1
|
McCoy JCS, Spicer JI, Rundle SD, Tills O. Comparative phenomics: a new approach to study heterochrony. Front Physiol 2023; 14:1237022. [PMID: 38028775 PMCID: PMC10658192 DOI: 10.3389/fphys.2023.1237022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Understanding the links between development and evolution is one of the major challenges of biology. 'Heterochronies', evolutionary alterations in the timings of development are posited as a key mechanism of evolutionary change, but their quantification requires gross simplification of organismal development. Consequently, how changes in event timings influence development more broadly is poorly understood. Here, we measure organismal development as spectra of energy in pixel values of video, creating high-dimensional landscapes integrating development of all visible form and function. This approach we termed 'Energy proxy traits' (EPTs) is applied alongside previously identified heterochronies in three freshwater pulmonate molluscs (Lymnaea stagnalis, Radix balthica and Physella acuta). EPTs were calculated from time-lapse video of embryonic development to construct a continuous functional time series. High-dimensional transitions in phenotype aligned with major sequence heterochronies between species. Furthermore, differences in event timings between conspecifics were associated with changes in high-dimensional phenotypic space. We reveal EPTs as a powerful approach to considering the evolutionary importance of alterations to developmental event timings. Reimagining the phenotype as energy spectra enabled continuous quantification of developmental changes in high-dimensional phenotypic space, rather than measurement of timings of discrete events. This approach has the possibility to transform how we study heterochrony and development more generally.
Collapse
|
2
|
McCoy JCS, Spicer JI, Ibbini Z, Tills O. Phenomics as an approach to Comparative Developmental Physiology. Front Physiol 2023; 14:1229500. [PMID: 37645563 PMCID: PMC10461620 DOI: 10.3389/fphys.2023.1229500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
The dynamic nature of developing organisms and how they function presents both opportunity and challenge to researchers, with significant advances in understanding possible by adopting innovative approaches to their empirical study. The information content of the phenotype during organismal development is arguably greater than at any other life stage, incorporating change at a broad range of temporal, spatial and functional scales and is of broad relevance to a plethora of research questions. Yet, effectively measuring organismal development, and the ontogeny of physiological regulations and functions, and their responses to the environment, remains a significant challenge. "Phenomics", a global approach to the acquisition of phenotypic data at the scale of the whole organism, is uniquely suited as an approach. In this perspective, we explore the synergies between phenomics and Comparative Developmental Physiology (CDP), a discipline of increasing relevance to understanding sensitivity to drivers of global change. We then identify how organismal development itself provides an excellent model for pushing the boundaries of phenomics, given its inherent complexity, comparably smaller size, relative to adult stages, and the applicability of embryonic development to a broad suite of research questions using a diversity of species. Collection, analysis and interpretation of whole organismal phenotypic data are the largest obstacle to capitalising on phenomics for advancing our understanding of biological systems. We suggest that phenomics within the context of developing organismal form and function could provide an effective scaffold for addressing grand challenges in CDP and phenomics.
Collapse
Affiliation(s)
| | | | | | - Oliver Tills
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
3
|
Otterstrom JJ, Lubin A, Payne EM, Paran Y. Technologies bringing young Zebrafish from a niche field to the limelight. SLAS Technol 2022; 27:109-120. [PMID: 35058207 DOI: 10.1016/j.slast.2021.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fundamental life science and pharmaceutical research are continually striving to provide physiologically relevant context for their biological studies. Zebrafish present an opportunity for high-content screening (HCS) to bring a true in vivo model system to screening studies. Zebrafish embryos and young larvae are an economical, human-relevant model organism that are amenable to both genetic engineering and modification, and direct inspection via microscopy. The use of these organisms entails unique challenges that new technologies are overcoming, including artificial intelligence (AI). In this perspective article, we describe the state-of-the-art in terms of automated sample handling, imaging, and data analysis with zebrafish during early developmental stages. We highlight advances in orienting the embryos, including the use of robots, microfluidics, and creative multi-well plate solutions. Analyzing the micrographs in a fast, reliable fashion that maintains the anatomical context of the fluorescently labeled cells is a crucial step. Existing software solutions range from AI-driven commercial solutions to bespoke analysis algorithms. Deep learning appears to be a critical tool that researchers are only beginning to apply, but already facilitates many automated steps in the experimental workflow. Currently, such work has permitted the cellular quantification of multiple cell types in vivo, including stem cell responses to stress and drugs, neuronal myelination and macrophage behavior during inflammation and infection. We evaluate pro and cons of proprietary versus open-source methodologies for combining technologies into fully automated workflows of zebrafish studies. Zebrafish are poised to charge into HCS with ever-greater presence, bringing a new level of physiological context.
Collapse
Affiliation(s)
| | - Alexandra Lubin
- Research Department of Hematology, Cancer Institute, University College London, London, UK
| | - Elspeth M Payne
- Research Department of Hematology, Cancer Institute, University College London, London, UK
| | | |
Collapse
|
4
|
Ling D, Chen H, Chan G, Lee SMY. Quantitative measurements of zebrafish heartrate and heart rate variability: A survey between 1990-2020. Comput Biol Med 2021; 142:105045. [PMID: 34995954 DOI: 10.1016/j.compbiomed.2021.105045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/14/2021] [Accepted: 11/14/2021] [Indexed: 12/19/2022]
Abstract
Zebrafish is an essential model organism for studying cardiovascular diseases, given its advantages of fast proliferation and high gene homology with humans. Zebrafish embryos/larvae are valuable experimental models used in toxicology studies to analyze drug toxicity, including hepatoxicity, nephrotoxicity and cardiotoxicity, as well as for drug discovery and drug safety screening in the preclinical stage. Heart rate (HR) serves as a functional endpoint in studies of cardiotoxicity, while heart rate variability (HRV) serves as an indicator of cardiac arrhythmia. Cardiotoxicity is a major cause of early and late termination of drug trials, so a more comprehensive understanding of zebrafish HR and HRV is important. This review summarized HR and HRV in a specific range of applications and fields, focusing on zebrafish heartbeat detection procedures, signal analysis technology and well-established commercial software, such as LabVIEW, Rvlpulse, and ZebraLab. We also compared HR detection algorithms and electrocardiography (ECG)-based methods of heart signal extraction. The relationship between HR and HRV was also systematically analyzed; HR was shown to have an inverse correlation with HRV. Applications to drug testing are also highlighted in this review. Furthermore, HR and HRV were shown to be regulated by the automatic nervous system; their connections with ECG measurements are also summarized herein.
Collapse
Affiliation(s)
- Dongmin Ling
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macao, China
| | - Huanxian Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macao, China
| | - Ging Chan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macao, China; Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macao, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China.
| |
Collapse
|
5
|
Tosi S, Lladó A, Bardia L, Rebollo E, Godo A, Stockinger P, Colombelli J. AutoScanJ: A Suite of ImageJ Scripts for Intelligent Microscopy. FRONTIERS IN BIOINFORMATICS 2021; 1:627626. [PMID: 36303768 PMCID: PMC9581036 DOI: 10.3389/fbinf.2021.627626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/02/2021] [Indexed: 01/22/2023] Open
Abstract
We developed AutoscanJ, a suite of ImageJ scripts enabling to image targets of interest by automatically driving a motorized microscope at the corresponding locations. For live samples, our software can sequentially detect biological events from their onset and further image them at high resolution, an action that would be impractical by user operation. For fixed samples, the software can dramatically reduce the amount of data acquired and the acquisition duration in situations where statistically few targets of interest are observed per field of view. AutoScanJ is compatible with motorized fluorescence microscopes controlled by Leica LAS AF/X or Micro-Manager. The software is straightforward to set up and new custom image analysis workflows to detect targets of interest can be simply implemented and shared with minimal efforts as independent ImageJ macro functions. We illustrate five different application scenarios with the system ranging from samples fixed on micropatterned surfaces to live cells undergoing several rounds of division. The target detection functions for these applications are provided and can be used as a starting point and a source of inspiration for new applications. Overall, AutoScanJ helps to optimize microscope usage by autonomous operation, and it opens up new experimental avenues by enabling the real-time detection and selective imaging of transient events in live microscopy.
Collapse
Affiliation(s)
- Sébastien Tosi
- Institute for Research in Biomedicine, IRB Barcelona, Barcelona Institute of Science and Technology, BIST, Barcelona, Spain
- *Correspondence: Sébastien Tosi,
| | - Anna Lladó
- Institute for Research in Biomedicine, IRB Barcelona, Barcelona Institute of Science and Technology, BIST, Barcelona, Spain
| | - Lídia Bardia
- Institute for Research in Biomedicine, IRB Barcelona, Barcelona Institute of Science and Technology, BIST, Barcelona, Spain
| | - Elena Rebollo
- Molecular Imaging Platform, Molecular Biology institute of Barcelona IBMB-CSIC, Barcelona, Spain
| | - Anna Godo
- Genetics of Male Fertility Group, Cell Biology Unit, Faculty of Biosciences, Autonomous University of Barcelona, Bellaterra, Spain
| | - Petra Stockinger
- Center for Genomic Regulation, CRG, Barcelona Institute of Science and Technology, BIST, Barcelona, Spain
| | - Julien Colombelli
- Institute for Research in Biomedicine, IRB Barcelona, Barcelona Institute of Science and Technology, BIST, Barcelona, Spain
| |
Collapse
|
6
|
Zabihihesari A, Khalili A, Hilliker AJ, Rezai P. Open access tool and microfluidic devices for phenotypic quantification of heart function of intact fruit fly and zebrafish larvae. Comput Biol Med 2021; 132:104314. [PMID: 33774273 DOI: 10.1016/j.compbiomed.2021.104314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022]
Abstract
In this paper, the heartbeat parameters of small model organisms, i.e. Drosophila melanogaster (fruit fly) and Danio rerio (zebrafish), were quantified in-vivo in intact larvae using microfluidics and a novel MATLAB-based software. Among different developmental stages of flies and zebrafish, the larval stage is privileged due to biological maturity, optical accessibility, and the myogenic nature of the heart. Conventional methods for parametric quantification of heart activities are complex and mostly done on dissected, irreversibly immobilized, or anesthetized larvae. Microfluidics has helped with reversible immobilization without the need for anesthesia, but heart monitoring is still done manually due to challenges associated with the movement of floating organs and cardiac interruptions. In our MATLAB software applied to videos recorded in microfluidic-based whole-organism assays, we have used image segmentation to automatically detect the heart and extract the heartbeat signal based on pixel intensity variations of the most contractile region of the heart tube. The smoothness priors approach (SPA) was applied to remove the undesired low-frequency noises caused by environmental light changes or heart movement. Heart rate and arrhythmicity were automatically measured from the detrended heartbeat signal while other parameters including end-diastolic and end-systolic diameters, shortening distance, shortening time, fractional shortening, and shortening velocity were quantified for the first time in intact larvae, using M-mode images under bright field microscopy. The software was able to detect more than 94% of the heartbeats and the cardiac arrests in intact Drosophila larvae. Our user-friendly software enables in-vivo quantification of D. melanogaster and D. rerio larval heart functions in microfluidic devices, with the potential to be applied to other biological models and used for automatic screening of drugs and alleles that affect their heart.
Collapse
Affiliation(s)
| | - Arezoo Khalili
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | | | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON, Canada.
| |
Collapse
|
7
|
Zeng R, Brown AD, Rogers LS, Lawrence OT, Clark JI, Sisneros JA. Age-related loss of auditory sensitivity in the zebrafish (Danio rerio). Hear Res 2021; 403:108189. [PMID: 33556775 DOI: 10.1016/j.heares.2021.108189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/10/2021] [Accepted: 01/22/2021] [Indexed: 11/27/2022]
Abstract
Age-related hearing loss (ARHL), also known as presbycusis, is a widespread and debilitating condition impacting many older adults. Conventionally, researchers utilize mammalian model systems or human cadaveric tissue to study ARHL pathology. Recently, the zebrafish has become an effective and tractable model system for a wide variety of genetic and environmental auditory insults, but little is known about the incidence or extent of ARHL in zebrafish and other non-mammalian models. Here, we evaluated whether zebrafish exhibit age-related loss in auditory sensitivity. The auditory sensitivity of adult wild-type zebrafish (AB/WIK strain) from three adult age subgroups (13-month, 20-month, and 37-month) was characterized using the auditory evoked potential (AEP) recording technique. AEPs were elicited using pure tone stimuli (115-4500 Hz) presented via an underwater loudspeaker and recorded using shielded subdermal metal electrodes. Based on measures of sound pressure and particle acceleration, the mean AEP thresholds of 37-month-old fish [mean sound pressure level (SPL) = 122.2 dB ± 2.2 dB SE re: 1 μPa; mean particle acceleration level (PAL) = -27.5 ± 2.3 dB SE re: 1 ms-2] were approximately 9 dB higher than that of 20-month-old fish [(mean SPL = 113.1 ± 2.7 dB SE re: 1 μPa; mean PAL = -37.2 ± 2.8 dB re: 1 ms-2; p = 0.007)] and 6 dB higher than that of 13-month-old fish [(mean SPL = 116.3 ± 2.5 dB SE re: 1 μPa; mean PAL = -34.1 ± 2.6 dB SE re: 1 ms-2; p = 0.052)]. Lowest AEP thresholds for all three age groups were generally between 800 Hz and 1850 Hz, with no evidence for frequency-specific age-related loss. Our results suggest that zebrafish undergo age-related loss in auditory sensitivity, but the form and magnitude of loss is markedly different than in mammals, including humans. Future work is needed to further describe the incidence and extent of ARHL across vertebrate groups and to determine which, if any, ARHL mechanisms may be conserved across vertebrates to support meaningful comparative/translational studies.
Collapse
Affiliation(s)
- Ruiyu Zeng
- Department of Psychology, University of Washington, 413 Guthrie Hall, Box 351525, Seattle, WA 98195, United States.
| | - Andrew D Brown
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98105, United States; Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, United States
| | - Loranzie S Rogers
- Department of Psychology, University of Washington, 413 Guthrie Hall, Box 351525, Seattle, WA 98195, United States
| | - Owen T Lawrence
- Department of Biological Structure, University of Washington, Seattle, 98195, United States
| | - John I Clark
- Department of Biological Structure, University of Washington, Seattle, 98195, United States; Department of Ophthalmology, University of Washington, Seattle, 98195, United States
| | - Joseph A Sisneros
- Department of Psychology, University of Washington, 413 Guthrie Hall, Box 351525, Seattle, WA 98195, United States; Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, United States; Department of Biology, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
8
|
Parenti G, Medina DL, Ballabio A. The rapidly evolving view of lysosomal storage diseases. EMBO Mol Med 2021; 13:e12836. [PMID: 33459519 PMCID: PMC7863408 DOI: 10.15252/emmm.202012836] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Lysosomal storage diseases are a group of metabolic disorders caused by deficiencies of several components of lysosomal function. Most commonly affected are lysosomal hydrolases, which are involved in the breakdown and recycling of a variety of complex molecules and cellular structures. The understanding of lysosomal biology has progressively improved over time. Lysosomes are no longer viewed as organelles exclusively involved in catabolic pathways, but rather as highly dynamic elements of the autophagic-lysosomal pathway, involved in multiple cellular functions, including signaling, and able to adapt to environmental stimuli. This refined vision of lysosomes has substantially impacted on our understanding of the pathophysiology of lysosomal disorders. It is now clear that substrate accumulation triggers complex pathogenetic cascades that are responsible for disease pathology, such as aberrant vesicle trafficking, impairment of autophagy, dysregulation of signaling pathways, abnormalities of calcium homeostasis, and mitochondrial dysfunction. Novel technologies, in most cases based on high-throughput approaches, have significantly contributed to the characterization of lysosomal biology or lysosomal dysfunction and have the potential to facilitate diagnostic processes, and to enable the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Giancarlo Parenti
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA.,SSM School for Advanced Studies, Federico II University, Naples, Italy
| |
Collapse
|
9
|
Thomas LSV, Gehrig J. Multi-template matching: a versatile tool for object-localization in microscopy images. BMC Bioinformatics 2020; 21:44. [PMID: 32024462 PMCID: PMC7003318 DOI: 10.1186/s12859-020-3363-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/13/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The localization of objects of interest is a key initial step in most image analysis workflows. For biomedical image data, classical image-segmentation methods like thresholding or edge detection are typically used. While those methods perform well for labelled objects, they are reaching a limit when samples are poorly contrasted with the background, or when only parts of larger structures should be detected. Furthermore, the development of such pipelines requires substantial engineering of analysis workflows and often results in case-specific solutions. Therefore, we propose a new straightforward and generic approach for object-localization by template matching that utilizes multiple template images to improve the detection capacity. RESULTS We provide a new implementation of template matching that offers higher detection capacity than single template approach, by enabling the detection of multiple template images. To provide an easy-to-use method for the automatic localization of objects of interest in microscopy images, we implemented multi-template matching as a Fiji plugin, a KNIME workflow and a python package. We demonstrate its application for the localization of entire, partial and multiple biological objects in zebrafish and medaka high-content screening datasets. The Fiji plugin can be installed by activating the Multi-Template-Matching and IJ-OpenCV update sites. The KNIME workflow is available on nodepit and KNIME Hub. Source codes and documentations are available on GitHub (https://github.com/multi-template-matching). CONCLUSION The novel multi-template matching is a simple yet powerful object-localization algorithm, that requires no data-pre-processing or annotation. Our implementation can be used out-of-the-box by non-expert users for any type of 2D-image. It is compatible with a large variety of applications including, for instance, analysis of large-scale datasets originating from automated microscopy, detection and tracking of objects in time-lapse assays, or as a general image-analysis step in any custom processing pipelines. Using different templates corresponding to distinct object categories, the tool can also be used for classification of the detected regions.
Collapse
Affiliation(s)
- Laurent S V Thomas
- Acquifer is a division of Ditabis, Digital Biomedical Imaging Systems AG, Pforzheim, Germany. .,Centre of Paediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany.
| | - Jochen Gehrig
- Acquifer is a division of Ditabis, Digital Biomedical Imaging Systems AG, Pforzheim, Germany.
| |
Collapse
|
10
|
Pandey G, Westhoff JH, Schaefer F, Gehrig J. A Smart Imaging Workflow for Organ-Specific Screening in a Cystic Kidney Zebrafish Disease Model. Int J Mol Sci 2019; 20:ijms20061290. [PMID: 30875791 PMCID: PMC6471943 DOI: 10.3390/ijms20061290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/25/2019] [Accepted: 03/10/2019] [Indexed: 12/19/2022] Open
Abstract
The zebrafish is being increasingly used in biomedical research and drug discovery to conduct large-scale compound screening. However, there is a lack of accessible methodologies to enable automated imaging and scoring of tissue-specific phenotypes at enhanced resolution. Here, we present the development of an automated imaging pipeline to identify chemical modifiers of glomerular cyst formation in a zebrafish model for human cystic kidney disease. Morpholino-mediated knockdown of intraflagellar transport protein Ift172 in Tg(wt1b:EGFP) embryos was used to induce large glomerular cysts representing a robustly scorable phenotypic readout. Compound-treated embryos were consistently aligned within the cavities of agarose-filled microplates. By interfacing feature detection algorithms with automated microscopy, a smart imaging workflow for detection, centring and zooming in on regions of interests was established, which enabled the automated capturing of standardised higher resolution datasets of pronephric areas. High-content screening datasets were processed and analysed using custom-developed heuristic algorithms implemented in common open-source image analysis software. The workflow enables highly efficient profiling of entire compound libraries and scoring of kidney-specific morphological phenotypes in thousands of zebrafish embryos. The demonstrated toolset covers all the aspects of a complex whole organism screening assay and can be adapted to other organs, specimens or applications.
Collapse
Affiliation(s)
- Gunjan Pandey
- Acquifer is a division of Ditabis, Digital Biomedical Imaging Systems AG, 75179 Pforzheim, Germany.
- Department of Pediatrics I, University Children's Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Jens H Westhoff
- Department of Pediatrics I, University Children's Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Franz Schaefer
- Department of Pediatrics I, University Children's Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Jochen Gehrig
- Acquifer is a division of Ditabis, Digital Biomedical Imaging Systems AG, 75179 Pforzheim, Germany.
| |
Collapse
|
11
|
Teixidó E, Kießling TR, Krupp E, Quevedo C, Muriana A, Scholz S. Automated Morphological Feature Assessment for Zebrafish Embryo Developmental Toxicity Screens. Toxicol Sci 2019; 167:438-449. [PMID: 30295906 PMCID: PMC6358258 DOI: 10.1093/toxsci/kfy250] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Detection of developmental phenotypes in zebrafish embryos typically involves a visual assessment and scoring of morphological features by an individual researcher. Subjective scoring could impact results and be of particular concern when phenotypic effect patterns are also used as a diagnostic tool to classify compounds. Here we introduce a quantitative morphometric approach based on image analysis of zebrafish embryos. A software called FishInspector was developed to detect morphological features from images collected using an automated system to position zebrafish embryos. The analysis was verified and compared with visual assessments of 3 participating laboratories using 3 known developmental toxicants (methotrexate, dexamethasone, and topiramate) and 2 negative compounds (loratadine and glibenclamide). The quantitative approach exhibited higher sensitivity and made it possible to compare patterns of effects with the potential to establish a grouping and classification of developmental toxicants. Our approach improves the robustness of phenotype scoring and reliability of assay performance and, hence, is anticipated to improve the predictivity of developmental toxicity screening using the zebrafish embryo.
Collapse
Affiliation(s)
- Elisabet Teixidó
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research—UFZ, Leipzig 04318, Germany
| | | | | | | | | | - Stefan Scholz
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research—UFZ, Leipzig 04318, Germany
| |
Collapse
|
12
|
Pylatiuk C, Vogt M, Scheikl P, Gottwald AE. Automated Versatile DIY Microscope Platform. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:5310-5312. [PMID: 30441535 DOI: 10.1109/embc.2018.8513465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A versatile robot platform is presented that can be used to design low-cost custom made microscopes in do-ityourself construction. All components like the framework, the linear drives, robot controller and driver, the illumination and the camera are described as well as optional features like fluorescence microscopy and auto-focus. Finally, an application for automated imaging of 3D-cell cultures in 96-well microplates is presented.
Collapse
|
13
|
Haque E, Ward AC. Zebrafish as a Model to Evaluate Nanoparticle Toxicity. NANOMATERIALS 2018; 8:nano8070561. [PMID: 30041434 PMCID: PMC6071110 DOI: 10.3390/nano8070561] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/08/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022]
Abstract
Nanoparticles are increasingly being developed for in vivo use, from targeted drug delivery to diagnostics, where they have enormous potential, while they are also being used for a variety of applications that can result in environmental exposure for humans. Understanding how specific nanoparticles interact with cells and cell systems is essential to gauge their safety with respect to either clinical or environmental exposure. Zebrafish is being increasingly employed as a model to evaluate nanoparticle biocompatibility. This review describes this model and how it can be used to assess nanoparticle toxicity at multiple levels, including mortality, teratogenicity, immunotoxicity, genotoxicity, as well as alterations in reproduction, behavior and a range of other physiological readouts. This review also provides an overview of studies using this model to assess the toxicity of metal, metal oxide and carbon-based nanoparticles. It is anticipated that this information will inform research aimed at developing biocompatible nanoparticles for a range of uses.
Collapse
Affiliation(s)
- Enamul Haque
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia.
- Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, VIC 3216, Australia.
| | - Alister C Ward
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia.
- Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, VIC 3216, Australia.
| |
Collapse
|
14
|
Gehrig J, Pandey G, Westhoff JH. Zebrafish as a Model for Drug Screening in Genetic Kidney Diseases. Front Pediatr 2018; 6:183. [PMID: 30003073 PMCID: PMC6031734 DOI: 10.3389/fped.2018.00183] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022] Open
Abstract
Genetic disorders account for a wide range of renal diseases emerging during childhood and adolescence. Due to the utilization of modern biochemical and biomedical techniques, the number of identified disease-associated genes is increasing rapidly. Modeling of congenital human disease in animals is key to our understanding of the biological mechanism underlying pathological processes and thus developing novel potential treatment options. The zebrafish (Danio rerio) has been established as a versatile small vertebrate organism that is widely used for studying human inherited diseases. Genetic accessibility in combination with elegant experimental methods in zebrafish permit modeling of human genetic diseases and dissecting the perturbation of underlying cellular networks and physiological processes. Beyond its utility for genetic analysis and pathophysiological and mechanistic studies, zebrafish embryos, and larvae are amenable for phenotypic screening approaches employing high-content and high-throughput experiments using automated microscopy. This includes large-scale chemical screening experiments using genetic models for searching for disease-modulating compounds. Phenotype-based approaches of drug discovery have been successfully performed in diverse zebrafish-based screening applications with various phenotypic readouts. As a result, these can lead to the identification of candidate substances that are further examined in preclinical and clinical trials. In this review, we discuss zebrafish models for inherited kidney disease as well as requirements and considerations for the technical realization of drug screening experiments in zebrafish.
Collapse
Affiliation(s)
- Jochen Gehrig
- Acquifer is a Division of Ditabis, Digital Biomedical Imaging Systems AG, Pforzheim, Germany
| | - Gunjan Pandey
- Acquifer is a Division of Ditabis, Digital Biomedical Imaging Systems AG, Pforzheim, Germany.,Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Jens H Westhoff
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
15
|
Bellomo F, Medina DL, De Leo E, Panarella A, Emma F. High-content drug screening for rare diseases. J Inherit Metab Dis 2017; 40:601-607. [PMID: 28593466 DOI: 10.1007/s10545-017-0055-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/26/2022]
Abstract
Per definition, rare diseases affect only a small number of subjects within a given population. Taken together however, they represent a considerable medical burden, which remains poorly addressed in terms of treatment. Compared to other diseases, obstacles to the development of therapies for rare diseases include less extensive physiopathology knowledge, limited number of patients to test treatments, and poor commercial interest from the industry. Recently, advances in high-throughput and high-content screening (HTS and HCS) have been fostered by the development of specific routines that use robot- and computer-assisted technologies to automatize tasks, allowing screening of a large number of compounds in a short period of time, using experimental model of diseases. These approaches are particularly relevant for drug repositioning in rare disease, which restricts the search to compounds that have already been tested in humans, thereby reducing the need for extensive preclinical tests. In the future, these same tools, combined with computational modeling and artificial neural network analyses, may also be used to predict individual clinical responses to drugs in a personalized medicine approach.
Collapse
Affiliation(s)
- F Bellomo
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital - IRCCS, Piazza S. Onofrio, 4, 00165, Rome, Italy.
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital - IRCCS, Rome, Italy.
| | - D L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, NA, Italy
| | - E De Leo
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital - IRCCS, Rome, Italy
| | - A Panarella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, NA, Italy
| | - F Emma
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital - IRCCS, Rome, Italy
| |
Collapse
|
16
|
Schutera M, Dickmeis T, Mione M, Peravali R, Marcato D, Reischl M, Mikut R, Pylatiuk C. Automated phenotype pattern recognition of zebrafish for high-throughput screening. Bioengineered 2017; 7:261-5. [PMID: 27285638 DOI: 10.1080/21655979.2016.1197710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Over the last years, the zebrafish (Danio rerio) has become a key model organism in genetic and chemical screenings. A growing number of experiments and an expanding interest in zebrafish research makes it increasingly essential to automatize the distribution of embryos and larvae into standard microtiter plates or other sample holders for screening, often according to phenotypical features. Until now, such sorting processes have been carried out by manually handling the larvae and manual feature detection. Here, a prototype platform for image acquisition together with a classification software is presented. Zebrafish embryos and larvae and their features such as pigmentation are detected automatically from the image. Zebrafish of 4 different phenotypes can be classified through pattern recognition at 72 h post fertilization (hpf), allowing the software to classify an embryo into 2 distinct phenotypic classes: wild-type versus variant. The zebrafish phenotypes are classified with an accuracy of 79-99% without any user interaction. A description of the prototype platform and of the algorithms for image processing and pattern recognition is presented.
Collapse
Affiliation(s)
- Mark Schutera
- a Institute for Applied Computer Science (IAI), Karlsruhe Institute of Technology (KIT) , Eggenstein-Leopoldshafen , Germany
| | - Thomas Dickmeis
- b Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology , Eggenstein-Leopoldshafen , Germany
| | - Marina Mione
- b Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology , Eggenstein-Leopoldshafen , Germany
| | - Ravindra Peravali
- b Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology , Eggenstein-Leopoldshafen , Germany
| | - Daniel Marcato
- b Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology , Eggenstein-Leopoldshafen , Germany
| | - Markus Reischl
- a Institute for Applied Computer Science (IAI), Karlsruhe Institute of Technology (KIT) , Eggenstein-Leopoldshafen , Germany
| | - Ralf Mikut
- a Institute for Applied Computer Science (IAI), Karlsruhe Institute of Technology (KIT) , Eggenstein-Leopoldshafen , Germany
| | - Christian Pylatiuk
- a Institute for Applied Computer Science (IAI), Karlsruhe Institute of Technology (KIT) , Eggenstein-Leopoldshafen , Germany
| |
Collapse
|
17
|
Abstract
The extraction of statistically meaningful quantitative information from microscopy images is increasingly important for modern biological research. Obtaining accurate, quantitative information from biological specimens, however, is a complex process that requires optimization of several parameters. One must consider the number of probes, fluorescent channels required, type of plate to be used, number of fields to be acquired and optimal resolution for image acquisition. The extraction of information from images is dependent on and can be aided greatly by careful consideration of the factors involved in the image acquisition process. I summarize here the general principles behind the imaging and software technology that is used to quantify images and highlight particular issues of concern for critically applying image quantitation techniques for research.
Collapse
Affiliation(s)
- P J Gokhale
- a Department of Biomedical Science , University of Sheffield , Western Bank, Sheffield , United Kingdom
| |
Collapse
|
18
|
White DT, Eroglu AU, Wang G, Zhang L, Sengupta S, Ding D, Rajpurohit SK, Walker SL, Ji H, Qian J, Mumm JS. ARQiv-HTS, a versatile whole-organism screening platform enabling in vivo drug discovery at high-throughput rates. Nat Protoc 2016; 11:2432-2453. [PMID: 27831568 DOI: 10.1038/nprot.2016.142] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The zebrafish has emerged as an important model for whole-organism small-molecule screening. However, most zebrafish-based chemical screens have achieved only mid-throughput rates. Here we describe a versatile whole-organism drug discovery platform that can achieve true high-throughput screening (HTS) capacities. This system combines our automated reporter quantification in vivo (ARQiv) system with customized robotics, and is termed 'ARQiv-HTS'. We detail the process of establishing and implementing ARQiv-HTS: (i) assay design and optimization, (ii) calculation of sample size and hit criteria, (iii) large-scale egg production, (iv) automated compound titration, (v) dispensing of embryos into microtiter plates, and (vi) reporter quantification. We also outline what we see as best practice strategies for leveraging the power of ARQiv-HTS for zebrafish-based drug discovery, and address technical challenges of applying zebrafish to large-scale chemical screens. Finally, we provide a detailed protocol for a recently completed inaugural ARQiv-HTS effort, which involved the identification of compounds that elevate insulin reporter activity. Compounds that increased the number of insulin-producing pancreatic beta cells represent potential new therapeutics for diabetic patients. For this effort, individual screening sessions took 1 week to conclude, and sessions were performed iteratively approximately every other day to increase throughput. At the conclusion of the screen, more than a half million drug-treated larvae had been evaluated. Beyond this initial example, however, the ARQiv-HTS platform is adaptable to almost any reporter-based assay designed to evaluate the effects of chemical compounds in living small-animal models. ARQiv-HTS thus enables large-scale whole-organism drug discovery for a variety of model species and from numerous disease-oriented perspectives.
Collapse
Affiliation(s)
- David T White
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, USA
| | - Arife Unal Eroglu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guohua Wang
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liyun Zhang
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sumitra Sengupta
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ding Ding
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Surendra K Rajpurohit
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, USA
| | - Steven L Walker
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeff S Mumm
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
19
|
Chakraborty C, Sharma AR, Sharma G, Lee SS. Zebrafish: A complete animal model to enumerate the nanoparticle toxicity. J Nanobiotechnology 2016; 14:65. [PMID: 27544212 PMCID: PMC4992559 DOI: 10.1186/s12951-016-0217-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/05/2016] [Indexed: 01/18/2023] Open
Abstract
Presently, nanotechnology is a multi-trillion dollar business sector that covers a wide range of industries, such as medicine, electronics and chemistry. In the current era, the commercial transition of nanotechnology from research level to industrial level is stimulating the world’s total economic growth. However, commercialization of nanoparticles might offer possible risks once they are liberated in the environment. In recent years, the use of zebrafish (Danio rerio) as an established animal model system for nanoparticle toxicity assay is growing exponentially. In the current in-depth review, we discuss the recent research approaches employing adult zebrafish and their embryos for nanoparticle toxicity assessment. Different types of parameters are being discussed here which are used to evaluate nanoparticle toxicity such as hatching achievement rate, developmental malformation of organs, damage in gill and skin, abnormal behavior (movement impairment), immunotoxicity, genotoxicity or gene expression, neurotoxicity, endocrine system disruption, reproduction toxicity and finally mortality. Furthermore, we have also highlighted the toxic effect of different nanoparticles such as silver nanoparticle, gold nanoparticle, and metal oxide nanoparticles (TiO2, Al2O3, CuO, NiO and ZnO). At the end, future directions of zebrafish model and relevant assays to study nanoparticle toxicity have also been argued.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Bioinformatics, School of Computer and Information Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| | - Ashish Ranjan Sharma
- Institute of Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Garima Sharma
- Institute of Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Sang-Soo Lee
- Institute of Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea.
| |
Collapse
|
20
|
Kriston-Vizi J, Flotow H. Getting the whole picture: High content screening using three-dimensional cellular model systems and whole animal assays. Cytometry A 2016; 91:152-159. [PMID: 27403779 DOI: 10.1002/cyto.a.22907] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/09/2016] [Accepted: 06/20/2016] [Indexed: 12/11/2022]
Abstract
Phenotypic or High Content Screening (HCS) is becoming more widely used for primary screening campaigns in drug discovery. Currently the vast majority of HCS campaigns are using cell lines grown in well-established monolayer cultures (2D tissue culture). There is widespread recognition that the more biologically relevant 3D tissue culture technologies such as spheroids and organoids and even whole animal assays will eventually be run as primary HCS. Upgrading the IT infrastructure to cope with the increase in data volumes requires investments in hardware (and software) and this will be manageable. However, the main bottleneck for the effective adoption and use of 3D tissue culture and whole animal assays in HCS is anticipated to be the development of software for the analysis of 3D images. In this review we summarize the current state of the available software and how they may be applied to analyzing 3D images obtained from a HCS campaign. © 2016 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Janos Kriston-Vizi
- Bioinformatics Image Core, MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Horst Flotow
- HDC GmbH, Byk Gulden Strasse 2, Konstanz, Germany
| |
Collapse
|
21
|
Arulmozhivarman G, Stöter M, Bickle M, Kräter M, Wobus M, Ehninger G, Stölzel F, Brand M, Bornhäuser M, Shayegi N. In Vivo Chemical Screen in Zebrafish Embryos Identifies Regulators of Hematopoiesis Using a Semiautomated Imaging Assay. ACTA ACUST UNITED AC 2016; 21:956-64. [DOI: 10.1177/1087057116644163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/21/2016] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) generate all cell types of the blood and are crucial for homeostasis of all blood lineages in vertebrates. Hematopoietic stem cell transplantation (HSCT) is a rapidly evolving technique that offers potential cure for hematologic cancers, such as leukemia or lymphoma. HSCT may be autologous or allogenic. Successful HSCT depends critically on the abundance of engraftment-competent HSPCs, which are currently difficult to obtain in large numbers. Therefore, finding compounds that enhance either the number or the activity of HSPCs could improve prognosis for patients undergoing HSCT and is of great clinical interest. We developed a semiautomated screening method for whole zebrafish larvae using conventional liquid handling equipment and confocal microscopy. Applying this pipeline, we screened 550 compounds in triplicate for proliferation of HSPCs in vivo and identified several modulators of hematopoietic stem cell activity. One identified hit was valproic acid (VPA), which was further validated as a compound that expands and maintains the population of HSPCs isolated from human peripheral blood ex vivo. In summary, our in vivo zebrafish imaging screen identified several potential drug candidates with clinical relevance and could easily be further expanded to screen more compounds.
Collapse
Affiliation(s)
- Guruchandar Arulmozhivarman
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martin Stöter
- HT-Technology Development Studio, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marc Bickle
- HT-Technology Development Studio, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Martin Kräter
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Manja Wobus
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gerhard Ehninger
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Friedrich Stölzel
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies, Cluster of Excellence, Bioinnovation Center, Technische Universität Dresden, Dresden, Germany
| | - Martin Bornhäuser
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nona Shayegi
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
22
|
Marcato D, Alshut R, Breitwieser H, Mikut R, Strahle U, Pylatiuk C, Peravali R. An automated and high-throughput Photomotor Response platform for chemical screens. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:7728-31. [PMID: 26738083 DOI: 10.1109/embc.2015.7320183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The zebrafish (Danio rerio) is a well-established vertebrate model organism. Its embryos are used extensively in biology and medicine to perform chemical screens to identify drug candidates or to evaluate teratogenicity and embryotoxicity of substances. Behavioral readouts are increasingly used to assess the effects of compounds on the nervous system. Early stage zebrafish show characteristic behavioral features at stages between 30 and 42 hours post fertilization (hpf) when exposed to a short and bright light flash. This so-called Photomotor Response (PMR) is a reaction of the nervous system of the fish and can be used as a marker in screenings for neuroactive chemicals. To probe a broad and diverse chemical space, many different substances have to be tested and repeated observations are necessary to warrant statistical significance of the results. Although PMR-based chemical screens must use a large number of specimens, there is no sophisticated, automated high-throughput platform available which ensures minimal human intervention. Here we report a PMR platform that was developed by combining an improved automatic sample handling with a remotely controllable microscope setup and an image analysis pipeline. Using infrared illumination during automatic sample preparation, we were able to eliminate excess amounts of visible light that could potentially alter the response results. A remotely controlled microscope setup allows us to screen entire 96-well microtiter plates without human presence that could disturb the embryos. The development of custom video analysis software, including single egg detection, enables us to detect variance among treated specimens and extract easy to interpret numerical values representing the PMR motion. By testing several neuroactive compounds we validated the workflow that can be used to analyze more than one thousand zebrafish eggs on a single 96-well plate.
Collapse
|
23
|
Abstract
Zebrafish embryos can be obtained for research purposes in large numbers at low cost and embryos develop externally in limited space, making them highly suitable for high-throughput cancer studies and drug screens. Non-invasive live imaging of various processes within the larvae is possible due to their transparency during development, and a multitude of available fluorescent transgenic reporter lines.To perform high-throughput studies, handling large amounts of embryos and larvae is required. With such high number of individuals, even minute tasks may become time-consuming and arduous. In this chapter, an overview is given of the developments in the automation of various steps of large scale zebrafish cancer research for discovering important cancer pathways and drugs for the treatment of human disease. The focus lies on various tools developed for cancer cell implantation, embryo handling and sorting, microfluidic systems for imaging and drug treatment, and image acquisition and analysis. Examples will be given of employment of these technologies within the fields of toxicology research and cancer research.
Collapse
|
24
|
Comparative analysis of goitrogenic effects of phenylthiourea and methimazole in zebrafish embryos. Reprod Toxicol 2015; 57:10-20. [DOI: 10.1016/j.reprotox.2015.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/19/2015] [Accepted: 04/29/2015] [Indexed: 11/24/2022]
|
25
|
Martinez NJ, Titus SA, Wagner AK, Simeonov A. High-throughput fluorescence imaging approaches for drug discovery using in vitro and in vivo three-dimensional models. Expert Opin Drug Discov 2015; 10:1347-61. [PMID: 26394277 DOI: 10.1517/17460441.2015.1091814] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION High-resolution microscopy using fluorescent probes is a powerful tool to investigate individual cell structure and function, cell subpopulations and mechanisms underlying cellular responses to drugs. Additionally, responses to drugs more closely resemble those seen in vivo when cells are physically connected in three-dimensional (3D) systems (either 3D cell cultures or whole organisms), as opposed to traditional monolayer cultures. Combined, the use of imaging-based 3D models in the early stages of drug development has the potential to generate biologically relevant data that will increase the likelihood of success for drug candidates in human studies. AREAS COVERED The authors discuss current methods for the culturing of cells in 3D as well as approaches for the imaging of whole-animal models and 3D cultures that are amenable to high-throughput settings and could be implemented to support drug discovery campaigns. Furthermore, they provide critical considerations when discussing imaging these 3D systems for high-throughput chemical screenings. EXPERT OPINION Despite widespread understanding of the limitations imposed by the two-dimensional versus the 3D cellular paradigm, imaging-based drug screening of 3D cellular models is still limited, with only a few screens found in the literature. Image acquisition in high throughput, accurate interpretation of fluorescent signal, and uptake of staining reagents can be challenging, as the samples are in essence large aggregates of cells. The authors recognize these shortcomings that need to be overcome before the field can accelerate the utilization of these technologies in large-scale chemical screens.
Collapse
Affiliation(s)
- Natalia J Martinez
- a National Institutes of Health, National Center for Advancing Translational Sciences , Rockville, MD 20850, USA
| | - Steven A Titus
- a National Institutes of Health, National Center for Advancing Translational Sciences , Rockville, MD 20850, USA
| | - Amanda K Wagner
- a National Institutes of Health, National Center for Advancing Translational Sciences , Rockville, MD 20850, USA
| | - Anton Simeonov
- a National Institutes of Health, National Center for Advancing Translational Sciences , Rockville, MD 20850, USA
| |
Collapse
|
26
|
Stewart AM, Ullmann JF, Norton WH, Brennan CH, Parker MO, Gerlai R, Kalueff AV. Molecular psychiatry of zebrafish. Mol Psychiatry 2015; 20:2-17. [PMID: 25349164 PMCID: PMC4318706 DOI: 10.1038/mp.2014.128] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 12/31/2022]
Abstract
Due to their well-characterized neural development and high genetic homology to mammals, zebrafish (Danio rerio) have emerged as a powerful model organism in the field of biological psychiatry. Here, we discuss the molecular psychiatry of zebrafish, and its implications for translational neuroscience research and modeling central nervous system (CNS) disorders. In particular, we outline recent genetic and technological developments allowing for in vivo examinations, high-throughput screening and whole-brain analyses in larval and adult zebrafish. We also summarize the application of these molecular techniques to the understanding of neuropsychiatric disease, outlining the potential of zebrafish for modeling complex brain disorders, including attention-deficit/hyperactivity disorder (ADHD), aggression, post-traumatic stress and substance abuse. Critically evaluating the advantages and limitations of larval and adult fish tests, we suggest that zebrafish models become a rapidly emerging new field in modern molecular psychiatry research.
Collapse
Affiliation(s)
- Adam Michael Stewart
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
- International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
| | - Jeremy F.P. Ullmann
- International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - William H.J. Norton
- International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
- Department of Biology, College of Medicine, Biological Sciences and Psychiatry, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Caroline H. Brennan
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1-4NS, UK
| | - Matthew O. Parker
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1-4NS, UK
| | - Robert Gerlai
- Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Rd N Mississauga, Ontario L5L1C6, Canada
| | - Allan V. Kalueff
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
- International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
- Research Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| |
Collapse
|
27
|
Oosterhof N, Boddeke E, van Ham TJ. Immune cell dynamics in the CNS: Learning from the zebrafish. Glia 2014; 63:719-35. [PMID: 25557007 DOI: 10.1002/glia.22780] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/10/2014] [Indexed: 12/22/2022]
Abstract
A major question in research on immune responses in the brain is how the timing and nature of these responses influence physiology, pathogenesis or recovery from pathogenic processes. Proper understanding of the immune regulation of the human brain requires a detailed description of the function and activities of the immune cells in the brain. Zebrafish larvae allow long-term, noninvasive imaging inside the brain at high-spatiotemporal resolution using fluorescent transgenic reporters labeling specific cell populations. Together with recent additional technical advances this allows an unprecedented versatility and scope of future studies. Modeling of human physiology and pathology in zebrafish has already yielded relevant insights into cellular dynamics and function that can be translated to the human clinical situation. For instance, in vivo studies in the zebrafish have provided new insight into immune cell dynamics in granuloma formation in tuberculosis and the mechanisms involving treatment resistance. In this review, we highlight recent findings and novel tools paving the way for basic neuroimmunology research in the zebrafish. GLIA 2015;63:719-735.
Collapse
Affiliation(s)
- Nynke Oosterhof
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | |
Collapse
|
28
|
Bugel SM, Tanguay RL, Planchart A. Zebrafish: A marvel of high-throughput biology for 21 st century toxicology. Curr Environ Health Rep 2014; 1:341-352. [PMID: 25678986 DOI: 10.1007/s40572-014-0029-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The evolutionary conservation of genomic, biochemical and developmental features between zebrafish and humans is gradually coming into focus with the end result that the zebrafish embryo model has emerged as a powerful tool for uncovering the effects of environmental exposures on a multitude of biological processes with direct relevance to human health. In this review, we highlight advances in automation, high-throughput (HT) screening, and analysis that leverage the power of the zebrafish embryo model for unparalleled advances in our understanding of how chemicals in our environment affect our health and wellbeing.
Collapse
Affiliation(s)
- Sean M Bugel
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97333
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97333
| | - Antonio Planchart
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
29
|
Pylatiuk C, Sanchez D, Mikut R, Alshut R, Reischl M, Hirth S, Rottbauer W, Just S. Automatic zebrafish heartbeat detection and analysis for zebrafish embryos. Zebrafish 2014; 11:379-83. [PMID: 25003305 DOI: 10.1089/zeb.2014.1002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A fully automatic detection and analysis method of heartbeats in videos of nonfixed and nonanesthetized zebrafish embryos is presented. This method reduces the manual workload and time needed for preparation and imaging of the zebrafish embryos, as well as for evaluating heartbeat parameters such as frequency, beat-to-beat intervals, and arrhythmicity. The method is validated by a comparison of the results from automatic and manual detection of the heart rates of wild-type zebrafish embryos 36-120 h postfertilization and of embryonic hearts with bradycardia and pauses in the cardiac contraction.
Collapse
Affiliation(s)
- Christian Pylatiuk
- 1 Institute for Applied Computer Science (IAI) , Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Immediate and long-term consequences of vascular toxicity during zebrafish development. Reprod Toxicol 2014; 48:51-61. [PMID: 24907688 DOI: 10.1016/j.reprotox.2014.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/21/2014] [Accepted: 05/27/2014] [Indexed: 01/02/2023]
Abstract
Proper formation of the vascular system is necessary for embryogenesis, and chemical disruption of vascular development may be a key event driving developmental toxicity. In order to test the effect of environmental chemicals on this critical process, we evaluated a quantitative assay in transgenic zebrafish using angiogenesis inhibitors that target VEGFR2 (PTK787) or EGFR (AG1478). Both PTK787 and AG1478 exposure impaired intersegmental vessel (ISV) sprouting, while AG1478 also produced caudal and pectoral fin defects at concentrations below those necessary to blunt ISV morphogenesis. The functional consequences of vessel toxicity during early development included decreased body length and survival in juvenile cohorts developmentally exposed to inhibitor concentrations sufficient to completely block ISV sprouting angiogenesis. These data show that concentration-dependent disruption of the presumed targets for these inhibitors produce adverse outcomes at advanced life stages.
Collapse
|
31
|
Romano SN, Gorelick DA. Semi-automated imaging of tissue-specific fluorescence in zebrafish embryos. J Vis Exp 2014. [PMID: 24894681 DOI: 10.3791/51533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Zebrafish embryos are a powerful tool for large-scale screening of small molecules. Transgenic zebrafish that express fluorescent reporter proteins are frequently used to identify chemicals that modulate gene expression. Chemical screens that assay fluorescence in live zebrafish often rely on expensive, specialized equipment for high content screening. We describe a procedure using a standard epifluorescence microscope with a motorized stage to automatically image zebrafish embryos and detect tissue-specific fluorescence. Using transgenic zebrafish that report estrogen receptor activity via expression of GFP, we developed a semi-automated procedure to screen for estrogen receptor ligands that activate the reporter in a tissue-specific manner. In this video we describe procedures for arraying zebrafish embryos at 24-48 hours post fertilization (hpf) in a 96-well plate and adding small molecules that bind estrogen receptors. At 72-96 hpf, images of each well from the entire plate are automatically collected and manually inspected for tissue-specific fluorescence. This protocol demonstrates the ability to detect estrogens that activate receptors in heart valves but not in liver.
Collapse
Affiliation(s)
- Shannon N Romano
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham
| | - Daniel A Gorelick
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham;
| |
Collapse
|
32
|
Wittbrodt JN, Liebel U, Gehrig J. Generation of orientation tools for automated zebrafish screening assays using desktop 3D printing. BMC Biotechnol 2014; 14:36. [PMID: 24886511 PMCID: PMC4021294 DOI: 10.1186/1472-6750-14-36] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/24/2014] [Indexed: 01/26/2023] Open
Abstract
Background The zebrafish has been established as the main vertebrate model system for whole organism screening applications. However, the lack of consistent positioning of zebrafish embryos within wells of microtiter plates remains an obstacle for the comparative analysis of images acquired in automated screening assays. While technical solutions to the orientation problem exist, dissemination is often hindered by the lack of simple and inexpensive ways of distributing and duplicating tools. Results Here, we provide a cost effective method for the production of 96-well plate compatible zebrafish orientation tools using a desktop 3D printer. The printed tools enable the positioning and orientation of zebrafish embryos within cavities formed in agarose. Their applicability is demonstrated by acquiring lateral and dorsal views of zebrafish embryos arrayed within microtiter plates using an automated screening microscope. This enables the consistent visualization of morphological phenotypes and reporter gene expression patterns. Conclusions The designs are refined versions of previously demonstrated devices with added functionality and strongly reduced production costs. All corresponding 3D models are freely available and digital design can be easily shared electronically. In combination with the increasingly widespread usage of 3D printers, this provides access to the developed tools to a wide range of zebrafish users. Finally, the design files can serve as templates for other additive and subtractive fabrication methods.
Collapse
|
33
|
Roberts JA, Miguel-Escalada I, Slovik KJ, Walsh KT, Hadzhiev Y, Sanges R, Stupka E, Marsh EK, Balciuniene J, Balciunas D, Müller F. Targeted transgene integration overcomes variability of position effects in zebrafish. Development 2014; 141:715-24. [PMID: 24449846 DOI: 10.1242/dev.100347] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Zebrafish transgenesis is increasingly popular owing to the optical transparency and external development of embryos, which provide a scalable vertebrate model for in vivo experimentation. The ability to express transgenes in a tightly controlled spatio-temporal pattern is an important prerequisite for exploitation of zebrafish in a wide range of biomedical applications. However, conventional transgenesis methods are plagued by position effects: the regulatory environment of genomic integration sites leads to variation of expression patterns of transgenes driven by engineered cis-regulatory modules. This limitation represents a bottleneck when studying the precise function of cis-regulatory modules and their subtle variants or when various effector proteins are to be expressed for labelling and manipulation of defined sets of cells. Here, we provide evidence for the efficient elimination of variability of position effects by developing a PhiC31 integrase-based targeting method. To detect targeted integration events, a simple phenotype scoring of colour change in the lens of larvae is used. We compared PhiC31-based integration and Tol2 transgenesis in the analysis of the activity of a novel conserved enhancer from the developmentally regulated neural-specific esrrga gene. Reporter expression was highly variable among independent lines generated with Tol2, whereas all lines generated with PhiC31 into a single integration site displayed nearly identical, enhancer-specific reporter expression in brain nuclei. Moreover, we demonstrate that a modified integrase system can also be used for the detection of enhancer activity in transient transgenesis. These results demonstrate the power of the PhiC31-based transgene integration for the annotation and fine analysis of transcriptional regulatory elements and it promises to be a generally desirable tool for a range of applications, which rely on highly reproducible patterns of transgene activity in zebrafish.
Collapse
Affiliation(s)
- Jennifer Anne Roberts
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Stegmaier J, Shahid M, Takamiya M, Yang L, Rastegar S, Reischl M, Strähle U, Mikut R. Automated prior knowledge-based quantification of neuronal patterns in the spinal cord of zebrafish. Bioinformatics 2014; 30:726-33. [PMID: 24135262 DOI: 10.1093/bioinformatics/btt600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MOTIVATION To reliably assess the effects of unknown chemicals on the development of fluorescently labeled sensory-, moto- and interneuron populations in the spinal cord of zebrafish, automated data analysis is essential. RESULTS For the evaluation of a high-throughput screen of a large chemical library, we developed a new method for the automated extraction of quantitative information from green fluorescent protein (eGFP) and red fluorescent protein (RFP) labeled spinal cord neurons in double-transgenic zebrafish embryos. The methodology comprises region of interest detection, intensity profiling with reference comparison and neuron distribution histograms. All methods were validated on a manually evaluated pilot study using a Notch inhibitor dose-response experiment. The automated evaluation showed superior performance to manual investigation regarding time consumption, information detail and reproducibility. AVAILABILITY AND IMPLEMENTATION Being part of GNU General Public Licence (GNU-GPL) licensed open-source MATLAB toolbox Gait-CAD, an implementation of the presented methods is publicly available for download at http://sourceforge.net/projects/zebrafishimage/.
Collapse
Affiliation(s)
- Johannes Stegmaier
- Institute for Applied Computer Science (IAI), Karlsruhe Institute of Technology, Karlsruhe, Germany, Institute for Toxicology and Genetics (ITG), Karlsruhe Institute of Technology, Karlsruhe, Germany and Faculty of Biosciences, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Tischer C, Hilsenstein V, Hanson K, Pepperkok R. Adaptive fluorescence microscopy by online feedback image analysis. Methods Cell Biol 2014; 123:489-503. [PMID: 24974044 DOI: 10.1016/b978-0-12-420138-5.00026-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Obtaining sufficient statistics in quantitative fluorescence microscopy is often hampered by the tedious and time-consuming task of manually locating comparable specimen and repeatedly launching the same acquisition protocol. Recent advances in combining fluorescence microscopy with online image analysis tackle this problem by fully integrating the task of identifying and locating the specimen of interest in an automated acquisition workflow. Here, we describe the general requirements and specific microscope control and image analysis software solutions for implementing such automated online feedback microscopy. We demonstrate the power of the method by two selected applications addressing high-throughput 3D imaging of sparsely parasite-infected tissue culture cells and automated fluorescence recovery after photobleaching experiments to quantify the turnover of vesicular coat proteins at ER exit sites.
Collapse
|
36
|
Scholpp S, Poggi L, Zigman M. Brain on the stage - spotlight on nervous system development in zebrafish: EMBO practical course, KIT, Sept. 2013. Neural Dev 2013; 8:23. [PMID: 24350623 PMCID: PMC3878791 DOI: 10.1186/1749-8104-8-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/05/2013] [Indexed: 11/10/2022] Open
Abstract
During the EMBO course ‘Imaging of Neural Development in Zebrafish’, held on September 9–15th 2013, researchers from different backgrounds shared their latest results, ideas and practical expertise on zebrafish as a model to address open questions regarding nervous system development.
Collapse
Affiliation(s)
- Steffen Scholpp
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Karlsruhe 76021, Germany.
| | | | | |
Collapse
|
37
|
Development of an automated imaging pipeline for the analysis of the zebrafish larval kidney. PLoS One 2013; 8:e82137. [PMID: 24324758 PMCID: PMC3852951 DOI: 10.1371/journal.pone.0082137] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/21/2013] [Indexed: 01/01/2023] Open
Abstract
The analysis of kidney malformation caused by environmental influences during nephrogenesis or by hereditary nephropathies requires animal models allowing the in vivo observation of developmental processes. The zebrafish has emerged as a useful model system for the analysis of vertebrate organ development and function, and it is suitable for the identification of organotoxic or disease-modulating compounds on a larger scale. However, to fully exploit its potential in high content screening applications, dedicated protocols are required allowing the consistent visualization of inner organs such as the embryonic kidney. To this end, we developed a high content screening compatible pipeline for the automated imaging of standardized views of the developing pronephros in zebrafish larvae. Using a custom designed tool, cavities were generated in agarose coated microtiter plates allowing for accurate positioning and orientation of zebrafish larvae. This enabled the subsequent automated acquisition of stable and consistent dorsal views of pronephric kidneys. The established pipeline was applied in a pilot screen for the analysis of the impact of potentially nephrotoxic drugs on zebrafish pronephros development in the Tg(wt1b:EGFP) transgenic line in which the developing pronephros is highlighted by GFP expression. The consistent image data that was acquired allowed for quantification of gross morphological pronephric phenotypes, revealing concentration dependent effects of several compounds on nephrogenesis. In addition, applicability of the imaging pipeline was further confirmed in a morpholino based model for cilia-associated human genetic disorders associated with different intraflagellar transport genes. The developed tools and pipeline can be used to study various aspects in zebrafish kidney research, and can be readily adapted for the analysis of other organ systems.
Collapse
|
38
|
Mikut R, Dickmeis T, Driever W, Geurts P, Hamprecht FA, Kausler BX, Ledesma-Carbayo MJ, Marée R, Mikula K, Pantazis P, Ronneberger O, Santos A, Stotzka R, Strähle U, Peyriéras N. Automated processing of zebrafish imaging data: a survey. Zebrafish 2013; 10:401-21. [PMID: 23758125 PMCID: PMC3760023 DOI: 10.1089/zeb.2013.0886] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the current state of the art in computational image analysis in the zebrafish system. We discuss the challenges encountered when handling high-content image data, especially with regard to data quality, annotation, and storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identification of dead embryos, recognition of tissues and anatomical landmarks, and quantification of behavioral patterns of adult fish. We review recent examples for applications using such methods, such as the comprehensive analysis of cell lineages during early development, the generation of a three-dimensional brain atlas of zebrafish larvae, and high-throughput drug screens based on movement patterns. Finally, we identify future challenges for the zebrafish image analysis community, notably those concerning the compatibility of algorithms and data formats for the assembly of modular analysis pipelines.
Collapse
Affiliation(s)
- Ralf Mikut
- Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Basu S, Sachidanandan C. Zebrafish: a multifaceted tool for chemical biologists. Chem Rev 2013; 113:7952-80. [PMID: 23819893 DOI: 10.1021/cr4000013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sandeep Basu
- Council of Scientific and Industrial Research-Institute of Genomics & Integrative Biology (CSIR-IGIB) , South Campus, New Delhi 110025, India
| | | |
Collapse
|
40
|
Hasson SA, Inglese J. Innovation in academic chemical screening: filling the gaps in chemical biology. Curr Opin Chem Biol 2013; 17:329-38. [PMID: 23683346 PMCID: PMC3719966 DOI: 10.1016/j.cbpa.2013.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 03/26/2013] [Accepted: 04/15/2013] [Indexed: 12/12/2022]
Abstract
Academic screening centers across the world have endeavored to discover small molecules that can modulate biological systems. To increase the reach of functional-genomic and chemical screening programs, universities, research institutes, and governments have followed their industrial counterparts in adopting high-throughput paradigms. As academic screening efforts have steadily grown in scope and complexity, so have the ideas of what is possible with the union of technology and biology. This review addresses the recent conceptual and technological innovation that has been propelling academic screening into its own unique niche. In particular, high-content and whole-organism screening are changing how academics search for novel bioactive compounds. Importantly, we recognize examples of successful chemical probe development that have punctuated the changing technology landscape.
Collapse
Affiliation(s)
- Samuel A Hasson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | | |
Collapse
|
41
|
Lin S, Zhao Y, Ji Z, Ear J, Chang CH, Zhang H, Low-Kam C, Yamada K, Meng H, Wang X, Liu R, Pokhrel S, Mädler L, Damoiseaux R, Xia T, Godwin HA, Lin S, Nel AE. Zebrafish high-throughput screening to study the impact of dissolvable metal oxide nanoparticles on the hatching enzyme, ZHE1. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1776-1785. [PMID: 23180726 PMCID: PMC4034474 DOI: 10.1002/smll.201202128] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Indexed: 05/19/2023]
Abstract
The zebrafish is emerging as a model organism for the safety assessment and hazard ranking of engineered nanomaterials. In this Communication, the implementation of a roboticized high-throughput screening (HTS) platform with automated image analysis is demonstrated to assess the impact of dissolvable oxide nanoparticles on embryo hatching. It is further demonstrated that this hatching interference is mechanistically linked to an effect on the metalloprotease, ZHE 1, which is responsible for degradation of the chorionic membrane. The data indicate that 4 of 24 metal oxide nanoparticles (CuO, ZnO, Cr2 O3 , and NiO) could interfere with embryo hatching by a chelator-sensitive mechanism that involves ligation of critical histidines in the ZHE1 center by the shed metal ions. A recombinant ZHE1 enzymatic assay is established to demonstrate that the dialysates from the same materials responsible for hatching interference also inhibit ZHE1 activity in a dose-dependent fashion. A peptide-based BLAST search identifies several additional aquatic species that express enzymes with homologous histidine-based catalytic centers, suggesting that the ZHE1 mechanistic paradigm could be used to predict the toxicity of a large number of oxide nanoparticles that pose a hazard to aquatic species.
Collapse
Affiliation(s)
- Sijie Lin
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles
| | - Yan Zhao
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles
| | - Zhaoxia Ji
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles
| | - Jason Ear
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles
| | - Chong Hyun Chang
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles
| | - Haiyuan Zhang
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles
| | - Cecile Low-Kam
- Department of Biostatistics, University of California, Los Angeles
| | - Kristin Yamada
- Department of Environmental Health Sciences, University of California, Los Angeles
| | - Huan Meng
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles
| | - Xiang Wang
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles
| | - Rong Liu
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles
| | - Suman Pokhrel
- IWT Foundation Institute of Materials Science, Department of Production Engineering, University of Bremen, Germany
| | - Lutz Mädler
- IWT Foundation Institute of Materials Science, Department of Production Engineering, University of Bremen, Germany
| | - Robert Damoiseaux
- Molecular Shared Screening Resources, California NanoSystem Institute, University of California, Los Angeles
| | - Tian Xia
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles
| | - Hilary A. Godwin
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles
- Department of Environmental Health Sciences, University of California, Los Angeles
| | - Shuo Lin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles
| | - André E. Nel
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles
- Prof. A. E. Nel, Department of Medicine, Division of NanoMedicine, UCLA School of Medicine, 52-175, CHS, 10833 Le Conte Ave, Los Angeles, CA 90095-1680. Tel: (310) 825-6620, Fax: (310) 206-8107,
| |
Collapse
|
42
|
Lin S, Zhao Y, Nel AE, Lin S. Zebrafish: an in vivo model for nano EHS studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1608-18. [PMID: 23208995 PMCID: PMC4070293 DOI: 10.1002/smll.201202115] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/06/2012] [Indexed: 05/18/2023]
Abstract
To assure a responsible and sustainable growth of nanotechnology, the environmental health and safety (EHS) aspect of engineered nanomaterials and nano-related products needs to be addressed at a rate commensurate with the expansion of nanotechnology. Zebrafish has been demonstrated as a correlative in vivo vertebrate model for such task, and the current advances of using zebrafish for nano EHS studies are summarized here. In addition to morphological and histopathological observations, the accessibility of gene manipulation would greatly empower such a model for detailed mechanistic studies of any nanoparticles of interest. The potential for establishing high-throughput screening platforms to facilitate the nano EHS studies is highlighted, and a discussion is presented on how toxicogenomics approaches represent a future direction to guide the identification of toxicity pathways.
Collapse
Affiliation(s)
- Sijie Lin
- Center for Environmental Implications of Nanotechnology, 570 Westwood Plaza, Bldg 114, Rm 6511, Los Angeles, CA 90095, USA
| | - Yan Zhao
- Department of Molecular, Cell and Developmental Biology, 621 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - André E. Nel
- Division of Nano Medicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Shuo Lin
- Department of Molecular, Cell and Developmental Biology, 621 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| |
Collapse
|
43
|
Antony PMA, Trefois C, Stojanovic A, Baumuratov AS, Kozak K. Light microscopy applications in systems biology: opportunities and challenges. Cell Commun Signal 2013; 11:24. [PMID: 23578051 PMCID: PMC3627909 DOI: 10.1186/1478-811x-11-24] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 03/28/2013] [Indexed: 01/05/2023] Open
Abstract
Biological systems present multiple scales of complexity, ranging from molecules to entire populations. Light microscopy is one of the least invasive techniques used to access information from various biological scales in living cells. The combination of molecular biology and imaging provides a bottom-up tool for direct insight into how molecular processes work on a cellular scale. However, imaging can also be used as a top-down approach to study the behavior of a system without detailed prior knowledge about its underlying molecular mechanisms. In this review, we highlight the recent developments on microscopy-based systems analyses and discuss the complementary opportunities and different challenges with high-content screening and high-throughput imaging. Furthermore, we provide a comprehensive overview of the available platforms that can be used for image analysis, which enable community-driven efforts in the development of image-based systems biology.
Collapse
Affiliation(s)
- Paul Michel Aloyse Antony
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Christophe Trefois
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Aleksandar Stojanovic
- Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg City, Luxembourg
| | | | - Karol Kozak
- Light Microscopy Centre (LMSC), Institute for Biochemistry, ETH Zurich, Zurich, Switzerland
- Medical Faculty, Technical University Dresden, Dresden, Germany
| |
Collapse
|
44
|
Abstract
Due to several inherent advantages, zebrafish are being utilized in increasingly sophisticated screens to assess the physiological effects of chemical compounds directly in living vertebrate organisms. Diverse screening platforms showcase these advantages. Morphological assays encompassing basic qualitative observations to automated imaging, manipulation, and data-processing systems provide whole organism to subcellular levels of detail. Behavioral screens extend chemical screening to the level of complex systems. In addition, zebrafish-based disease models provide a means of identifying new potential therapeutic strategies. Automated systems for handling/sorting, high-resolution imaging and quantitative data collection have significantly increased throughput in recent years. These advances will make it easier to capture multiple streams of information from a given sample and facilitate integration of zebrafish at the earliest stages of the drug-discovery process, providing potential solutions to current drug-development bottlenecks. Here we outline advances that have been made within the growing field of zebrafish chemical screening.
Collapse
|
45
|
Spomer W, Pfriem A, Alshut R, Just S, Pylatiuk C. High-throughput screening of zebrafish embryos using automated heart detection and imaging. ACTA ACUST UNITED AC 2012; 17:435-42. [PMID: 23053930 DOI: 10.1177/2211068212464223] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over the past decade, the zebrafish has become a key model organism in genetic screenings and drug discovery. A number of genes have been identified to affect the development of the shape and functioning of the heart, leading to zebrafish mutants with heart defects. The development of semiautomated microscopy systems has allowed for the investigation of drugs that reverse a disease phenotype on a larger scale. However, there is a lack of automated feature detection, and commercially available computer-aided microscopes are expensive. Screening of the zebrafish heart for drug discovery typically includes the identification of heart parameters, such as the frequency or fractional shortening. Until now, screening processes have been characterized by manual handling of the larvae and manual microscopy. Here, an intelligent robotic microscope is presented, which automatically identifies the orientation of a zebrafish in a micro well. A predefined region of interest, such as the heart, is detected automatically, and a video with higher magnification is recorded. Screening of a 96-well plate takes 35 to 55 min, depending on the length of the videos. Of the zebrafish hearts, 75% are recorded accurately without any user interaction. A description of the system, including the graphical user interface, is given.
Collapse
Affiliation(s)
- Waldemar Spomer
- Institute for Applied Computer Science, KIT-Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | | | | | | |
Collapse
|
46
|
Paveley RA, Mansour NR, Hallyburton I, Bleicher LS, Benn AE, Mikic I, Guidi A, Gilbert IH, Hopkins AL, Bickle QD. Whole organism high-content screening by label-free, image-based Bayesian classification for parasitic diseases. PLoS Negl Trop Dis 2012; 6:e1762. [PMID: 22860151 PMCID: PMC3409125 DOI: 10.1371/journal.pntd.0001762] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 06/21/2012] [Indexed: 02/07/2023] Open
Abstract
Sole reliance on one drug, Praziquantel, for treatment and control of schistosomiasis raises concerns about development of widespread resistance, prompting renewed interest in the discovery of new anthelmintics. To discover new leads we designed an automated label-free, high content-based, high throughput screen (HTS) to assess drug-induced effects on in vitro cultured larvae (schistosomula) using bright-field imaging. Automatic image analysis and Bayesian prediction models define morphological damage, hit/non-hit prediction and larval phenotype characterization. Motility was also assessed from time-lapse images. In screening a 10,041 compound library the HTS correctly detected 99.8% of the hits scored visually. A proportion of these larval hits were also active in an adult worm ex-vivo screen and are the subject of ongoing studies. The method allows, for the first time, screening of large compound collections against schistosomes and the methods are adaptable to other whole organism and cell-based screening by morphology and motility phenotyping.
Collapse
Affiliation(s)
- Ross A. Paveley
- Department of Infection and Immunity, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Nuha R. Mansour
- Department of Infection and Immunity, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Irene Hallyburton
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Leo S. Bleicher
- Accelrys Inc., San Diego, California, United States of America
| | | | - Ivana Mikic
- Accelrys Inc., San Diego, California, United States of America
| | - Alessandra Guidi
- Department of Infection and Immunity, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ian H. Gilbert
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Andrew L. Hopkins
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Quentin D. Bickle
- Department of Infection and Immunity, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
47
|
Myelopoiesis and myeloid leukaemogenesis in the zebrafish. Adv Hematol 2012; 2012:358518. [PMID: 22851971 PMCID: PMC3407620 DOI: 10.1155/2012/358518] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/05/2012] [Indexed: 12/20/2022] Open
Abstract
Over the past ten years, studies using the zebrafish model have contributed to our understanding of vertebrate haematopoiesis, myelopoiesis, and myeloid leukaemogenesis. Novel insights into the conservation of haematopoietic lineages and improvements in our capacity to identify, isolate, and culture such haematopoietic cells continue to enhance our ability to use this simple organism to address disease biology. Coupled with the strengths of the zebrafish embryo to dissect developmental myelopoiesis and the continually expanding repertoire of models of myeloid malignancies, this versatile organism has established its niche as a valuable tool to address key questions in the field of myelopoiesis and myeloid leukaemogenesis. In this paper, we address the recent advances and future directions in the field of myelopoiesis and leukaemogenesis using the zebrafish system.
Collapse
|
48
|
Letamendia A, Quevedo C, Ibarbia I, Virto JM, Holgado O, Diez M, Izpisua Belmonte JC, Callol-Massot C. Development and validation of an automated high-throughput system for zebrafish in vivo screenings. PLoS One 2012; 7:e36690. [PMID: 22615792 PMCID: PMC3352927 DOI: 10.1371/journal.pone.0036690] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 04/04/2012] [Indexed: 01/06/2023] Open
Abstract
The zebrafish is a vertebrate model compatible with the paradigms of drug discovery. The small size and transparency of zebrafish embryos make them amenable for the automation necessary in high-throughput screenings. We have developed an automated high-throughput platform for in vivo chemical screenings on zebrafish embryos that includes automated methods for embryo dispensation, compound delivery, incubation, imaging and analysis of the results. At present, two different assays to detect cardiotoxic compounds and angiogenesis inhibitors can be automatically run in the platform, showing the versatility of the system. A validation of these two assays with known positive and negative compounds, as well as a screening for the detection of unknown anti-angiogenic compounds, have been successfully carried out in the system developed. We present a totally automated platform that allows for high-throughput screenings in a vertebrate organism.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Diez
- Biobide S.L., San Sebastian, Guipuzcoa, Spain
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- Center of Regenerative Medicine in Barcelona, Barcelona, Spain
| | | |
Collapse
|
49
|
Mattes B, Weber S, Peres J, Chen Q, Davidson G, Houart C, Scholpp S. Wnt3 and Wnt3a are required for induction of the mid-diencephalic organizer in the caudal forebrain. Neural Dev 2012; 7:12. [PMID: 22475147 PMCID: PMC3349543 DOI: 10.1186/1749-8104-7-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 04/04/2012] [Indexed: 01/05/2023] Open
Abstract
Background A fundamental requirement for development of diverse brain regions is the function of local organizers at morphological boundaries. These organizers are restricted groups of cells that secrete signaling molecules, which in turn regulate the fate of the adjacent neural tissue. The thalamus is located in the caudal diencephalon and is the central relay station between the sense organs and higher brain areas. The mid-diencephalic organizer (MDO) orchestrates the development of the thalamus by releasing secreted signaling molecules such as Shh. Results Here we show that canonical Wnt signaling in the caudal forebrain is required for the formation of the Shh-secreting MD organizer in zebrafish. Wnt signaling induces the MDO in a narrow time window of 4 hours - between 10 and 14 hours post fertilization. Loss of Wnt3 and Wnt3a prevents induction of the MDO, a phenotype also observed upon blockage of canonical Wnt signaling per se. Pharmaceutical activation of the canonical Wnt pathways in Wnt3/Wnt3a compound morphant embryos is able to restore the lack of the MDO. After blockage of Wnt signaling or knock-down of Wnt3/Wnt3a we find an increase of apoptotic cells specifically within the organizer primordium. Consistently, blockage of apoptosis restores the thalamus organizer MDO in Wnt deficient embryos. Conclusion We have identified canonical Wnt signaling as a novel pathway, that is required for proper formation of the MDO and consequently for the development of the major relay station of the brain - the thalamus. We propose that Wnt ligands are necessary to maintain the primordial tissue of the organizer during somitogenesis by suppressing Tp53-mediated apoptosis.
Collapse
Affiliation(s)
- Benjamin Mattes
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Karlsruhe, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Lessman CA. The developing zebrafish (Danio rerio): a vertebrate model for high-throughput screening of chemical libraries. ACTA ACUST UNITED AC 2012; 93:268-80. [PMID: 21932435 DOI: 10.1002/bdrc.20212] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The zebrafish, Danio rerio, a small, tropical freshwater species native to Pakistan and India, has become a National Institutes of Health-sanctioned model organism and, due to its many advantages as an experimental vertebrate, it has garnered intense interest from the world's scientific community. Some have labeled the zebrafish, the "vertebrate Drosophila," due to its genetic tractability, small size, low cost, and rapid development. The transparency of the embryo, external development, and the many hundreds of mutant and transgenic lines available add to the allure. Now it appears, the zebrafish can be used for high-throughput screening (HTS) of drug libraries in the discovery process of promising new therapeutics. In this review, various types of screening methods are briefly outlined, as are a variety of screens for different disease models, to highlight the range of zebrafish HTS possibilities. High-content screening (HCS) has been available for cell-based screens for some time and, very recently, HCS is being adapted for the zebrafish. This will allow analysis, at high resolution, of drug effects on whole vertebrates; thus, whole body effects as well as those on specific organs and tissues may be determined.
Collapse
Affiliation(s)
- Charles A Lessman
- Department of Biological Sciences, The University of Memphis, Tennessee 38152, USA.
| |
Collapse
|