1
|
Park I, Nam H, Lee Y, Smith A, Rehberger T, Lillehoj H. Effect of β-Alanine Metabolite on Gut Integrity and Immunity in Commercial Broiler Chickens Infected with Eimeria maxima. Animals (Basel) 2024; 14:2558. [PMID: 39272343 PMCID: PMC11393982 DOI: 10.3390/ani14172558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
(1) Background: In a metabolomics analysis conducted to investigate the mechanisms behind the growth-promoting effects of probiotics in broilers, β-alanine was found to be significantly elevated. This led to the hypothesis that β-alanine could also contribute to growth-promoting effects in infected broilers. (2) Methods: An in vitro culture system was developed to assess β-alanine's impact on proinflammatory cytokine response in chicken macrophage cells, gut integrity in chicken intestinal epithelial cells, and muscle differentiation in quail muscle cells and primary chicken embryonic muscle cells. In vivo animal feeding studies were then conducted to investigate the effects of dietary β-alanine on various disease parameters in Eimeria maxima-infected broiler chickens. (3) Results: In vitro, β-alanine treatment significantly decreased the gene expression of cytokines in chicken macrophage cells and increased occuldin expression in chicken intestinal epithelial cells. Dietary β-alanine increased the body weight of chickens following Eimeria maxima infection in the H-ALA group. Dietary β-alanine also suppressed cytokines and increased JAM-2 and occludin expression in the H-ALA group compared to the infected group without β-alanine supplementation. (4) Conclusions: These results strongly support the positive effects of dietary β-alanine on intestinal immune responses and gut barrier function in broiler chickens infected with Eimeria maxima.
Collapse
Affiliation(s)
- Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-USDA, Beltsville, MD 20705, USA
| | - Hyoyoun Nam
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-USDA, Beltsville, MD 20705, USA
| | - Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-USDA, Beltsville, MD 20705, USA
| | - Alexandra Smith
- Arm & Hammer Animal and Food Production, Waukesha, WI 53186, USA
| | - Thomas Rehberger
- Arm & Hammer Animal and Food Production, Waukesha, WI 53186, USA
| | - Hyun Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-USDA, Beltsville, MD 20705, USA
| |
Collapse
|
2
|
Park I, Nam H, Lee Y, Wickramasuriya SS, Smith AH, Rehberger TG, Lillehoj HS. The effect of gut microbiota-derived carnosine on mucosal integrity and immunity in broiler chickens challenged with Eimeria maxima. Poult Sci 2024; 103:103837. [PMID: 38848630 PMCID: PMC11214313 DOI: 10.1016/j.psj.2024.103837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 06/09/2024] Open
Abstract
In the first study, an in vitro culture system was developed to investigate the effects of carnosine on macrophage proinflammatory cytokine response using an established chicken macrophage cell line (CMC), gut integrity using a chicken intestinal epithelial cell line (IEC), muscle differentiation in quail muscle cells (QMCs) and primary chicken embryonic muscle cells (PMCs), and direct anti-parasitic effect against Eimeria maxima sporozoites. Cells to be tested were seeded in 24-well plates and treated with carnosine at 4 different concentrations (0.1, 1.0, and 10.0 µg). After 18 h of incubation, cells were harvested to measure gene expression of proinflammatory cytokines in CMC, tight junction (TJ) proteins in IECs, and muscle cell growth markers in QMCs and PMCs. In vivo trials were conducted to investigate the effect of dietary carnosine on disease parameters in broiler chickens challenged with E. maxima. One hundred and twenty male broiler chickens (0-day-old) were allocated into 4 treatment groups: 1) basal diet without infection (NC), 2) basal diet with E. maxima infection (PC), 3) carnosine at 10.0 mg/kg feed with PC (HCS), and 4) carnosine at 1.0 mg/kg feed with PC (LCS). All groups except NC were orally infected with E. maxima on d 14. Jejunal samples were collected for lesion scoring and jejunum gut tissues were used for transcriptomic analysis of cytokines and TJ proteins. In vitro, carnosine treatment significantly decreased IL-1β gene expression in CMC following LPS stimulation. In vivo feeding studies showed that dietary carnosine increased BW and ADG of chickens in E. maxima-infected groups and reduced the jejunal lesion score and fecal oocyst shedding in HCS group. Jejunal IL-1β, IL-8, and IFN-γ expression were suppressed in the HCS group compared to PC. The expression levels of claudin-1 and occludin in IECs were also increased in HCS following carnosine treatment. In conclusion, these findings highlight the beneficial effects of dietary carnosine supplementation on intestinal immune responses and gut barrier function in broiler chickens exposed to E. maxima infection.
Collapse
Affiliation(s)
- Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, MD 20705, USA
| | - Hyoyoun Nam
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, MD 20705, USA
| | - Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, MD 20705, USA
| | - Samiru S Wickramasuriya
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, MD 20705, USA
| | | | | | - Hyun S Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, MD 20705, USA.
| |
Collapse
|
3
|
Osho S, Bolek K, Saddoris-Clemons K, Humphrey B, Garcia M. Impact of a direct-fed microbial supplementation on intestinal permeability and immune response in broiler chickens during a coccidia challenge. Front Microbiol 2023; 14:1283393. [PMID: 38029093 PMCID: PMC10644010 DOI: 10.3389/fmicb.2023.1283393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Maintaining intestinal health supports optimal gut function and influences overall performance of broilers. Microlife® Prime (MLP) contains a unique combination of four strains of Bacillus spp. selected to support a healthy gut which may improve performance. The aim of this study was to determine the effects of MLP supplementation on intestinal health and immunity of broilers challenged with a mixed coccidia infection during peak [0 to 6-day post-infection (dpi)] and recovery phases (6 to 13 dpi). A total of 120 male, 4 days-old Ross 708, broiler chicks were allotted to 3 treatment groups (8 replicate cages; 5 birds/cage) in a randomized complete block design. Treatments included a non-challenge (NEG), a coccidia challenge (POS), and coccidia challenge fed MLP (5 × 105 CFU/g of diet). Diets were corn-soybean meal-based. At 11 days of age, all birds, except for NEG, were orally gavaged with 15 doses (3 × the recommended commercial dose). On 6, 9, and 13 dpi, birds were orally gavaged with fluorescein isothiocyanate conjugate dextran (FITC-d). Plasma and mid-jejunum tissues were collected 2 h later. On 6 dpi, duodenal lesions from 2 birds/cage were scored and droppings were collected for oocyst enumeration. Body weight gain (BWG) and feed conversion ratio (FCR) were calculated over the experimental period. Data were analyzed with GLIMMIX procedure of SAS. During the peak phase, POS birds had reduced BWG (23%) and FCR (15%) compared to NEG birds (P < 0.05), while birds fed MLP had similar BWG (209 and 208 g) and FCR (1.17 and 1.21) compared to NEG (P > 0.05). On 6 dpi, POS birds had higher lesion scores and oocyst shedding, 2 × increase in serum FITC-d, and higher jejunum IL-10, and IFN-γ mRNA compared to NEG (P < 0.05). Birds fed MLP had reduced plasma FITC-d compared to POS birds (P < 0.05) and similar IL-10 and IFN-γ mRNA. On 13 dpi, birds fed MLP had lower plasma FITC-d, jejunum IL-10 and IFN-γ mRNA compared to POS birds (P < 0.05), but similar IL-10 to NEG birds (P > 0.05). This study confirms MLP improves intestinal health and positively modulates mucosal immune response post-coccidia challenge.
Collapse
Affiliation(s)
- Saheed Osho
- Phibro Animal Health Corporation, Teaneck, NJ, United States
| | | | | | | | | |
Collapse
|
4
|
Ng WK, Mong ML, Abdul-Hamid AA. Dietary montmorillonite clay improved Penaeus vannamei survival from acute hepatopancreatic necrosis disease and modulated stomach microbiota. Anim Feed Sci Technol 2023. [DOI: 10.1016/j.anifeedsci.2023.115581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Lee JH, Lee B, Rousseau X, Gomes GA, Oh HJ, Kim YJ, Chang SY, An JW, Go YB, Song DC, Cho HA, Cho JH. Stimbiotic supplementation modulated intestinal inflammatory response and improved boilers performance in an experimentally-induced necrotic enteritis infection model. J Anim Sci Biotechnol 2022; 13:100. [PMID: 36100948 PMCID: PMC9472449 DOI: 10.1186/s40104-022-00753-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022] Open
Abstract
Background Two experiments were conducted to establish an optimal NE challenge model and evaluate the efficacy of stimbiotic (STB) supplementation in necrotic enteritis (NE) challenged broilers. In Exp. 1, a total of 120 Arbor Acres (AA) broilers (45.0 ± 0.21 g) were randomly assigned to 6 treatments in a 3 × 2 factorial arrangement. Vaccine treatments included non-challenge (0), × 10 the recommended dose (× 10) or × 20 the recommended dose (× 20) by the manufacturer. Clostridium perfringens (CP) treatments were non-challenge (No) or 3 mL of 2.2 × 107 CFU CP challenge (Yes). In Exp. 2, a total of 72 AA broilers (40.17 ± 0.27 g) were randomly assigned to 6 treatments in a 3 × 2 factorial arrangement. Dietary treatments included non-additive (CON), 100 mg/kg STB (STB) and 100 mg/kg STB on top of a typical commercial blend including an essential oil, probiotics, and enzyme (CB). Challenge treatments included non-NE challenge (No) and NE challenge (Yes) as established in Exp. 1. Results In Exp. 1, CP and vaccine challenge decreased (P < 0.05) body weight (BW), body weight gain (BWG) and feed intake (FI), and increased (P < 0.05) the number of broilers with diarrhea and intestinal lesions. The oral administration of × 20 recommended dose of vaccines coupled with 3 mL of 2.2 × 107 CFU CP resulted in (P < 0.01) a significantly increased incidence of wet litter and intestinal lesions. Thus, this treatment was chosen as the challenge model for the successful inducement of NE in Exp. 2. In Exp. 2, the NE challenge negatively affected (P < 0.01) growth performance, ileal morphology, immunoglobulin contents in blood, caecal microbiota in the caecum, footpad dermatitis, intestinal lesion scores, tumour necrosis factor (TNF-α) and endotoxin in the serum compared with the non-NE challenged birds. The supplementation of STB and CB in diets enhanced (P < 0.05) growth performance, intestinal microbiota, and blood profiles by stimulating ileal morphology (VH and VH:CD) and propionate production in the cecum, and there were no differences in measured variables between STB and CB supplemented birds. Conclusion Overall, these results indicate that STB supplementation was able to reduce the inflammatory response and improve the performance of NE challenged birds, and the supplementation of STB alone was as effective as a typical commercial blend containing a number of other additives.
Collapse
Affiliation(s)
- Ji Hwan Lee
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Byongkon Lee
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea.,Cherrybro Co., Ltd., Jincheon-Gun, 27820, South Korea
| | | | | | - Han Jin Oh
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Yong Ju Kim
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Se Yeon Chang
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Jae Woo An
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Young Bin Go
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Dong Cheol Song
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Hyun Ah Cho
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Jin Ho Cho
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea.
| |
Collapse
|
6
|
Park I, Nam H, Goo D, Wickramasuriya SS, Zimmerman N, Smith AH, Rehberger TG, Lillehoj HS. Gut Microbiota-Derived Indole-3-Carboxylate Influences Mucosal Integrity and Immunity Through the Activation of the Aryl Hydrocarbon Receptors and Nutrient Transporters in Broiler Chickens Challenged With Eimeria maxima. Front Immunol 2022; 13:867754. [PMID: 35812452 PMCID: PMC9259858 DOI: 10.3389/fimmu.2022.867754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/26/2022] [Indexed: 11/23/2022] Open
Abstract
Two studies were conducted to evaluate the effects of indole-3-carboxylate (ICOOH) as a postbiotic on maintaining intestinal homeostasis against avian coccidiosis. In the first study, an in vitro culture system was used to investigate the effects of ICOOH on the proinflammatory cytokine response of chicken macrophage cells (CMCs), gut integrity of chicken intestinal epithelial cells (IECs), differentiation of quail muscle cells (QMCs), and primary chicken embryonic muscle cells (PMCs) and anti-parasitic effect against Eimeria maxima. Cells to be tested were seeded in the 24-well plates and treated with ICOOH at concentrations of 0.1, 1.0, and 10.0 µg. CMCs were first stimulated by lipopolysaccharide (LPS) to induce an innate immune response, and QMCs and PMCs were treated with 0.5% and 2% fetal bovine serum, respectively, before they were treated with ICOOH. After 18 h of incubation, cells were harvested, and RT-PCR was performed to measure gene expression of proinflammatory cytokines of CMCs, tight junction (TJ) proteins of IECs, and muscle cell growth markers of QMCs and PMCs. In the second study, in vivo trials were carried out to study the effect of dietary ICOOH on disease parameters in broiler chickens infected with E. maxima. One hundred twenty male broiler chickens (0-day-old) were allocated into the following four treatment groups: 1) basal diet without infection (CON), 2) basal diet with E. maxima (NC), 3) ICOOH at 10.0 mg/kg feed with E. maxima (HI), and 4) ICOOH at 1.0 mg/kg feed with E. maxima (LO). Body weights (BWs) were measured on 0, 7, 14, 20, and 22 days. All groups except the CON chickens were orally infected with E. maxima on day 14. Jejunal samples were collected for lesion score and the transcriptomic analysis of cytokines and TJ proteins. In vitro, ICOOH increased the expression of TJ proteins in IECs and decreased IL-1β and IL-8 transcripts in the LPS-stimulated CMCs. In vivo, chickens on the HI diet showed reduced jejunal IL-1β, IFN-γ, and IL-10 expression and increased expression of genes activated by aryl hydrocarbon receptors and nutrient transporters in E. maxima-infected chickens. In conclusion, these results demonstrate the beneficial effects of dietary ICOOH on intestinal immune responses and barrier integrity in broiler chickens challenged with E. maxima. Furthermore, the present finding supports the notion to use microbial metabolites as novel feed additives to enhance resilience in animal agriculture.
Collapse
Affiliation(s)
- Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Hyoyoun Nam
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Doyun Goo
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Samiru S. Wickramasuriya
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Noah Zimmerman
- Arm & Hammer Animal and Food Production, Waukesha, WI, United States
| | | | | | - Hyun S. Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
- *Correspondence: Hyun S. Lillehoj,
| |
Collapse
|
7
|
Park I, Oh S, Goo D, Celi P, Lillehoj HS. Effect of dietary sophorolipids on growth performance and gastrointestinal functionality of broiler chickens infected with Eimeria maxima. Poult Sci 2022; 101:101944. [PMID: 35679665 PMCID: PMC9189210 DOI: 10.1016/j.psj.2022.101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 11/08/2022] Open
Abstract
Two experiments were conducted to evaluate the effects of dietary sophorolipids (SLs) supplementation as antibiotic alternatives on growth performance and gut health of chickens infected with Eimeria maxima. In experiment 1, 336 (zero-day-old) male broilers were used. The chickens were weighed and randomly allocated to the following 6 treatments groups with 7 chickens/cage and 8 cages/treatment: control group that received a basal diet (NC), positive control group that received a basal diet and was challenged with E. maxima (PC), PC+C18:1 lactonic diacetyled SL (SL1), PC+C18:1 deacetyled SL (SL2), PC+C18:1 monoacetyled SL (SL3), and PC+C18:1 diacetyled SL (SL4). Each SL (200 mg/kg feed) was added to the corresponding treatment group. In experiment 2, 588 (zero-day-old) male broilers were used. The chickens were randomly allocated to the following experimental groups with 10 or 11 chickens/cage and 8 cages/treatment: NC, PC, PC+ monensin at 90 mg/kg feed (MO), PC+SL1 at 200 mg/kg feed (SL1 200), PC+SL1 at 500 mg/kg feed (SL1 500), PC+SL4 at 200 mg/kg feed (SL4 200), and PC+SL4 at 500 mg/kg of feed (SL4 500). The chickens and feed were weighed at 0, 7, 14, 20, and 22 d to determine growth performance. In both experiments, all chickens except the NC group were orally infected with E. maxima (10,000 oocysts/chicken) at d 14. One chicken per cage was euthanized at d 20 to sample jejunal tissue to measure lesion scores, cytokines, and tight junction (TJ) proteins. Excreta samples were collected daily between d 20 and 22 to measure oocyst numbers. Data were analyzed using Mixed Model (PROC MIXED) in SAS. In experiment 1, SLs did not affect the growth of broiler chickens, but SL4 decreased (P < 0.05) the lesion score and oocyst number compared to PC chickens. In terms of cytokines and TJ protein gene expression, SLs increased (P < 0.05) IL-1β, IL-6, IL-17F, IL-4, IL-13, occludin, and ZO1 levels compared to PC chickens. In experiment 2, monensin increased (P < 0.05) body weight, and decreased (P < 0.05) the lesion score and oocyst number compared to the PC group. SL4 500 increased (P < 0.05) average daily gain and feed conversion ratio but decreased (P < 0.05) lesion score and fecal oocyst number. SL4 decreased (P < 0.05) IL-6, IL-17F, TNFSF-15, IL-2, and IL-10 levels but increased (P < 0.05) occludin and ZO-1 levels. Overall, dietary SL supplementation, especially SL4, improved growth and gastrointestinal functionality of young broiler chickens, demonstrating significant potential as an antibiotic alternative.
Collapse
|
8
|
Wang L, Zhang Y, Guo X, Gong L, Dong B. Beneficial Alteration in Growth Performance, Immune Status, and Intestinal Microbiota by Supplementation of Activated Charcoal-Herb Extractum Complex in Broilers. Front Microbiol 2022; 13:856634. [PMID: 35495714 PMCID: PMC9051449 DOI: 10.3389/fmicb.2022.856634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
This study aimed to examine the effects of activated charcoal-herb extractum complex (CHC) on the growth performance of broilers, inflammatory status, microbiota, and their relationships. A total of 864 1-day-old Arbor Acres male broilers (41.83 ± 0.64 g) were distributed to eight dietary treatments with six replicates (18 birds per replicate), which were a corn-soybean meal-based diet (NCON); basal diets supplemented with 250, 500, 750, or 1,000 mg/kg CHC, and three positive controls; basal diets supplemented with 200 mg/kg antibacterial peptide (AMP), 200 mg/kg calsporin (Probio) or 500 mg/kg montmorillonite. The study period was 42 days including the starter (day 0-21) and grower (day 22-42) phases. Compared with the NCON group, CHC supplementation (optimal dose of 500 mg/kg) increased (p < 0.05) growth performance and tended to increase feed conversion rate in broilers. CHC (optimal dose of 500 mg/kg) decreased the level of the interleukin-1β (IL-1β) and interferon-γ (IFN-γ) in serum and improved the levels of immunoglobulins A (IgA) and immunoglobulins A (IgM) in serum, and secretory immunoglobulin A (SIgA) in the mucosa of duodenum and jejunum (p < 0.05). In the ileum, CHC supplementation decreased community abundance represented by lower Sobs, Chao 1, Ace, and Shannon compared with NCON (p < 0.05). At the phylum level, CHC supplementation increased the abundance of Firmicutes, while decreasing the abundance of Bacteroidetes in ileum and cecum (p < 0.05). At the genus level, compared with the NCON group, CHC markedly reduced (p < 0.05) the abundances of pathogenic bacteria Alistipes in the ileum, which were negatively associated with the levels of SIgA and IL-1β in ileum mucosa. In conclusion, CHC had beneficial effects on growth performance, immune status, and intestinal microbiota composition. CHC had dual functions of absorption like clays and antibacterial like antibacterial peptides.
Collapse
Affiliation(s)
| | | | | | | | - Bing Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Park I, Oh S, Nam H, Celi P, Lillehoj HS. Antimicrobial activity of sophorolipids against Eimeria maxima and Clostridium perfringens, and their effect on growth performance and gut health in necrotic enteritis. Poult Sci 2022; 101:101731. [PMID: 35176703 PMCID: PMC8851262 DOI: 10.1016/j.psj.2022.101731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 11/26/2022] Open
Abstract
The in vitro antimicrobial activity of sophorolipids (SLs) against Eimeria maxima and Clostridium perfringens, and the in vivo effects of SLs on growth performance and gut health in necrotic enteritis (NE)-afflicted broiler chickens were studied. To test the direct killing effects of SLs on enteric pathogens, 2.5 × 105 freshly prepared sporozoites of each Eimeria acervulina, E. maxima, and E. tenella were placed in each well of a 96-well plate, and the vegetative stage of Clostridium perfringens was prepared at 1 × 109 cfu/well. Four different SLs (C18:1 lactonic diacetyled SL [SL1], C18:1 deacetyled SL [SL2], C18:1 monoacetyled SL [SL3], and C18:1 diacetyled SL [SL4]), and 2 anticoccidial chemical controls, decoquinate and monensin, were evaluated at 3 dose levels (125 µg/mL, 250 µg/mL, and 500 µg/mL). Samples were incubated at 41°C for 3 h, and microbial survival ratios were measured by using a cell counter to quantify the number of live microbes stained by fluorescent dye. A total of 336 (0-day-old) male commercial broiler chickens were used to assess the effects of SLs in vivo. Chickens were randomly allocated to 6 treatment groups (7 chickens per cage, 8 cages per treatment) as follows: a control group which received a basal diet (CON), a negative control group (NC) which received a basal diet and NE challenge, and 4 SL treatment groups with NE (NC+SL1, NC+SL2, NC+SL3, and NC+SL4). The inclusion rates of SLs in each group were 200 mg/kg of feed. NE-induced chickens were orally infected with E. maxima (10,000 oocysts/chicken) on d 14, followed by C. perfringens (1 × 109 cfu/chicken) on d 19. Disease parameters measured included gut lesion scores, intestinal cytokine production, and level of tight junction protein expression. Data were analyzed using a Mixed Model (PROC MIXED) in SAS. In vitro (Experiment 1), all SLs dose-dependently decreased (P < 0.001) the viability of the three species of Eimeria sporozoites and C. perfringens. In vivo (Experiment 2), dietary SLs increased (P < 0.001) body weight and average daily gain of broiler chickens infected with NE. Dietary SL1 and SL4s increased (P < 0.05) feed conversion ratio compared to NC. Furthermore, SL1 and SL4 decreased (P < 0.05) gut lesion scores in combination with increased expression of IL1β, IL8, TNFSF15, and IL10 genes (P < 0.05) in NE-afflicted chickens. Overall, dietary SLs promoted growth performance, intestinal immune responses, and intestinal barrier integrity of NE-afflicted, young broiler chickens.
Collapse
Affiliation(s)
- Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Sungtaek Oh
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyoyoun Nam
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Pietro Celi
- DSM Nutritional Products, Animal Nutrition and Health, Columbia, MD 21045, USA; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hyun S Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA.
| |
Collapse
|
10
|
Park I, Goo D, Nam H, Wickramasuriya SS, Lee K, Zimmerman NP, Smith AH, Rehberger TG, Lillehoj HS. Effects of Dietary Maltol on Innate Immunity, Gut Health, and Growth Performance of Broiler Chickens Challenged With Eimeria maxima. Front Vet Sci 2021; 8:667425. [PMID: 34095279 PMCID: PMC8173067 DOI: 10.3389/fvets.2021.667425] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/22/2021] [Indexed: 12/18/2022] Open
Abstract
Two studies were conducted to evaluate the effects of maltol as a postbiotic on innate immunity, gut health, and enteric infection. In the first study, an in vitro culture system was used to evaluate the effects of maltol on the innate immune response of chicken macrophage cells (CMC), gut integrity of chicken intestinal epithelial cells (IEC), anti-parasitic activity against Eimeria maxima, and differentiation of quail muscle cells (QMC) and primary chicken embryonic muscle cells (PMC). All cells seeded in the 24-well plates were treated with maltol at concentrations of 0.1, 1.0, and 10.0 μg. CMC and IEC were stimulated by lipopolysaccharide to induce an innate immune response, and QMC and PMC were treated with 0.5 and 2% fetal bovine serum, respectively. After 18 h of incubation, pro-inflammatory cytokines, tight junction proteins (TJPs), and muscle cell growth markers were measured. In the second study, the dietary effect of maltol was evaluated on disease parameters in broiler chickens infected with E. maxima. Eighty male 1-day-old broiler chickens were allocated into the following four treatment groups: (1) Control group without infection, (2) Basal diet with E. maxima, (3) High maltol (HI; 10.0 mg /kg feed) with E. maxima, and (4) Low maltol (LO; 1.0 mg/kg feed) with E. maxima. Body weights (BW) were measured on days 0, 7, 14, 20, and 22. All chickens except the CON group were orally infected with 104E. maxima per chicken on day 14. Jejunum samples were collected for gut lesion scoring, and the gene expression of cytokines and TJPs. Data was analyzed using PROC MIXED in SAS. In vitro, maltol not only increased TJPs in IEC and cytokines in the LPS-stimulated CMC but also showed direct cytotoxicity against sporozoites of E. maxima. In vivo, the HI group improved the BW, reduced the gut lesion scores and fecal oocyst shedding, and decreased jejunal TNFSF15 and IL-1β expression in E. maxima-infected chickens. In conclusion, these results demonstrate the beneficial effects of dietary maltol in the enhancement of growth performance, gut health, and coccidiosis resistance and the applicability of maltol as a postbiotic for the replacement of antibiotic growth promoters in commercial poultry production.
Collapse
Affiliation(s)
- Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Doyun Goo
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Hyoyoun Nam
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Samiru S Wickramasuriya
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Noah P Zimmerman
- Arm & Hammer Animal and Food Production, Waukesha, WI, United States
| | - Alexandra H Smith
- Arm & Hammer Animal and Food Production, Waukesha, WI, United States
| | | | - Hyun S Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| |
Collapse
|
11
|
Pan Y, Gao Y, Hu J, Ye G, Zhou F, Yan C. Montmorillonite nanosheets with enhanced photodynamic performance for synergistic bacterial ablation. J Mater Chem B 2021; 9:404-409. [PMID: 33283827 DOI: 10.1039/d0tb02254c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Montmorillonite (MMT), as a naturally sourced and FDA-approved biomaterial, has attracted considerable attention due to its extensive application in biomedical areas, such as intestinal ailments, drug delivery, and additive manufacturing. In this work, two-dimensional montmorillonite (2D-MMT) ultrathin nanosheets were successfully prepared from sodium montmorillonite (Na-MMT) by utilizing a freeze-drying assisted method. Possessing a large specific surface area and increased number of exposed hydroxyl groups, 2D-MMT nanosheets exhibited better antibacterial ability than the original Na-MMT. More strikingly, we found that both 2D-MMT nanosheets and Na-MMT could generate reactive oxygen species (ROS) upon visible light illumination, which could promote their antibacterial efficiency. As a result, 2D-MMT nanosheets showed efficient antibacterial performance in the presence of light towards Escherichia coli with a simultaneous enhancement of surface adsorption and photodynamic ablation. What's more, a possible mechanism for ROS generation by MMT upon light illumination was first proposed in this work. The combination of the increased physical adsorption capacity and ROS generation ability of 2D-MMT nanosheets would help inspire the development of MMT as a promising antimicrobial candidate in the future.
Collapse
Affiliation(s)
- Yufeng Pan
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China. and Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
| | - Yuting Gao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China. and Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
| | - Jiayuan Hu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China. and Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
| | - Guangyu Ye
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China. and Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
| | - Feng Zhou
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China. and Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
| | - Chunjie Yan
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China. and Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
12
|
Abudabos AM, Aljumaah MR, Aabdullatif A, Suliman GM. Feed supplementation with some natural products on Salmonella infected broilers’ performance and intestinal injury during the starter period. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1814170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Alaeldein M. Abudabos
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mashael R. Aljumaah
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Aabdullatif
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Gamaleldin M. Suliman
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Park I, Lee Y, Goo D, Zimmerman NP, Smith AH, Rehberger T, Lillehoj HS. The effects of dietary Bacillus subtilis supplementation, as an alternative to antibiotics, on growth performance, intestinal immunity, and epithelial barrier integrity in broiler chickens infected with Eimeria maxima. Poult Sci 2019; 99:725-733. [PMID: 32036975 PMCID: PMC7587808 DOI: 10.1016/j.psj.2019.12.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The objective of this study was to investigate the effects of dietary Bacillus subtilis supplementation on growth performance, jejunal lesion scores, oocyst shedding, and cytokine and tight junction protein expression in broiler chickens infected with Eimeria maxima. A total of 196 male day-old Ross 708 broilers were given a nonexperimental diet until 14 D of age. Then, all chickens were randomly assigned to one of seven dietary treatments: 2 basal diets (CON and NC); CON + virginiamycin (AB1); CON + bacitracin methylene disalicylate (BMD; AB2); CON + B. subtilis 1781 (PB1); CON + B. subtilis 747 (PB2); or CON + B. subtilis 1781 + 747 (PB3). At day 21, all chickens except those in the CON group were orally inoculated with E. maxima oocysts. At 7 D after E. maxima infection, the body weight gains of chickens fed PB2 and PB3 increased (P = 0.032) as much as those in chickens fed AB2. The body weight gain and feed efficiency of chickens fed PB2 were significantly increased (P < 0.001), and PB2 chickens showed (P = 0.005) the lowest lesion scores after E. maxima infection. Chickens fed PB2 showed (P < 0.05) lower mRNA expression of IL-1β in infected chicken groups. Chickens in the AB1, AB2, PB1, PB2, and PB3 groups showed (P < 0.05) greater mRNA expression of junctional adhesion molecule 2 in jejunal tissue, whereas occludin expression increased (P < 0.05) in the jejunal tissue of chickens fed AB2 or PB2. Dietary B. subtilis supplementation significantly improved the growth performance of young chickens to a level comparable with that induced by virginiamycin or BMD without E. maxima infection. After infection with E. maxima, dietary virginiamycin and BMD significantly enhanced the epithelial barrier integrity, and the dietary B. subtilis 747 showed significantly enhanced growth performance, intestinal immunity, and epithelial barrier integrity. Together our results indicated that certain strains of B. subtilis provide beneficial effects on the growth of young broiler chickens and have the potential to replace antibiotic growth promoters.
Collapse
Affiliation(s)
- Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Doyun Goo
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - N P Zimmerman
- Arm & Hammer Animal and Food Production, Waukesha, WI 53186, USA
| | - A H Smith
- Arm & Hammer Animal and Food Production, Waukesha, WI 53186, USA
| | - T Rehberger
- Arm & Hammer Animal and Food Production, Waukesha, WI 53186, USA
| | - Hyun S Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA.
| |
Collapse
|
14
|
Abudabos AM, Alhouri HAA, Alhidary IA, Nassan MA, Swelum AA. Ameliorative effect of Bacillus subtilis, Saccharomyces boulardii, oregano, and calcium montmorillonite on growth, intestinal histology, and blood metabolites on Salmonella-infected broiler chicken. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16274-16278. [PMID: 30977003 DOI: 10.1007/s11356-019-05105-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
This study evaluated the effects of Bacillus subtilis, Saccharomyces boulardii, oregano, and calcium montmorillonite on the physical growth, intestinal histomorphology, and blood metabolites in Salmonella-challenged birds during the finisher phase. In this study, a total of 600 chicks (Ross 308) were randomly distributed into the following dietary treatments: basal diet with no treatment; infected with Salmonella; T1, infected + avilamycin; T2, infected + Bacillus subtilis; T3, Saccharomyces boulardii; T4, infected + oregano; T5, infected + calcium montmorillonite. Our results indicated that feed consumption, body weight gain, total body weight, and feed conversion ratio increased significantly (P < 0.01) in T1 and T2. Villus width increased significantly (P < 0.01) in T1 while the total area was significantly (P < 0.01) higher in T1 and T2 among the treatment groups. Blood protein was significantly (P < 0.01) high in T3 and T4; however, the glucose concentration was significantly (P < 0.01) high in T2, T3, and T4. The treatments increased significantly (P< 0.01) in the treatment groups compared to the negative control. Aspirate aminotransferase (AST) was significantly (P < 0.05) low in T3 compared to the positive control. In conclusion, the results indicated that supplementation of Bacillus subtilis and calcium montmorillonite improved the production performance compared to other feed additives in broiler chicks infected with Salmonella during the finisher phase.
Collapse
Affiliation(s)
- Alaeldein M Abudabos
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, KSA, Saudi Arabia.
| | - Hemiar A A Alhouri
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, KSA, Saudi Arabia
| | - Ibrahim A Alhidary
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, KSA, Saudi Arabia
| | - Mohammed A Nassan
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, KSA, Saudi Arabia
| |
Collapse
|
15
|
Abudabos AM, Hussein EOS, Ali MH, Al-Ghadi MQ. The effect of some natural alternative to antibiotics on growth and changes in intestinal histology in broiler exposed to Salmonella challenge. Poult Sci 2019; 98:1441-1446. [PMID: 30285188 DOI: 10.3382/ps/pey449] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/20/2018] [Indexed: 12/24/2022] Open
Abstract
This study was conducted to find the effect of different feed additives on the production performance and intestinal histology in Salmonella challenged birds. A total of 600 day-old-broiler chicks (Ross 308) were assignment to 10 treatments. Each treatment was further divided into 10 replicates. The chicks were randomly divided into one of the following 10 treatments as follow: Negative control; positive control infected with Salmonella enterica subsp. typhimurium; T1, infected + avilamycin at the rate of 0.2 g/kg; T2, infected + probiotic having viable spores (2 × 107 CFU/g) of Bacillus subtilis (ATCC PTA-6737); T3, infected + Sanguinarine consisting of benzo phenanthridine alkaloids from Macleaya cordata; T4, B. subtilis (ATCC PTA-6737) + Sanguinarine; T5, infected + B. subtilis 500 g/T of feed (1.2 × 106 cfu/g); T6, prebiotic, Saccharomyces boulardii (1 × 108cfu/g); T7, infected + oregano at the rate of 1 g/kg; T8, infected + thermally processed clay calcium montmorillonite. The results showed that feed intake was significantly (P < 0.01) high in negative control and T2 compared to the positive control. Body weight gain was significantly (P < 0.01) higher in negative control and significantly (P < 0.05) low in T8. Feed conversion ratio was significantly (P < 0.05) high in negative control and significanlty (P < 0.05) high in T6. Similarly, PEF was also significantly (P < 0.05) high in negative control and significantly (P < 0.05) low in positive control and T8. Villus width was significantly (P < 0.05) high in negative control followed by T8. Dietary supplementation of different feed additives may be useful in broiler chicks challenged with Salmonella infection.
Collapse
Affiliation(s)
- Alaeldein M Abudabos
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Kingdom of Saudi Arabia
| | - Elsayed O S Hussein
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mutahar H Ali
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Kingdom of Saudi Arabia
| | - Muath Q Al-Ghadi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Lillehoj H, Liu Y, Calsamiglia S, Fernandez-Miyakawa ME, Chi F, Cravens RL, Oh S, Gay CG. Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Vet Res 2018; 49:76. [PMID: 30060764 PMCID: PMC6066919 DOI: 10.1186/s13567-018-0562-6] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/02/2018] [Indexed: 01/14/2023] Open
Abstract
There are heightened concerns globally on emerging drug-resistant superbugs and the lack of new antibiotics for treating human and animal diseases. For the agricultural industry, there is an urgent need to develop strategies to replace antibiotics for food-producing animals, especially poultry and livestock. The 2nd International Symposium on Alternatives to Antibiotics was held at the World Organization for Animal Health in Paris, France, December 12-15, 2016 to discuss recent scientific developments on strategic antibiotic-free management plans, to evaluate regional differences in policies regarding the reduction of antibiotics in animal agriculture and to develop antibiotic alternatives to combat the global increase in antibiotic resistance. More than 270 participants from academia, government research institutions, regulatory agencies, and private animal industries from >25 different countries came together to discuss recent research and promising novel technologies that could provide alternatives to antibiotics for use in animal health and production; assess challenges associated with their commercialization; and devise actionable strategies to facilitate the development of alternatives to antibiotic growth promoters (AGPs) without hampering animal production. The 3-day meeting consisted of four scientific sessions including vaccines, microbial products, phytochemicals, immune-related products, and innovative drugs, chemicals and enzymes, followed by the last session on regulation and funding. Each session was followed by an expert panel discussion that included industry representatives and session speakers. The session on phytochemicals included talks describing recent research achievements, with examples of successful agricultural use of various phytochemicals as antibiotic alternatives and their mode of action in major agricultural animals (poultry, swine and ruminants). Scientists from industry and academia and government research institutes shared their experience in developing and applying potential antibiotic-alternative phytochemicals commercially to reduce AGPs and to develop a sustainable animal production system in the absence of antibiotics.
Collapse
Affiliation(s)
- Hyun Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705 USA
| | - Yanhong Liu
- University of California, Davis, CA 95616 USA
| | - Sergio Calsamiglia
- Animal Nutrition and Welfare Service, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Mariano E. Fernandez-Miyakawa
- Instituto de Patobiología, Centro Nacional de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Calle Las Cabañas y Los Reseros s/n, Casilla de Correo 25, Castelar, 1712 Buenos Aires, Argentina
| | - Fang Chi
- Amlan International, Chicago, IL 60611 USA
| | | | - Sungtaek Oh
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705 USA
| | - Cyril G. Gay
- National Program Staff-Animal Health, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705 USA
| |
Collapse
|
17
|
Oh S, Gadde UD, Bravo D, Lillehoj EP, Lillehoj HS. Growth-Promoting and Antioxidant Effects of Magnolia Bark Extract in Chickens Uninfected or Co-Infected with Clostridium perfringens and Eimeria maxima as an Experimental Model of Necrotic Enteritis. Curr Dev Nutr 2018; 2:nzy009. [PMID: 30019032 PMCID: PMC6041942 DOI: 10.1093/cdn/nzy009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/29/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Magnolia tree bark has been widely used in traditional Asian medicine. However, to our knowledge, no studies have been reported investigating the effects of dietary supplementation with magnolia bark extract in chickens. OBJECTIVE We tested the hypothesis that dietary supplementation of chickens with a Magnolia officinalis bark extract would increase growth performance in uninfected and Eimeria maxima/Clostridium perfringens co-infected chickens. METHODS A total of 168 chickens were fed from hatch either a standard diet or a diet supplemented with 0.33 mg or 0.56 mg M. officinalis bark extract/kg (M/H low or M/H high, respectively) from days 1 to 35. At day 14, half of the chickens were orally infected with E. maxima, followed by C. perfringens infection at day 18 to induce experimental avian necrotic enteritis. Daily feed intake, feed conversion ratio, body weight gain, and final body weight were measured as indicators of growth performance. Serum α1-acid glycoprotein (AGP) concentrations were measured as an indicator of systemic inflammation, and intestinal lesion scores were determined as a marker of disease progression. Transcript levels for catalase, heme oxygenase 1, and superoxide dismutase in the intestine, liver, spleen, and skeletal muscle were measured as indicators of antioxidant status. RESULTS Growth performance increased between days 1 and 35 in uninfected and E. maxima/C. perfringens co-infected chickens fed M/H-low or M/H-high diets compared with unsupplemented controls. Gut lesion scores were decreased, whereas AGP concentrations were unchanged, in co-infected chickens fed magnolia-supplemented diets compared with unsupplemented controls. In general, transcripts for antioxidant enzymes increased in chickens fed magnolia-supplemented diets compared with unsupplemented controls, and significant interactions between dietary supplementation and co-infection were observed for all antioxidant enzyme transcript levels. CONCLUSION Magnolia bark extract might be useful for future development of dietary strategies to improve poultry health, disease resistance, and productivity without the use of antibiotic growth promoters.
Collapse
Affiliation(s)
- Sungtaek Oh
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD
| | - Ujvala Deepthi Gadde
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD
| | | | - Erik P Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD
| | - Hyun S Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD
| |
Collapse
|