscopy (HERFD-XAS) with an unprecedented detection limit to assess Ce speciation in a model soil bacterium (Pseudomonas brassicacearum) exposed to CeO2 NMs of different sizes and shapes. The findings revealed that the CeO2 NM's size drives the biotransformation process. No biotransformation was observed for the 31 nm CeO2 NMs, contrary to 7 and 4 nm CeO2 NMs, with a Ce reduction of 64 ± 14% and 70 ± 15%, respectively. This major reduction appeared quickly, from the early exponential bacterial growth phase. Environmentally relevant organic acid metabolites secreted by Pseudomonas, especially in the rhizosphere, were investigated. The 2-keto-gluconic and citric acid metabolites alone were able to induce a significant reduction in 4 nm CeO2 NMs. The high biotransformation measured for <7 nm NMs would affect the fate of Ce in the soil and biota.
Collapse
Affiliation(s)
- Blanche Collin
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 St-Paul-lez-Durance, France
| | - Mélanie Auffan
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France
| | - Emmanuel Doelsch
- CIRAD, UPR Recyclage et risque, F-34398 Montpellier, France
- Recyclage et risque, Univ Montpellier, CIRAD, Montpellier, France
| | - Olivier Proux
- BM30/CRG-FAME, ESRF, Université Grenoble Alpes, CNRS, IRSTEa, Météo France, IRD, OSUG, 38000 Grenoble, France
| | - Isabelle Kieffer
- BM30/CRG-FAME, ESRF, Université Grenoble Alpes, CNRS, IRSTEa, Météo France, IRD, OSUG, 38000 Grenoble, France
| | - Philippe Ortet
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 St-Paul-lez-Durance, France
| | - Catherine Santaella
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 St-Paul-lez-Durance, France
| |
Collapse
|
10
|
Bardelli F, Rimondi V, Lattanzi P, Rovezzi M, Isaure MP, Giaccherini A, Costagliola P. Pinus nigra bark from a mercury mining district studied with high resolution XANES spectroscopy. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1748-1757. [PMID: 35972271 DOI: 10.1039/d2em00239f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tree bark near former mercury (Hg) mines and roasting plants is known to have exceptionally high (up to several mg kg-1) Hg concentrations. This study explores the change of Hg speciation with depth (down to 25-30 mm from the outermost surface) in black pine (Pinus nigra) bark by means of high-resolution X-ray absorption near edge structure (HR-XANES) spectroscopy at the Hg LIII-edge. Principal component analysis and linear combination fitting applied to the HR-XANES spectra suggested that in the outermost layer (∼0-2 mm from the surface), roughly 50% of Hg is in the form of nanoparticulate metacinnabar (nano-β-HgS). A progressive increase in Hg-organic species (Hg bound to thiol groups) is found in deeper bark layers, while nano-β-HgS may decrease below the detection limit in the deepest layers. Notably, bark layers did not contain cinnabar (α-HgS), which was found in the nearby soils along with β-HgS (bulk), nor Hg0, which is the main Hg species in the atmosphere surrounding the sampled trees. These observations suggested that nano-β-HgS, at least in part, does not originate from mechanically trapped wind-blown particulates from the surrounding soil, but may be the product of biochemical reactions between gaseous elemental Hg and the bark tissue.
Collapse
Affiliation(s)
| | | | | | - Mauro Rovezzi
- Univ. Grenoble Alpes, CNRS, IRD, Irstea, OSUG, FAME, Météo France, Grenoble, France.
| | - Marie-Pierre Isaure
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| | | | | |
Collapse
|
11
|
Gauffenic A, Bazin D, Combes C, Daudon M, Ea HK. Pathological calcifications in the human joint. CR CHIM 2022. [DOI: 10.5802/crchim.193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Lei P, Zou N, Liu Y, Cai W, Wu M, Tang W, Zhong H. Understanding the risks of mercury sulfide nanoparticles in the environment: Formation, presence, and environmental behaviors. J Environ Sci (China) 2022; 119:78-92. [PMID: 35934468 DOI: 10.1016/j.jes.2022.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/16/2022] [Accepted: 02/10/2022] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) could be microbially methylated to the bioaccumulative neurotoxin methylmercury (MeHg), raising health concerns. Understanding the methylation of various Hg species is thus critical in predicting the MeHg risk. Among the known Hg species, mercury sulfide (HgS) is the largest Hg reservoir in the lithosphere and has long been considered to be highly inert. However, with advances in the analytical methods of nanoparticles, HgS nanoparticles (HgS NPs) have recently been detected in various environmental matrices or organisms. Furthermore, pioneering laboratory studies have reported the high bioavailability of HgS NPs. The formation, presence, and transformation (e.g., methylation) of HgS NPs are intricately related to several environmental factors, especially dissolved organic matter (DOM). The complexity of the behavior of HgS NPs and the heterogeneity of DOM prevent us from comprehensively understanding and predicting the risk of HgS NPs. To reveal the role of HgS NPs in Hg biogeochemical cycling, research needs should focus on the following aspects: the formation pathways, the presence, and the environmental behaviors of HgS NPs impacted by the dominant influential factor of DOM. We thus summarized the latest progress in these aspects and proposed future research priorities, e.g., developing the detection techniques of HgS NPs and probing HgS NPs in various matrices, further exploring the interactions between DOM and HgS NPs. Besides, as most of the previous studies were conducted in laboratories, our current knowledge should be further refreshed through field observations, which would help to gain better insights into predicting the Hg risks in natural environment.
Collapse
Affiliation(s)
- Pei Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Nan Zou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yujiao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Weiping Cai
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjie Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wenli Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Environmental and Life Sciences Program (EnLS), Trent University, Peterborough Ontario, K9L 0G2, Canada.
| |
Collapse
|
13
|
Saurette EM, Frinfrock YZ, Verbuyst B, Blowes DW, McBeth JM, Ptacek CJ. Improved precision in As speciation analysis with HERFD-XANES at the As K-edge: the case of As speciation in mine waste. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1198-1208. [PMID: 36073878 PMCID: PMC9455218 DOI: 10.1107/s1600577522007068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
High-energy-resolution fluorescence-detected (HERFD) X-ray absorption near-edge spectroscopy (XANES) is a spectroscopic method that allows for increased spectral feature resolution, and greater selectivity to decrease complex matrix effects compared with conventional XANES. XANES is an ideal tool for speciation of elements in solid-phase environmental samples. Accurate speciation of As in mine waste materials is important for understanding the mobility and toxicity of As in near-surface environments. In this study, linear combination fitting (LCF) was performed on synthetic spectra generated from mixtures of eight measured reference compounds for both HERFD-XANES and transmission-detected XANES to evaluate the improvement in quantitative speciation with HERFD-XANES spectra. The reference compounds arsenolite (As2O3), orpiment (As2S3), getchellite (AsSbS3), arsenopyrite (FeAsS), kaňkite (FeAsO4·3.5H2O), scorodite (FeAsO4·2H2O), sodium arsenate (Na3AsO4), and realgar (As4S4) were selected for their importance in mine waste systems. Statistical methods of principal component analysis and target transformation were employed to determine whether HERFD improves identification of the components in a dataset of mixtures of reference compounds. LCF was performed on HERFD- and total fluorescence yield (TFY)-XANES spectra collected from mine waste samples. Arsenopyrite, arsenolite, orpiment, and sodium arsenate were more accurately identified in the synthetic HERFD-XANES spectra compared with the transmission-XANES spectra. In mine waste samples containing arsenopyrite and either scorodite or kaňkite, LCF with HERFD-XANES measurements resulted in fits with smaller R-factors than concurrently collected TFY measurements. The improved accuracy of HERFD-XANES analysis may provide enhanced delineation of As phases controlling biogeochemical reactions in mine wastes, contaminated soils, and remediation systems.
Collapse
Affiliation(s)
- Emily M. Saurette
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Y. Zou Frinfrock
- Structural Biology Center, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Brent Verbuyst
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada
| | - David W. Blowes
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Joyce M. McBeth
- Department of Geology, University of Regina, Regina, SK, Canada
| | - Carol J. Ptacek
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
14
|
Leshchev D, Rakitin M, Luvizotto B, Kadyrov R, Ravel B, Attenkofer K, Stavitski E. The Inner Shell Spectroscopy beamline at NSLS-II: a facility for in situ and operando X-ray absorption spectroscopy for materials research. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1095-1106. [PMID: 35787577 PMCID: PMC9255565 DOI: 10.1107/s160057752200460x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/01/2022] [Indexed: 05/14/2023]
Abstract
The Inner Shell Spectroscopy (ISS) beamline on the 8-ID station at the National Synchrotron Light Source II (NSLS-II), Upton, NY, USA, is a high-throughput X-ray absorption spectroscopy beamline designed for in situ, operando, and time-resolved material characterization using high monochromatic flux and scanning speed. This contribution discusses the technical specifications of the beamline in terms of optics, heat load management, monochromator motion control, and data acquisition and processing. Results of the beamline tests demonstrating the quality of the data obtainable on the instrument, possible energy scanning speeds, as well as long-term beamline stability are shown. The ability to directly control the monochromator trajectory to define the acquisition time for each spectral region is highlighted. Examples of studies performed on the beamline are presented. The paper is concluded with a brief outlook for future developments.
Collapse
Affiliation(s)
- Denis Leshchev
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Maksim Rakitin
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Bruno Luvizotto
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ruslan Kadyrov
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Bruce Ravel
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
- Material Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Klaus Attenkofer
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Eli Stavitski
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
15
|
High-Energy Resolution Fluorescence Detected X-ray Absorption Spectroscopy for the Speciation of Fe in Aerosol Samples. MINERALS 2022. [DOI: 10.3390/min12050536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study, we compared the high-energy resolution X-ray fluorescence X-ray absorption near-edge structure (HERFD-XANES) and normal XANES spectra of various iron (Fe) species and Fe in atmospheric aerosol samples to explore the advantages of Fe K-edge HERFD-XANES for Fe speciation in aerosols using the linear combination fitting (LCF) of XANES spectra. We also conducted Fe extraction experiments to validate the LCF-XANES. In the HERFD-XANES spectra, the pre-edge region showed specific structures absent in normal XANES. HERFD-XANES also produced more distinctive shoulders within each spectrum than normal XANES. HERFD-XANES was applied to an aerosol sample (MT21-S2) collected in Tokyo, Japan. Normal XANES identified ferrihydrite, biotite, and montmorillonite, whereas HERFD-XANES clearly detected goethite as a fourth component. Normal XANES did not distinguish between ferrihydrite and goethite in LCF because of their similar structures. A similar trend was observed in the pre-edge region, and the Fe extraction experiment result was consistent with the LCF result in the pre-edge region. Thus, LCF of HERFD-XANES, in particular for the pre-edge region, can be a powerful tool for Fe speciation in aerosols.
Collapse
|
16
|
Nehzati S, Dolgova NV, Young CG, James AK, Cotelesage JJH, Sokaras D, Kroll T, Qureshi M, Pickering IJ, George GN. Mercury Lα1 High Energy Resolution Fluorescence Detected X-ray Absorption Spectroscopy: A Versatile Speciation Probe for Mercury. Inorg Chem 2022; 61:5201-5214. [PMID: 35073478 PMCID: PMC9962031 DOI: 10.1021/acs.inorgchem.1c03196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mercury is in some sense an enigmatic element. The element and some of its compounds are a natural part of the biogeochemical cycle; while many of these can be deadly poisons at higher levels, environmental levels in the absence of anthropogenic contributions would generally be below the threshold for concern. However, mercury pollution, particularly from burning fossil fuels such as coal, is providing dramatic and increasing emissions into the environment. Because of this, the environmental chemistry and toxicology of mercury are of growing importance, with the fate of mercury being vitally dependent upon its speciation. X-ray absorption spectroscopy (XAS) provides a powerful tool for in situ chemical speciation, but is severely limited by poor spectroscopic energy resolution. Here, we provide a systematic examination of mercury Lα1 high energy resolution fluorescence detected XAS (HERFD-XAS) as an approach for chemical speciation of mercury, in quantitative comparison with conventional Hg LIII-edge XAS. We show that, unlike some lighter elements, chemical shifts in the Lα1 X-ray fluorescence energy can be safely neglected, so that mercury Lα1 HERFD-XAS can be treated simply as a high-resolution version of conventional XAS. We present spectra of a range of mercury compounds that may be relevant to the environmental and life science research and show that density functional theory can produce adequate simulations of the spectra. We discuss strengths and limitations of the method and quantitatively demonstrate improvements both in speciation for complex mixtures and in background rejection for low concentrations.
Collapse
Affiliation(s)
- Susan Nehzati
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Present Address: MAX IV Laboratory, Lund University, Fotongatan 2, 221 00 Lund, Sweden
| | - Natalia V. Dolgova
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Present Address: Calibr - California Institute for Biomedical Research, Scripps Research, La Jolla, California 92037, USA
| | - Charles G. Young
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Ashley K. James
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Julien J. H. Cotelesage
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Muhammad Qureshi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Ingrid J. Pickering
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Graham N. George
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
17
|
Roesch P, Vogel C, Huthwelker T, Wittwer P, Simon FG. Investigation of per- and polyfluoroalkyl substances (PFAS) in soils and sewage sludges by fluorine K-edge XANES spectroscopy and combustion ion chromatography. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26889-26899. [PMID: 34860340 PMCID: PMC8989862 DOI: 10.1007/s11356-021-17838-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
For the first time, fluorine K-edge X-ray absorption near-edge structure (XANES) spectroscopy was applied to detect per- and polyfluoroalkyl substances (PFAS) in various soil and sewage sludge samples. The method can be used to determine the speciation of inorganic and organic fluorides, without pre-treatment of solid samples. Therefore, XANES spectra of several inorganic fluorides as well as selected fluorinated organic compounds were recorded. While inorganic fluorides partially exhibit a variety of sharp spectral features in the XANES spectrum, almost all inspected organofluorine compounds show two distinct broad features at 688.5 and 692.0 eV. Moreover, the peak intensity ratio 688.5 eV/692.0 eV in the PFAS XANES spectrum can be inversely correlated to the chain length of the perfluoro sulfonic acid group. The detection of targeted PFAS by bulk-XANES spectroscopy in combination with linear combination fitting in soils and sewage sludges was not applicable due to the low organic fluorine to total fluorine ratio of the samples (0.01-1.84%). Nonetheless, direct analysis of pure PFAS revealed that analysis of organofluorine species might be achieved in higher concentrated samples. Furthermore, quantitative measurements by combustion ion chromatography (CIC) evaluated as sum parameters extractable organically bound fluorine (EOF) and total fluorine (TF) emphasize that besides soils, sewage sludges are a significant source of organic fluorine in agriculture (154-7209 µg/kg).
Collapse
Affiliation(s)
- Philipp Roesch
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 4.3 Contaminant Transfer and Environmental Technologies, Unter den Eichen 87, 12205, Berlin, Germany.
| | - Christian Vogel
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 4.3 Contaminant Transfer and Environmental Technologies, Unter den Eichen 87, 12205, Berlin, Germany.
| | - Thomas Huthwelker
- Paul Scherrer Institute, Swiss Light Source, 5232, Villigen PSI, Switzerland
| | - Philipp Wittwer
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 4.3 Contaminant Transfer and Environmental Technologies, Unter den Eichen 87, 12205, Berlin, Germany
| | - Franz-Georg Simon
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 4.3 Contaminant Transfer and Environmental Technologies, Unter den Eichen 87, 12205, Berlin, Germany
| |
Collapse
|
18
|
Hua J, Fei YH, Feng C, Liu C, Liang S, Wang SL, Wu F. Anoxic oxidation of As(III) during Fe(II)-induced goethite recrystallization: Evidence and importance of Fe(IV) intermediate. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126806. [PMID: 34388930 DOI: 10.1016/j.jhazmat.2021.126806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Under anoxic conditions, aqueous Fe(II) (Fe(II)aq)-induced recrystallization of iron (oxyhydr)oxides changes the speciation and geochemical cycle of trace elements in environments. Oxidation of trace element, i.e., As(III), driven by Fe(II)aq-iron (oxyhydr)oxides interactions under anoxic condition was observed previously, but the oxidative species and involved mechanisms are remained unknown. In the present study, we explored the formed oxidative intermediates during Fe(II)aq-induced recrystallization of goethite under anoxic conditions. The methyl phenyl sulfoxide-based probe experiment suggested the featured oxidation by Fe(IV) species in Fe(II)aq-goethite system. Both the Mössbauer spectra and X-ray absorption near edge structure spectroscopic evidenced the generation and quenching of Fe(IV) intermediate. It was proved that the interfacial electron exchange between Fe(II)aq and Fe(III) of goethite initiated the generation of Fe(IV). After transferring electrons to goethite, Fe(II)aq was transformed to labile Fe(III), which was then transformed to Fe(IV) via a proton-coupled electron transfer process. This highly reactive transient Fe(IV) could quickly react with reductive species, i.e. Fe(II) or As(III). Considering the ubiquitous occurrence of Fe(II)-iron (oxyhydr)oxides reactions under anoxic conditions, our findings are expected to provide new insight into the anoxic oxidative transformation processes of matters in non-surface environments on earth.
Collapse
Affiliation(s)
- Jian Hua
- School of Resources and Environmental Science, Wuhan University, Wuhan 430079, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ying-Heng Fei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Chunhua Feng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Sheng Liang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Feng Wu
- School of Resources and Environmental Science, Wuhan University, Wuhan 430079, China
| |
Collapse
|
19
|
Darma A, Yang J, Bloem E, Możdżen K, Zandi P. Arsenic biotransformation and mobilization: the role of bacterial strains and other environmental variables. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1763-1787. [PMID: 34713399 DOI: 10.1007/s11356-021-17117-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Over several decades, arsenic (As) toxicity in the biosphere has affected different flora, fauna, and other environmental components. The majority of these problems are linked with As mobilization due to bacterial dissolution of As-bearing minerals and its transformation in other reservoirs such as soil, sediments, and ground water. Understanding the process, mechanism, and various bacterial species involved in these processes under the influence of some ecological variables greatly contributes to a better understanding of the fate and implications of As mobilization into the environments. This article summarizes the process, role, and various types of bacterial species involved in the transformation and mobilization of As. Furthermore, insight into how Fe(II) oxidation and resistance mechanisms such as methylation and detoxification against the toxic effect of As(III) was highlighted as a potential immobilization and remediation strategy in As-contaminated sites. Furthermore, the significance and comparative advantages of some useful analytical tools used in the evaluation, speciation, and analysis of As are discussed and how their in situ and ex situ applications support assessing As contamination in both laboratory and field settings. Nevertheless, additional research involving advanced molecular techniques is required to elaborate on the contribution of these bacterial consortia as a potential agronomic tool for reducing As availability, particularly in natural circumstances. Graphical abstract. Courtesy of conceptual model: Aminu Darma.
Collapse
Affiliation(s)
- Aminu Darma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jianjun Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Elke Bloem
- Institute for Crop and Soil Science Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Bundesallee 69, 38116, Braunschweig, Germany
| | - Katarzyna Możdżen
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2 St, 30-084, Kraków, Poland
| | - Peiman Zandi
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- International Faculty of Applied Technology, Yibin University, Yibin, 644000, People's Republic of China
| |
Collapse
|
20
|
Höltschi L, Borca CN, Huthwelker T, Marone F, Schlepütz CM, Pelé V, Jordy C, Villevieille C, Kazzi ME, Novák P. Performance-limiting factors of graphite in sulfide-based all-solid-state lithium-ion batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Konagaya R, Kawamura N, Yamaguchi A, Takahashi Y. Highly-sensitive Analysis of Fluorescence XANES at Europium (Eu) L III-edge for the Determination of Oxidation State for Trace Amount of Eu in Natural Samples by Bragg-type Crystal Analyzer System. CHEM LETT 2021. [DOI: 10.1246/cl.210249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rimi Konagaya
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naomi Kawamura
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Akiko Yamaguchi
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Center for Computational Science and e-System, Japan Atomic Energy Agency, Kashiwa, Chiba 277-0971, Japan
| | - Yoshio Takahashi
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
22
|
Isaure MP, Albertelli M, Kieffer I, Tucoulou R, Petrel M, Gontier E, Tessier E, Monperrus M, Goñi-Urriza M. Relationship Between Hg Speciation and Hg Methylation/Demethylation Processes in the Sulfate-Reducing Bacterium Pseudodesulfovibrio hydrargyri: Evidences From HERFD-XANES and Nano-XRF. Front Microbiol 2020; 11:584715. [PMID: 33154741 PMCID: PMC7591507 DOI: 10.3389/fmicb.2020.584715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/17/2020] [Indexed: 01/09/2023] Open
Abstract
Microorganisms are key players in the transformation of mercury into neurotoxic methylmercury (MeHg). Nevertheless, this mechanism and the opposite MeHg demethylation remain poorly understood. Here, we explored the impact of inorganic mercury (IHg) and MeHg concentrations from 0.05 to 50 μM on the production and degradation of MeHg in two sulfate-reducing bacteria, Pseudodesulfovibrio hydrargyri BerOc1 able to methylate and demethylate mercury and Desulfovibrio desulfuricans G200 only able to demethylate MeHg. MeHg produced by BerOc1 increased with increasing IHg concentration with a maximum attained for 5 μM, and suggested a saturation of the process. MeHg was mainly found in the supernatant suggesting its export from the cell. Hg L3-edge High- Energy-Resolution-Fluorescence-Detected-X-ray-Absorption-Near-Edge-Structure spectroscopy (HERFD-XANES) identified MeHg produced by BerOc1 as MeHg-cysteine2 form. A dominant tetracoordinated βHgS form was detected for BerOc1 exposed to the lowest IHg concentrations where methylation was detected. In contrast, at the highest exposure (50 μM) where Hg methylation was abolished, Hg species drastically changed suggesting a role of Hg speciation in the production of MeHg. The tetracoordinated βHgS was likely present as nano-particles as suggested by transmission electron microscopy combined to X-ray energy dispersive spectroscopy (TEM-X-EDS) and nano-X ray fluorescence (nano-XRF). When exposed to MeHg, the production of IHg, on the contrary, increased with the increase of MeHg exposure until 50 μM for both BerOc1 and G200 strains, suggesting that demethylation did not require intact biological activity. The formed IHg species were identified as various tetracoordinated Hg-S forms. These results highlight the important role of thiol ligands and Hg coordination in Hg methylation and demethylation processes.
Collapse
Affiliation(s)
- Marie-Pierre Isaure
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, MIRA, IPREM, Pau, France
| | - Marine Albertelli
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, MIRA, IPREM, Pau, France
| | - Isabelle Kieffer
- FAME-UHD, BM16 Beamline, European Synchrotron Radiation Facility (ESRF), BP220, Grenoble, France.,CNRS, IRD, Irstea, Météo France, OSUG, FAME, Université Grenoble Alpes, Grenoble, France
| | - Rémi Tucoulou
- ID16B Beamline, European Synchrotron Radiation Facility (ESRF), BP220, Grenoble, France
| | - Melina Petrel
- Bordeaux Imaging Center UMS 3420 CNRS - US4 INSERM, Université de Bordeaux, Pôle d'imagerie Électronique, Bordeaux, France
| | - Etienne Gontier
- Bordeaux Imaging Center UMS 3420 CNRS - US4 INSERM, Université de Bordeaux, Pôle d'imagerie Électronique, Bordeaux, France
| | - Emmanuel Tessier
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, MIRA, IPREM, Pau, France
| | - Mathilde Monperrus
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, MIRA, IPREM, Anglet, France
| | - Marisol Goñi-Urriza
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, MIRA, IPREM, Pau, France
| |
Collapse
|
23
|
Bueno CF, Ramos AY, Bailly A, Mossang E, Scalvi LVA. X-ray absorption spectroscopy and Eu3+-emission characteristics in GaAs/SnO2 heterostructure. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03344-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
24
|
Shteinman AA. Bioinspired Oxidation of Methane: From Academic Models of Methane Monooxygenases to Direct Conversion of Methane to Methanol. KINETICS AND CATALYSIS 2020. [DOI: 10.1134/s0023158420030180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Thomas SA, Catty P, Hazemann JL, Michaud-Soret I, Gaillard JF. The role of cysteine and sulfide in the interplay between microbial Hg(ii) uptake and sulfur metabolism. Metallomics 2020; 11:1219-1229. [PMID: 31143907 DOI: 10.1039/c9mt00077a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biogenic thiols, such as cysteine, have been used to control the speciation of Hg(ii) in bacterial exposure experiments. However, the extracellular biodegradation of excess cysteine leads to the formation of Hg(ii)-sulfide species, convoluting the interpretation of Hg(ii) uptake results. Herein, we test the hypothesis that Hg(ii)-sulfide species formation is a critical step during bacterial Hg(ii) uptake in the presence of excess cysteine. An Escherichia coli (E. coli) wild-type and mutant strain lacking the decR gene that regulates cysteine degradation to sulfide were exposed to 50 and 500 nM Hg with 0 to 2 mM cysteine. The decR mutant released ∼4 times less sulfide from cysteine degradation compared to the wild-type for all tested cysteine concentrations during a 3 hour exposure period. We show with thermodynamic calculations that the predicted concentration of Hg(ii)-cysteine species remaining in the exposure medium (as opposed to forming HgS(s)) is a good proxy for the measured concentration of dissolved Hg(ii) (i.e., not cell-bound). Likewise, the measured cell-bound Hg(ii) correlates with thermodynamic calculations for HgS(s) formation in the presence of cysteine. High resolution X-ray absorption near edge structure (HR-XANES) spectra confirm the existence of cell-associated HgS(s) at 500 nM total Hg and suggest the formation of Hg-S clusters at 50 nM total Hg. Our results indicate that a speciation change to Hg(ii)-sulfide controls Hg(ii) cell-association in the presence of excess cysteine.
Collapse
Affiliation(s)
- Sara A Thomas
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA. and Université Grenoble Alpes, CNRS, CEA, BIG-LCBM, 38000 Grenoble, France.
| | - Patrice Catty
- Université Grenoble Alpes, CNRS, CEA, BIG-LCBM, 38000 Grenoble, France.
| | - Jean-Louis Hazemann
- Institut Néel, UPR 2940 CNRS-Université Grenoble Alpes, F-38000 Grenoble, France
| | | | - Jean-François Gaillard
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
26
|
Rovezzi M, Harris A, Detlefs B, Bohdan T, Svyazhin A, Santambrogio A, Degler D, Baran R, Reynier B, Noguera Crespo P, Heyman C, Van Der Kleij HP, Van Vaerenbergh P, Marion P, Vitoux H, Lapras C, Verbeni R, Kocsis MM, Manceau A, Glatzel P. TEXS: in-vacuum tender X-ray emission spectrometer with 11 Johansson crystal analyzers. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:813-826. [PMID: 32381786 PMCID: PMC7285681 DOI: 10.1107/s160057752000243x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/20/2020] [Indexed: 05/22/2023]
Abstract
The design and first results of a large-solid-angle X-ray emission spectrometer that is optimized for energies between 1.5 keV and 5.5 keV are presented. The spectrometer is based on an array of 11 cylindrically bent Johansson crystal analyzers arranged in a non-dispersive Rowland circle geometry. The smallest achievable energy bandwidth is smaller than the core hole lifetime broadening of the absorption edges in this energy range. Energy scanning is achieved using an innovative design, maintaining the Rowland circle conditions for all crystals with only four motor motions. The entire spectrometer is encased in a high-vacuum chamber that allocates a liquid helium cryostat and provides sufficient space for in situ cells and operando catalysis reactors.
Collapse
Affiliation(s)
- Mauro Rovezzi
- Université Grenoble Alpes, CNRS, IRD, Irstea, Météo France, OSUG, FAME, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | | | - Blanka Detlefs
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Timothy Bohdan
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Artem Svyazhin
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
- M. N. Miheev Institute of Metal Physics, Ural Branch of the Russian Academy of Science, 620990 Ekaterinburg, Russia
| | - Alessandro Santambrogio
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - David Degler
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Rafal Baran
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Benjamin Reynier
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Pedro Noguera Crespo
- Added Value Solutions (AVS), Pol. Ind. Sigma Xixilion Kalea 2, Bajo Pabellón 10, 20870 Elgoibar, Spain
| | | | - Hans-Peter Van Der Kleij
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Pierre Van Vaerenbergh
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Philippe Marion
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Hugo Vitoux
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Christophe Lapras
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Roberto Verbeni
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Menhard Menyhert Kocsis
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Alain Manceau
- ISTerre, Université Grenoble Alpes, CNRS, CS 40700, 38058 Grenoble, France
| | - Pieter Glatzel
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| |
Collapse
|
27
|
Thomas SA, Mishra B, Myneni SCB. Cellular Mercury Coordination Environment, and Not Cell Surface Ligands, Influence Bacterial Methylmercury Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3960-3968. [PMID: 32097551 DOI: 10.1021/acs.est.9b05915] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The conversion of inorganic mercury (Hg(II)) to methylmercury (MeHg) is central to the understanding of Hg toxicity in the environment. Hg methylation occurs in the cytosol of certain obligate anaerobic bacteria and archaea possessing the hgcAB gene cluster. However, the processes involved in Hg(II) biouptake and methylation are not well understood. Here, we examined the role of cell surface thiols, cellular ligands with the highest affinity for Hg(II) that are located at the interface between the outer membrane and external medium, on the sorption and methylation of Hg(II) by Geobacter sulfurreducens. The effect of added cysteine (Cys), which is known to greatly enhance Hg(II) biouptake and methylation, was also explored. By quantitatively blocking surface thiols with a thiol binding ligand (qBBr), we show that surface thiols have no significant effect on Hg(II) methylation, regardless of Cys addition. The results also identify a significant amount of cell-associated Hg-S3/S4 species, as studied by high energy-resolution X-ray absorption near edge structure (HR-XANES) spectroscopy, under conditions of high MeHg production (with Cys addition). In contrast, Hg-S2 are the predominant species during low MeHg production. Hg-S3/S4 species may be related to enhanced Hg(II) biouptake or the ability of Hg(II) to become methylated by HgcAB and should be further explored in this context.
Collapse
Affiliation(s)
- Sara A Thomas
- Department of Geosciences, Princeton University, Guyot Hall, Princeton, New Jersey 08544, United States
| | - Bhoopesh Mishra
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Satish C B Myneni
- Department of Geosciences, Princeton University, Guyot Hall, Princeton, New Jersey 08544, United States
| |
Collapse
|
28
|
Batista ATF, Baaziz W, Taleb AL, Chaniot J, Moreaud M, Legens C, Aguilar-Tapia A, Proux O, Hazemann JL, Diehl F, Chizallet C, Gay AS, Ersen O, Raybaud P. Atomic Scale Insight into the Formation, Size, and Location of Platinum Nanoparticles Supported on γ-Alumina. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ana T. F. Batista
- IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
| | - Walid Baaziz
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS-Université de Strasbourg, 67034 Strasbourg, France
| | - Anne-Lise Taleb
- IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
| | - Johan Chaniot
- IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
- Université de Lyon, Université Jean Monnet de Saint-Etienne, CNRS UMR 5516, Laboratoire Hubert Curien, F-42000 Saint Etienne, France
| | - Maxime Moreaud
- IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
- Centre for Mathematical Morphology, MINES ParisTech, 77305 Fontainebleau, France
| | - Christèle Legens
- IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
| | | | - Olivier Proux
- OSUG, UMS 832 CNRS-Université Grenoble Alpes, F-38041 Grenoble, France
| | - Jean-Louis Hazemann
- Institut Néel, UPR 2940 CNRS-Université Grenoble Alpes, F-38000 Grenoble, France
| | - Fabrice Diehl
- IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
| | - Céline Chizallet
- IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
| | - Anne-Sophie Gay
- IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS-Université de Strasbourg, 67034 Strasbourg, France
| | - Pascal Raybaud
- IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
| |
Collapse
|
29
|
Vogel C, Hoffmann MC, Taube MC, Krüger O, Baran R, Adam C. Uranium and thorium species in phosphate rock and sewage sludge ash based phosphorus fertilizers. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121100. [PMID: 31479826 DOI: 10.1016/j.jhazmat.2019.121100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
Phosphorus (P) is an essential element for all forms of life and is thus often applied as phosphate rock-based P-fertilizers in agriculture to enable continuous farming. However, these P-fertilizers contain also hazardous uranium (U) and thorium (Th), up to 660 and 220 mg/kg, respectively. On the contrary, novel P-fertilizers made from sewage sludge (ash) contain only low mass fractions of U and Th. In addition to the total amount of U and Th in P-fertilizers, their mobility and bioavailability is important, which depends to a large extent on their chemical state, especially oxidation state and chemical bonding. Thus, we analyzed their chemical state in various P-fertilizers by U and Th L3-edge HERFD-XANES spectroscopy. Phosphate rocks and sewage sludge-based P-fertilizers contain mainly U(IV) compounds which have only a low bioavailability. In contrast, acidic treatment of phosphate rock to produce super phosphates lead to an oxidation to U(VI) compounds (including formation of uranium phosphates) with a strongly increased bioavailability. On the contrary, all analyzed P-fertilizers contain Th in form of strongly insoluble phosphates and oxides with a low bioavailability. Additionally performed water extractions and Diffusive Gradients in Thin-films (DGT) experiments support these findings.
Collapse
Affiliation(s)
- Christian Vogel
- Division 4.4 Thermochemical Residues Treatment and Resource Recovery, Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205, Berlin, Germany.
| | - Marie C Hoffmann
- Division 4.4 Thermochemical Residues Treatment and Resource Recovery, Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Mareike C Taube
- Division 4.4 Thermochemical Residues Treatment and Resource Recovery, Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Oliver Krüger
- Bundesinstitut für Risikobewertung (BfR), Department of Chemical and Product Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Rafal Baran
- ESRF - The European Synchrotron, ID26 beamline, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Christian Adam
- Division 4.4 Thermochemical Residues Treatment and Resource Recovery, Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| |
Collapse
|
30
|
Hu H, Zhao J, Wang L, Shang L, Cui L, Gao Y, Li B, Li YF. Synchrotron-based techniques for studying the environmental health effects of heavy metals: Current status and future perspectives. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115721] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Samantaray MK, D'Elia V, Pump E, Falivene L, Harb M, Ould Chikh S, Cavallo L, Basset JM. The Comparison between Single Atom Catalysis and Surface Organometallic Catalysis. Chem Rev 2019; 120:734-813. [PMID: 31613601 DOI: 10.1021/acs.chemrev.9b00238] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Single atom catalysis (SAC) is a recent discipline of heterogeneous catalysis for which a single atom on a surface is able to carry out various catalytic reactions. A kind of revolution in heterogeneous catalysis by metals for which it was assumed that specific sites or defects of a nanoparticle were necessary to activate substrates in catalytic reactions. In another extreme of the spectrum, surface organometallic chemistry (SOMC), and, by extension, surface organometallic catalysis (SOMCat), have demonstrated that single atoms on a surface, but this time with specific ligands, could lead to a more predictive approach in heterogeneous catalysis. The predictive character of SOMCat was just the result of intuitive mechanisms derived from the elementary steps of molecular chemistry. This review article will compare the aspects of single atom catalysis and surface organometallic catalysis by considering several specific catalytic reactions, some of which exist for both fields, whereas others might see mutual overlap in the future. After a definition of both domains, a detailed approach of the methods, mostly modeling and spectroscopy, will be followed by a detailed analysis of catalytic reactions: hydrogenation, dehydrogenation, hydrogenolysis, oxidative dehydrogenation, alkane and cycloalkane metathesis, methane activation, metathetic oxidation, CO2 activation to cyclic carbonates, imine metathesis, and selective catalytic reduction (SCR) reactions. A prospective resulting from present knowledge is showing the emergence of a new discipline from the overlap between the two areas.
Collapse
Affiliation(s)
- Manoja K Samantaray
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Valerio D'Elia
- School of Molecular Science and Engineering (MSE) , Vidyasirimedhi Institute of Science and Technology (VISTEC) , Wang Chan, Payupnai , 21210 Rayong , Thailand
| | - Eva Pump
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Laura Falivene
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Moussab Harb
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Samy Ould Chikh
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Jean-Marie Basset
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| |
Collapse
|
32
|
Burkhardt L, Mueller C, Groß OA, Sun Y, Sitzmann H, Bauer M. The Bonding Situation in the Dinuclear Tetra-Hydrido Complex [{ 5CpFe} 2(μ-H) 4] Revisited by Hard X-Ray Spectroscopy. Inorg Chem 2019; 58:6609-6618. [PMID: 30596494 DOI: 10.1021/acs.inorgchem.8b03032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High energy resolution fluorescence detected XANES (HERFD-XANES) and valence-to-core X-ray emission spectroscopy (VtC-XES) are introduced as powerful tools to investigate hydride-iron interaction, the possible iron-iron bond, and iron spin state of the dinuclear tetra-hydrido complex [{5CpFe}2(μ-H)4] (1H, 5Cp = η5-C5 iPr5) by thoroughly accessing the geometric and electronic structure of this complex in comparison to the nonhydride reference [5CpCpFe] (1, Cp = C5H5). The so far observed most intense hydride induced signals in the pre-edge feature of the HERFD-XANES and in the VtC-XES spectra at the iron K-edge allow a precise analysis of the LUMO and HOMO states, respectively, by application of time-dependent density function theory (TD-DFT) and density functional theory (DFT) calculations. The results of these calculations are further employed to understand the oxidation state, spin states, and potential Fe-Fe bonds in this complex.
Collapse
Affiliation(s)
- Lukas Burkhardt
- Faculty of Science , Paderborn University , Warburger Straße 100 , 33098 Paderborn , Germany
| | - Carsten Mueller
- Department of Chemistry , University of Kaiserslautern , Erwin-Schrödinger-Straße 54 , 67663 Kaiserslautern , Germany
| | - Oliver A Groß
- Faculty of Science , Paderborn University , Warburger Straße 100 , 33098 Paderborn , Germany
| | - Yu Sun
- Department of Chemistry , University of Kaiserslautern , Erwin-Schrödinger-Straße 54 , 67663 Kaiserslautern , Germany
| | - Helmut Sitzmann
- Department of Chemistry , University of Kaiserslautern , Erwin-Schrödinger-Straße 54 , 67663 Kaiserslautern , Germany
| | - Matthias Bauer
- Faculty of Science , Paderborn University , Warburger Straße 100 , 33098 Paderborn , Germany.,Center for Sustainable Systems Design (CSSD) , Paderborn University , Warburger Straße 100 , 33098 Paderborn , Germany
| |
Collapse
|
33
|
Thomas SA, Mishra B, Myneni SCB. High Energy Resolution-X-ray Absorption Near Edge Structure Spectroscopy Reveals Zn Ligation in Whole Cell Bacteria. J Phys Chem Lett 2019; 10:2585-2592. [PMID: 31039606 DOI: 10.1021/acs.jpclett.9b01186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Identifying the zinc (Zn) ligation and coordination environment in complex biological and environmental systems is crucial to understand the role of Zn as a biologically essential but sometimes toxic metal. Most studies on Zn coordination in biological or environmental samples rely on the extended X-ray absorption fine structure (EXAFS) region of a Zn K-edge X-ray absorption spectroscopy (XAS) spectrum. However, EXAFS analysis cannot identify unique nearest neighbors with similar atomic number (i.e., O versus N) and provides little information on Zn ligation. Herein, we demonstrate that high energy resolution-X-ray absorption near edge structure (HR-XANES) spectroscopy enables the direct determination of Zn ligation in whole cell bacteria, providing additional insights lost from EXAFS analysis at a fraction of the scan time and Zn concentration. HR-XANES is a relatively new technique that has improved our understanding of trace metals (e.g., Hg, Cu, and Ce) in dilute systems. This study is the first to show that HR-XANES can unambiguously detect Zn coordination to carboxyl, phosphoryl, imidazole, and/or thiol moieties in model microorganisms.
Collapse
Affiliation(s)
- Sara A Thomas
- Department of Geosciences , Princeton University , Guyot Hall, Princeton , New Jersey 08544 , United States
| | - Bhoopesh Mishra
- School of Chemical and Process Engineering , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Satish C B Myneni
- Department of Geosciences , Princeton University , Guyot Hall, Princeton , New Jersey 08544 , United States
| |
Collapse
|
34
|
X-Ray Absorption Spectroscopy Measurements of Cu-ProIAPP Complexes at Physiological Concentrations. CONDENSED MATTER 2019. [DOI: 10.3390/condmat4010013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The amyloidogenic islet amyloid polypeptide (IAPP) and the associated pro-peptide ProIAPP1–48 are involved in cell death in type 2 diabetes mellitus. It has been observed that interactions of this peptide with metal ions have an impact on the cytotoxicity of the peptides as well as on their deposition in the form of amyloid fibrils. In particular, Cu(II) seems to inhibit amyloid fibril formation, thus suggesting that Cu homeostasis imbalance may be involved in the pathogenesis of type 2 diabetes mellitus. We performed X-ray Absorption Spectroscopy (XAS) measurements of Cu(II)-ProIAPP complexes under near-physiological (10 μM), equimolar concentrations of Cu(II) and peptide. Such low concentrations were made accessible to XAS measurements owing to the use of the High Energy Resolved Fluorescence Detection XAS facility recently installed at the ESRF beamline BM16 (FAME-UHD). Our preliminary data show that XAS measurements at micromolar concentrations are feasible and confirm that ProIAPP1–48-Cu(II) binding at near-physiological conditions can be detected.
Collapse
|
35
|
Bissardon C, Proux O, Bureau S, Suess E, Winkel LHE, Conlan RS, Francis LW, Khan IM, Charlet L, Hazemann JL, Bohic S. Sub-ppm level high energy resolution fluorescence detected X-ray absorption spectroscopy of selenium in articular cartilage. Analyst 2019; 144:3488-3493. [DOI: 10.1039/c9an00207c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selenium speciation down to 400 ppb within articular cartilage was demonstrated through high energy resolution fluorescence detected X-ray absorption spectroscopy coupled to an array of crystal analyzers.
Collapse
|
36
|
Porcaro F, Roudeau S, Carmona A, Ortega R. Advances in element speciation analysis of biomedical samples using synchrotron-based techniques. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.09.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Chaurand P, Liu W, Borschneck D, Levard C, Auffan M, Paul E, Collin B, Kieffer I, Lanone S, Rose J, Perrin J. Multi-scale X-ray computed tomography to detect and localize metal-based nanomaterials in lung tissues of in vivo exposed mice. Sci Rep 2018. [PMID: 29535369 PMCID: PMC5849692 DOI: 10.1038/s41598-018-21862-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In this methodological study, we demonstrated the relevance of 3D imaging performed at various scales for the ex vivo detection and location of cerium oxide nanomaterials (CeO2-NMs) in mouse lung. X-ray micro-computed tomography (micro-CT) with a voxel size from 14 µm to 1 µm (micro-CT) was combined with X-ray nano-computed tomography with a voxel size of 63 nm (nano-CT). An optimized protocol was proposed to facilitate the sample preparation, to minimize the experimental artifacts and to optimize the contrast of soft tissues exposed to metal-based nanomaterials (NMs). 3D imaging of the NMs biodistribution in lung tissues was consolidated by combining a vast variety of techniques in a correlative approach: histological observations, 2D chemical mapping and speciation analysis were performed for an unambiguous detection of NMs. This original methodological approach was developed following a worst-case scenario of exposure, i.e. high dose of exposure with administration via intra-tracheal instillation. Results highlighted both (i) the non-uniform distribution of CeO2-NMs within the entire lung lobe (using large field-of-view micro-CT) and (ii) the detection of CeO2-NMs down to the individual cell scale, e.g. macrophage scale (using nano-CT with a voxel size of 63 nm).
Collapse
Affiliation(s)
- Perrine Chaurand
- Aix Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-Provence, France. .,International Consortium for the Environmental Implications of Nanotechnology iCEINT, CNRS-Duke University, Aix en Provence, France.
| | - Wei Liu
- Aix Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-Provence, France.,International Consortium for the Environmental Implications of Nanotechnology iCEINT, CNRS-Duke University, Aix en Provence, France
| | - Daniel Borschneck
- Aix Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-Provence, France.,International Consortium for the Environmental Implications of Nanotechnology iCEINT, CNRS-Duke University, Aix en Provence, France
| | - Clément Levard
- Aix Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-Provence, France.,International Consortium for the Environmental Implications of Nanotechnology iCEINT, CNRS-Duke University, Aix en Provence, France
| | - Mélanie Auffan
- Aix Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-Provence, France.,International Consortium for the Environmental Implications of Nanotechnology iCEINT, CNRS-Duke University, Aix en Provence, France
| | - Emmanuel Paul
- INSERM, Equipe 04, U955, Creteil, France.,Univ Paris Est Creteil, IMRB, Fac Med, DHU A TVB, Creteil, France
| | - Blanche Collin
- Aix Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-Provence, France.,International Consortium for the Environmental Implications of Nanotechnology iCEINT, CNRS-Duke University, Aix en Provence, France
| | - Isabelle Kieffer
- OSUG-FAME, UMS 832 CNRS-Univ. Grenoble Alpes, F-38041, Grenoble, France
| | - Sophie Lanone
- INSERM, Equipe 04, U955, Creteil, France.,Univ Paris Est Creteil, IMRB, Fac Med, DHU A TVB, Creteil, France
| | - Jérôme Rose
- Aix Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-Provence, France.,International Consortium for the Environmental Implications of Nanotechnology iCEINT, CNRS-Duke University, Aix en Provence, France
| | - Jeanne Perrin
- Aix Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-Provence, France.,Univ Avignon, Inst Mediterraneen Biodiversite & Ecol Marine & C, Aix Marseille Univ, CNRS, IRD, Marseille, France.,AP HM La Conception, CECOS, Lab Reprod Biol, Dept Gynecol Obstet & Reprod Med, Pole Femmes Parents Enfants, Marseille, France
| |
Collapse
|
38
|
Beccia MR, Solari PL, Monfort M, Moulin C, Den Auwer C. Focus on speciation assessment in marine radiochemistry using X-ray absorption spectroscopy. NEW J CHEM 2018. [DOI: 10.1039/c7nj04862a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review the state-of-the-art and recent advances in the determination of radionuclide speciation in seawater.
Collapse
Affiliation(s)
| | - Pier Lorenzo Solari
- Synchrotron SOLEIL L’Orme des Merisiers
- Saint-Aubin
- F-91192 Gif-sur-Yvette Cedex
- France
| | | | | | | |
Collapse
|
39
|
Hettiarachchi GM, Donner E, Doelsch E. Application of Synchrotron Radiation-based Methods for Environmental Biogeochemistry: Introduction to the Special Section. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:1139-1145. [PMID: 29293855 DOI: 10.2134/jeq2017.09.0349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To understand the biogeochemistry of nutrients and contaminants in environmental media, their speciation and behavior under different conditions and at multiple scales must be determined. Synchrotron radiation-based X-ray techniques allow scientists to elucidate the underlying mechanisms responsible for nutrient and contaminant mobility, bioavailability, and behavior. The continuous improvement of synchrotron light sources and X-ray beamlines around the world has led to a profound transformation in the field of environmental biogeochemistry and, subsequently, to significant scientific breakthroughs. Following this introductory paper, this special collection includes 10 papers that either present targeted reviews of recent advancements in spectroscopic methods that are applicable to environmental biogeochemistry or describe original research studies conducted on complex environmental samples that have been significantly enhanced by incorporating synchrotron radiation-based X-ray technique(s). We believe that the current focus on improving the speciation of ultra-dilute elements in environmental media through the ongoing optimization of synchrotron technologies (e.g., brighter light sources, improved monochromators, more efficient detectors) will help to significantly push back the frontiers of environmental biogeochemistry research. As many of the relevant techniques produce extremely large datasets, we also identify ongoing improvements in data processing and analysis (e.g., software improvements and harmonization of analytical methods) as a significant requirement for environmental biogeochemists to maximize the information that can be gained using these powerful tools.
Collapse
|
40
|
Layet C, Auffan M, Santaella C, Chevassus-Rosset C, Montes M, Ortet P, Barakat M, Collin B, Legros S, Bravin MN, Angeletti B, Kieffer I, Proux O, Hazemann JL, Doelsch E. Evidence that Soil Properties and Organic Coating Drive the Phytoavailability of Cerium Oxide Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9756-9764. [PMID: 28777564 DOI: 10.1021/acs.est.7b02397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The ISO-standardized RHIZOtest is used here for the first time to decipher how plant species, soil properties, and physical-chemical properties of the nanoparticles and their transformation regulate the phytoavailability of nanoparticles. Two plants, tomato and fescue, were exposed to two soils with contrasted properties: a sandy soil poor in organic matter and a clay soil rich in organic matter, both contaminated with 1, 15, and 50 mg·kg-1 of dissolved Ce2(SO4)3, bare and citrate-coated CeO2 nanoparticles. All the results demonstrate that two antagonistic soil properties controlled Ce uptake. The clay fraction enhanced the retention of the CeO2 nanoparticles and hence reduced Ce uptake, whereas the organic matter content enhanced Ce uptake. Moreover, in the soil poor in organic matter, the organic citrate coating significantly enhanced the phytoavailability of the cerium by forming smaller aggregates thereby facilitating the transport of nanoparticles to the roots. By getting rid of the dissimilarities between the root systems of the different plants and the normalizing the surfaces exposed to nanoparticles, the RHIZOtest demonstrated that the species of plant did not drive the phytoavailability, and provided evidence for soil-plant transfers at concentrations lower than those usually cited in the literature and closer to predicted environmental concentrations.
Collapse
Affiliation(s)
- Clément Layet
- Aix Marseille Univ, CNRS , IRD, Coll France, CEREGE, Aix en Provence, France
- iCEINT, International Center for the Environmental Implications of NanoTechologies, CNRS-Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Mélanie Auffan
- Aix Marseille Univ, CNRS , IRD, Coll France, CEREGE, Aix en Provence, France
- iCEINT, International Center for the Environmental Implications of NanoTechologies, CNRS-Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Catherine Santaella
- iCEINT, International Center for the Environmental Implications of NanoTechologies, CNRS-Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
- Aix Marseille Univ , CEA, CNRS, UMR7265, LEMIRE, Laboratoire d'Ecologie Microbienne de la Rhizosphère et Environnement Extrêmes, ECCOREV FR3098, F-13108 Saint-Paul-lès-Durance, France
| | | | - Mélanie Montes
- CIRAD , UPR Recyclage et Risque, F-34398 Montpellier, France
| | - Philippe Ortet
- Aix Marseille Univ , CEA, CNRS, UMR7265, LEMIRE, Laboratoire d'Ecologie Microbienne de la Rhizosphère et Environnement Extrêmes, ECCOREV FR3098, F-13108 Saint-Paul-lès-Durance, France
| | - Mohamed Barakat
- Aix Marseille Univ , CEA, CNRS, UMR7265, LEMIRE, Laboratoire d'Ecologie Microbienne de la Rhizosphère et Environnement Extrêmes, ECCOREV FR3098, F-13108 Saint-Paul-lès-Durance, France
| | - Blanche Collin
- Aix Marseille Univ, CNRS , IRD, Coll France, CEREGE, Aix en Provence, France
- iCEINT, International Center for the Environmental Implications of NanoTechologies, CNRS-Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Samuel Legros
- CIRAD , UPR Recyclage et Risque, 18524 Dakar, Senegal
| | - Matthieu N Bravin
- CIRAD , UPR Recyclage et Risque, F-97408, Saint-Denis, Réunion, France
| | - Bernard Angeletti
- Aix Marseille Univ, CNRS , IRD, Coll France, CEREGE, Aix en Provence, France
| | - Isabelle Kieffer
- OSUG, UMS 832 CNRS-Université Grenoble Alpes , F-38041 Grenoble, France
| | - Olivier Proux
- OSUG, UMS 832 CNRS-Université Grenoble Alpes , F-38041 Grenoble, France
| | - Jean-Louis Hazemann
- Institut Néel, UPR 2940 CNRS-Université Grenoble Alpes , F-38000 Grenoble, France
| | | |
Collapse
|