1
|
McArdle A, Washington KE, Chazarin Orgel B, Binek A, Manalo DM, Rivas A, Ayres M, Pandey R, Phebus C, Raedschelders K, Fert-Bober J, Van Eyk JE. Discovery Proteomics for COVID-19: Where We Are Now. J Proteome Res 2021; 20:4627-4639. [PMID: 34550702 PMCID: PMC8482317 DOI: 10.1021/acs.jproteome.1c00475] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible coronavirus responsible for the pandemic coronavirus disease 2019 (COVID-19), which has had a devastating impact on society. Here, we summarize proteomic research that has helped elucidate hallmark proteins associated with the disease with respect to both short- and long-term diagnosis and prognosis. Additionally, we review the highly variable humoral response associated with COVID-19 and the increased risk of autoimmunity.
Collapse
Affiliation(s)
- Angela McArdle
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Kirstin E. Washington
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Blandine Chazarin Orgel
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Aleksandra Binek
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Danica-Mae Manalo
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Alejandro Rivas
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Matthew Ayres
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Rakhi Pandey
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Connor Phebus
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Koen Raedschelders
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Justyna Fert-Bober
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- Department
of Cardiology, Smidt Heart Institute, Cedars-Sinai
Medical Center, Los Angeles, California 90048, United States
| | - Jennifer E. Van Eyk
- Advanced
Clinical Biosystems Institute and the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
- Department
of Cardiology, Smidt Heart Institute, Cedars-Sinai
Medical Center, Los Angeles, California 90048, United States
| |
Collapse
|
2
|
Mahmud I, Garrett TJ. Mass Spectrometry Techniques in Emerging Pathogens Studies: COVID-19 Perspectives. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2013-2024. [PMID: 32880453 PMCID: PMC7496948 DOI: 10.1021/jasms.0c00238] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 05/04/2023]
Abstract
As corona virus disease 2019 (COVID-19) is a rapidly growing public health crisis across the world, our knowledge of meaningful diagnostic tests and treatment for severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) is still evolving. This novel coronavirus disease COVID-19 can be diagnosed using RT-PCR, but inadequate access to reagents, equipment, and a nonspecific target has slowed disease detection and management. Precision medicine, individualized patient care, requires suitable diagnostics approaches to tackle the challenging aspects of viral outbreaks where many tests are needed in a rapid and deployable approach. Mass spectrometry (MS)-based technologies such as proteomics, glycomics, lipidomics, and metabolomics have been applied in disease outbreaks for identification of infectious disease agents such as virus and bacteria and the molecular phenomena associated with pathogenesis. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/MS) is widely used in clinical diagnostics in the United States and Europe for bacterial pathogen identification. Paper spray ionization mass spectrometry (PSI-MS), a rapid ambient MS technique, has recently open a new opportunity for future clinical investigation to diagnose pathogens. Ultra-high-pressure liquid chromatography coupled high-resolution mass spectrometry (UHPLC-HRMS)-based metabolomics and lipidomics have been employed in large-scale biomedical research to discriminate infectious pathogens and uncover biomarkers associated with pathogenesis. PCR-MS has emerged as a new technology with the capability to directly identify known pathogens from the clinical specimens and the potential to identify genetic evidence of undiscovered pathogens. Moreover, miniaturized MS offers possible applications with relatively fast, highly sensitive, and potentially portable ways to analyze for viral compounds. However, beneficial aspects of these rapidly growing MS technologies in pandemics like COVID-19 outbreaks has been limited. Hence, this perspective gives a brief of the existing knowledge, current challenges, and opportunities for MS-based techniques as a promising avenue in studying emerging pathogen outbreaks such as COVID-19.
Collapse
Affiliation(s)
- Iqbal Mahmud
- Department of Pathology, Immunology,
and Laboratory Medicine, University of
Florida, College of Medicine, Gainesville, Florida
32610, United States
- Southeast Center for Integrated
Metabolomics (SECIM), Clinical and Translational Science Institute,
University of Florida, Gainesville,
Florida 32610, United States
- University of Florida Health,
University of Florida, Gainesville,
Florida 32610, United States
| | - Timothy J. Garrett
- Department of Pathology, Immunology,
and Laboratory Medicine, University of
Florida, College of Medicine, Gainesville, Florida
32610, United States
- Southeast Center for Integrated
Metabolomics (SECIM), Clinical and Translational Science Institute,
University of Florida, Gainesville,
Florida 32610, United States
- University of Florida Health,
University of Florida, Gainesville,
Florida 32610, United States
| |
Collapse
|