1
|
Organoids in image-based phenotypic chemical screens. Exp Mol Med 2021; 53:1495-1502. [PMID: 34663938 PMCID: PMC8569209 DOI: 10.1038/s12276-021-00641-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/08/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022] Open
Abstract
Image-based phenotypic screening relies on the extraction of multivariate information from cells cultured under a large variety of conditions. Technical advances in high-throughput microscopy enable screening in increasingly complex and biologically relevant model systems. To this end, organoids hold great potential for high-content screening because they recapitulate many aspects of parent tissues and can be derived from patient material. However, screening is substantially more difficult in organoids than in classical cell lines from both technical and analytical standpoints. In this review, we present an overview of studies employing organoids for screening applications. We discuss the promises and challenges of small-molecule treatments in organoids and give practical advice on designing, running, and analyzing high-content organoid-based phenotypic screens.
Collapse
|
2
|
Qin K, Zhang S, Wang J, Liu D, Xiang Y, Ji X, Wei Y. Screening GLP-1 Receptor Ligands from Natural Products in Herbs through High-Content Technique. Comb Chem High Throughput Screen 2019; 22:445-454. [PMID: 31538889 DOI: 10.2174/1386207322666190919143735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/15/2019] [Accepted: 08/26/2019] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVE Screening of active components from a natural product, especially from a crude extract, is a great challenge. To avoid potential activity interference of the N-terminus modification in the most common constructs based on GCPRs labeled with GFP technology, a Cterminus tGFP-labeled hGLP-1 receptor containing recombinant cell line hGLP-1R-tGFP was constructed and tried to be used in the screening of natural products from Chinese herb. MATERIALS AND METHODS The GLP1 receptor gene was amplified and the inserts pCMV6-AC-tGFP and tGFP were fused at the C-terminus of GLP1 receptor to construct a recombinant plasmid. The recombinant was transfected into U2OS cell and selected with antibiotics and flow cytometry. The constructed cell line was named as hGLP-1R-tGFP cell line. The expression levels of GLP-1R-tGFP protein were confirmed by western-blot. The fluorescence imaging of re-distribution from diffusing to aggregate spots inside the cells was quantitated and analyzed by High Content Screening (HCS) assay. Meanwhile, the specificity, stability and C-terminus function of hGLP-1R-tGFP cell line were characterized. In order to allow the recombinant cell line of hGLP-1R-tGFP to be suitable in highcontent system of Arrayscan-infinity-700 in screening mode, several conditions have also been optimized. In the end, a total of 100 crude extract samples provided by the Yunnan Institute of Materia Medica have been screened with this method. RESULTS Upon the activation of GLP-1 receptors by Exendin 4, fluorescent patches appeared on the cell membrane and subsequently internalized to form fluorescent aggregates inside the cells under fluorescent microscopy examination. The agonistic activity, sensitivity and specificity of the formation of fluorescent aggregate spot in hGLP-1R-tGFP cells have been confirmed by the activation of GLP-1R using the GLP-1analogues. The agonistic effects of GLP-1 analogues are blocked by a GLP-1R antagonist, Exendin9-39. The downstream of GLP-1 pathway, the activation of adenylate cyclase and the raising of cellular cAMP levels, remained intact in these tGFP modified C-terminus GLP-1 receptor cells. Meanwhile, a total of 100 crude extract samples from Chinese herbs have been screened by this method to find new active ingredients. CONCLUSION Combined with High Content Screening image and data automatic acquisition processing, a new screening assay based on a recombinant U2OS cell line which GFP labeled at the C terminus of GLP1 receptor has been developed. GLP-1R agonist activity in extracts of Astragalus propinquus and Panax notoginseng from Chinese herbs has been determined by this method.
Collapse
Affiliation(s)
- Kunhao Qin
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shengting Zhang
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Wang
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Dongbo Liu
- State Key Laboratory of Subhealth Intervention Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yingying Xiang
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiuling Ji
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yunlin Wei
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
3
|
Gómez AI, Cruz M, López-Giménez JF. Evaluating the pharmacological response in fluorescence microscopy images: The Δm algorithm. PLoS One 2019; 14:e0211330. [PMID: 30759168 PMCID: PMC6373910 DOI: 10.1371/journal.pone.0211330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 01/12/2019] [Indexed: 11/24/2022] Open
Abstract
Current drug discovery procedures require fast and effective quantification of the pharmacological response evoked in living cells by agonist compounds. In the case of G-protein coupled receptors (GPCRs), the efficacy of a particular drug to initiate the endocytosis process is related to the formation of endocytic vesicles or endosomes and their subsequent internalisation within intracellular compartments that can be observed with high spatial and temporal resolution by fluorescence microscopy techniques. Recently, an algorithm has been proposed to evaluate the pharmacological response by estimating the number of endosomes per cell on time series of images. However, the algorithm was limited by the dependence on some manually set parameters and in some cases the quality of the image does not allow a reliable detection of the endosomes. Here we propose a simple, fast and automated image analysis method—the Δm algorithm- to quantify a pharmacological response with data obtained from fluorescence microscopy experiments. This algorithm does not require individual object detection and computes the relative increment of the third order moment in fluorescence microscopy images after filtering with the Laplacian of Gaussian function. It was tested on simulations demonstrating its ability to discriminate different experimental situations according to the number and the fluorescence signal intensity of the simulated endosomes. Finally and in order to validate this methodology with real data, the algorithm was applied to several time-course experiments based on the endocytosis of the mu opioid receptor (MOP) initiated by different agonist compounds. Each drug displayed a different Δm sigmoid time-response curve and statistically significant differences were observed among drugs in terms of efficacy and kinetic parameters.
Collapse
Affiliation(s)
- Ana I. Gómez
- Department of Mathematics, Statistics and Computer Science, Universidad de Cantabria, Santander, Spain
- * E-mail:
| | - Marcos Cruz
- Department of Mathematics, Statistics and Computer Science, Universidad de Cantabria, Santander, Spain
| | | |
Collapse
|
4
|
Shun T, Gough AH, Sanker S, Hukriede NA, Vogt A. Exploiting Analysis of Heterogeneity to Increase the Information Content Extracted from Fluorescence Micrographs of Transgenic Zebrafish Embryos. Assay Drug Dev Technol 2017; 15:257-266. [PMID: 28800244 DOI: 10.1089/adt.2017.793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Zebrafish embryos are a near-ideal animal model for drug discovery because of their high genetic and physiological similarity to mammals, small size, high fecundity, and optical transparency. The latter properties make zebrafish at larval stages especially suited for high-content analysis and high throughput screening (HTS). However, inherent biological complexity and the inability to screen multiple specimens in a single well present a challenge for HTS because limiting replicates and high variability often prevent assays from reaching the stringent performance criteria demanded of large-scale screening assays. In this report, we present methodology that overcomes these obstacles. We used our previously developed Tg(lhx1a:EGFP)pt303 line, which expresses a fluorescent transgene that enables live real-time measurements of kidney progenitor cell expansion. Since transgenes are expressed in specific cell populations, whose localization is precisely controlled, both spatially and temporally, we considered the developing embryo to be a "host" for a cell population, analogous to a well of a cell culture microplate, rather than a single specimen. By adopting this view, parameters routinely used to analyze cultured cells became applicable to characterize and quantify zebrafish transgene appearance beyond the overall intensity or area measurements, which are analogous to calculating well average data. Using the pixel-level distribution of transgene intensity as a proxy to cell-level data, we applied population-based intensity and heterogeneity measurements to quantitatively describe and characterize transgene expression in each embryo. Subsequent linear discriminant analysis on eight such parameters captured and condensed this information into a single assay parameter that maximizes the difference between positive and negative responses. The improvements in assay performance resulted in the Tg(lhx1a:EGFP)pt303 assay achieving HTS compatible assay performance in multi-day variability studies, documenting readiness for HTS of compounds that expand kidney progenitor cell populations.
Collapse
Affiliation(s)
- Tongying Shun
- 1 University of Pittsburgh Drug Discovery Institute , Pittsburgh, Pennsylvania
| | - Albert H Gough
- 1 University of Pittsburgh Drug Discovery Institute , Pittsburgh, Pennsylvania.,2 Department of Computational and Systems Biology, University of Pittsburgh Drug Discovery Institute , Pittsburgh, Pennsylvania
| | - Subramaniam Sanker
- 3 Department of Developmental Biology, University of Pittsburgh Drug Discovery Institute , Pittsburgh, Pennsylvania
| | - Neil A Hukriede
- 3 Department of Developmental Biology, University of Pittsburgh Drug Discovery Institute , Pittsburgh, Pennsylvania.,4 Center for Critical Care Nephrology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Andreas Vogt
- 1 University of Pittsburgh Drug Discovery Institute , Pittsburgh, Pennsylvania.,2 Department of Computational and Systems Biology, University of Pittsburgh Drug Discovery Institute , Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
Wu B, Chung S, Jiang XR, McNally J, Pedras-Vasconcelos J, Pillutla R, White JT, Xu Y, Gupta S. Strategies to Determine Assay Format for the Assessment of Neutralizing Antibody Responses to Biotherapeutics. AAPS JOURNAL 2016; 18:1335-1350. [DOI: 10.1208/s12248-016-9954-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/21/2016] [Indexed: 11/30/2022]
|
6
|
Lundholt BK, Linde V, Loechel F, Pedersen HC, Møller S, Praestegaard M, Mikkelsen I, Scudder K, Bjørn SP, Heide M, Arkhammar POG, Terry R, Nielsen SJ. Identification of Akt Pathway Inhibitors Using Redistribution Screening on the FLIPR and the IN Cell 3000 Analyzer. ACTA ACUST UNITED AC 2016; 10:20-9. [PMID: 15695340 DOI: 10.1177/1087057104269989] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The PI3-kinase/Akt pathway is an important cell survival pathway that is deregulated in the majority of human cancers. Despite the apparent druggability of several kinases in the pathway, no specific catalytic inhibitors have been reported in the literature. The authors describe the development of a fluorometric imaging plate reader (FLIPR)-based Akt1 translocation assay to discover inhibitors of Akt1 activation. Screening of a diverse chemical library of 45,000 compounds resulted in identification of several classes of Akt1 translocation inhibitors. Using a combination of classical in vitro assays and translocation assays directed at different steps of the Akt pathway, the mechanisms of action of 2 selected chemical classes were further defined. Protein translocation assays emerge as powerful tools for hit identification and characterization. ( Journal of Biomolecular Screening 2005:20-29)
Collapse
|
7
|
Ghosh RN, DeBiasio R, Hudson CC, Ramer ER, Cowan CL, Oakley RH. Quantitative Cell-Based High-Content Screening for Vasopressin Receptor Agonists Using Transfluor®Technology. ACTA ACUST UNITED AC 2016; 10:476-84. [PMID: 16093557 DOI: 10.1177/1087057105274896] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The authors demonstrate the use of a simple, universal G-protein-coupled receptor (GPCR) assay to screen for agonists for a specific GPCR. Cells stably expressing a green fluorescent protein (GFP)-labeled β-arrestin fusion protein and the vasopressin V2 receptor (V2R) were used in a high-content screening (HCS) assay to screen a small peptide library for V2R agonists. Cells were treated with the peptides at a final concentration of 500 nM for 30min. Agonist stimulation causes V2R internalization into endosomes. GFP-β-arrestin remains associated with the V2R in endosomes, resulting in a fluorescent pattern of intracellular spots. Assay plates were automatically imaged and quantitatively analyzed using an HCS imaging platformand a fast turnkey image analysis application optimized for detection of receptor activation and intracellular spots. Hits were further evaluated to determine their potency. The combination of unique biology, automated high-content analysis, and a powerful means of validating hits results in better leads.
Collapse
|
8
|
Bhawe KM, Blake RA, Clary DO, Flanagan PM. An Automated Image Capture and Quantitation Approach to Identify Proteins Affecting Tumor Cell Proliferation. ACTA ACUST UNITED AC 2016; 9:216-22. [PMID: 15140383 DOI: 10.1177/1087057103262842] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To facilitate the characterization of proteins that negatively regulate tumor cell proliferation in vitro, the authors have implemented a high-throughput functional assay that measures S-phase progression of tumor cell lines. For 2 tumor cell lines—human melanoma A375 and human lung carcinoma A549—conditions were established using the cyclin-dependent kinase inhibitor, p27kip; the tumor suppressor p53, a kinase-inactive allele of the cell cycle-regulated serine/threonine kinase Aurora2; and the G1/S drug block, aphidicolin. For screening purposes, gene libraries were delivered by adenoviral infection. Cells were fixed and labeled by immunocytochemistry, and an automated image acquisition and analysis package on a Cellomics ArrayScan®II was used to quantify the effects of these treatments on cell proliferation. The assay can be used to identify novel proteins involved in proliferation and serves as a more robust, reproducible, and sensitive alternative to enzyme-linked immunosorbent assay (ELISA)-based technologies.
Collapse
Affiliation(s)
- Kaumudi M Bhawe
- Target Discovery Department, Sugen, Inc. (A Subsidiary of Pfizer), South San Francisco, CA, USA.
| | | | | | | |
Collapse
|
9
|
Gasparri F, Mariani M, Sola F, Galvani A. Quantification of the Proliferation Index of Human Dermal Fibroblast Cultures with the ArrayScan™ High-Content Screening Reader. ACTA ACUST UNITED AC 2016; 9:232-43. [PMID: 15146854 DOI: 10.1177/1087057103262836] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High-throughput cell-based assays are becoming a powerful approach in the drug discovery process. The ArrayScan™ high-content screening (HCS) reader is a cytometer based on a fully automated fluorescence microscope that is able to obtain quantitative information on the intensity and localization of fluorescence signals within single cells over a wide cell population. The aim of this work was to set up an automated HCS multiparameter analysis for the quantification of the in vitro proliferation index of normal human dermal fibroblast (NHDF) cultures. The authors stimulated starved NHDF with insulin-like growth factor-1, platelet-derived growth factor, epidermal growth factor, fibroblast growth factor, or serum, and they quantified the proliferation index by measuring the expression of Ki-67 antigen, the incorporation of bromodeoxyuridine (BrdU), and the phosphorylation of the retinoblastoma protein (pRb). This approach also allowed quantification of the mitotic index by phospho-histone H3 staining and the percentage of cells in the S-phase by BrdU incorporation. The proliferation data from the ArrayScan™ assays were validated by comparison with a reference enzyme-linked immunosorbent assay (ELISA) and by flow cytometry. The measured proliferation indices were highly reproducible in repeated measures and independent experiments. The authors therefore propose that the ArrayScan™ HCS system could be used for high-throughput multiparameter analysis and quantification of the proliferation of cellular cultures.
Collapse
Affiliation(s)
- Fabio Gasparri
- DRO-Oncology, Pharmacology Department, Pharmacia Corporation, Nerviano, Italy.
| | | | | | | |
Collapse
|
10
|
Fraietta I, Gasparri F. The development of high-content screening (HCS) technology and its importance to drug discovery. Expert Opin Drug Discov 2016; 11:501-14. [PMID: 26971542 DOI: 10.1517/17460441.2016.1165203] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION High-content screening (HCS) was introduced about twenty years ago as a promising analytical approach to facilitate some critical aspects of drug discovery. Its application has spread progressively within the pharmaceutical industry and academia to the point that it today represents a fundamental tool in supporting drug discovery and development. AREAS COVERED Here, the authors review some of significant progress in the HCS field in terms of biological models and assay readouts. They highlight the importance of high-content screening in drug discovery, as testified by its numerous applications in a variety of therapeutic areas: oncology, infective diseases, cardiovascular and neurodegenerative diseases. They also dissect the role of HCS technology in different phases of the drug discovery pipeline: target identification, primary compound screening, secondary assays, mechanism of action studies and in vitro toxicology. EXPERT OPINION Recent advances in cellular assay technologies, such as the introduction of three-dimensional (3D) cultures, induced pluripotent stem cells (iPSCs) and genome editing technologies (e.g., CRISPR/Cas9), have tremendously expanded the potential of high-content assays to contribute to the drug discovery process. Increasingly predictive cellular models and readouts, together with the development of more sophisticated and affordable HCS readers, will further consolidate the role of HCS technology in drug discovery.
Collapse
Affiliation(s)
- Ivan Fraietta
- a Department of Biology , Nerviano Medical Sciences S.r.l ., Nerviano , Milano , Italy
| | - Fabio Gasparri
- a Department of Biology , Nerviano Medical Sciences S.r.l ., Nerviano , Milano , Italy
| |
Collapse
|
11
|
Campa VM, Capilla A, Varela MJ, de la Rocha AMA, Fernandez-Troyano JC, Barreiro RB, Lopez-Gimenez JF. Endocytosis as a biological response in receptor pharmacology: evaluation by fluorescence microscopy. PLoS One 2015; 10:e0122604. [PMID: 25849355 PMCID: PMC4388511 DOI: 10.1371/journal.pone.0122604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/11/2015] [Indexed: 12/02/2022] Open
Abstract
The activation of G-protein coupled receptors by agonist compounds results in diverse biological responses in cells, such as the endocytosis process consisting in the translocation of receptors from the plasma membrane to the cytoplasm within internalizing vesicles or endosomes. In order to functionally evaluate endocytosis events resulted from pharmacological responses, we have developed an image analysis method –the Q-Endosomes algorithm– that specifically discriminates the fluorescent signal originated at endosomes from that one observed at the plasma membrane in images obtained from living cells by fluorescence microscopy. Mu opioid (MOP) receptor tagged at the carboxy-terminus with yellow fluorescent protein (YFP) and permanently expressed in HEK293 cells was used as experimental model to validate this methodology. Time-course experiments performed with several agonists resulted in different sigmoid curves depending on the drug used to initiate MOP receptor endocytosis. Thus, endocytosis resulting from the simultaneous activation of co-expressed MOP and serotonin 5-HT2C receptors by morphine plus serotonin was significantly different, in kinetics as well as in maximal response parameters, from the one caused by DAMGO, sufentanyl or methadone. Therefore, this analytical tool permits the pharmacological characterization of receptor endocytosis in living cells with functional and temporal resolution.
Collapse
Affiliation(s)
- Víctor M. Campa
- Institute of Biomedicine and Biotechnology of Cantabria, (IBBTEC), CSIC, UC, Santander, Spain
| | - Almudena Capilla
- Department of Biological and Health Psychology, Autonoma University of Madrid (UAM), Madrid, Spain
| | - María J. Varela
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | | | | | - R. Belén Barreiro
- Institute of Physics of Cantabria, (IFCA), CSIC, UC, Santander, Spain
| | - Juan F. Lopez-Gimenez
- Institute of Biomedicine and Biotechnology of Cantabria, (IBBTEC), CSIC, UC, Santander, Spain
- * E-mail:
| |
Collapse
|
12
|
O’Connor JE, Herrera G, Martínez-Romero A, de Oyanguren FS, Díaz L, Gomes A, Balaguer S, Callaghan RC. Systems Biology and immune aging. Immunol Lett 2014; 162:334-45. [DOI: 10.1016/j.imlet.2014.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
|
13
|
O'Connor JE, Herrera G, Martínez-Romero A, Oyanguren FSD, Díaz L, Gomes A, Balaguer S, Callaghan RC. WITHDRAWN: Systems Biology and Immune Aging. Immunol Lett 2014:S0165-2478(14)00197-7. [PMID: 25251659 DOI: 10.1016/j.imlet.2014.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of anarticle that has already been published, http://dx.doi.org/10.1016/j.imlet.2014.09.009. The duplicate article has therefore been withdrawn.
Collapse
Affiliation(s)
- José-Enrique O'Connor
- Laboratory of Translational Cytomics, Joint Research Unit, The University of Valencia and Principe Felipe Research Center, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain.
| | - Guadalupe Herrera
- Laboratory of Translational Cytomics, Joint Research Unit, The University of Valencia and Principe Felipe Research Center, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain
| | - Alicia Martínez-Romero
- Cytometry Technological Service, Principe Felipe Research Center, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain
| | - Francisco Sala-de Oyanguren
- Laboratory of Translational Cytomics, Joint Research Unit, The University of Valencia and Principe Felipe Research Center, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain
| | - Laura Díaz
- Laboratory of Translational Cytomics, Joint Research Unit, The University of Valencia and Principe Felipe Research Center, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain
| | - Angela Gomes
- Laboratory of Translational Cytomics, Joint Research Unit, The University of Valencia and Principe Felipe Research Center, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain
| | - Susana Balaguer
- Laboratory of Translational Cytomics, Joint Research Unit, The University of Valencia and Principe Felipe Research Center, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain
| | - Robert C Callaghan
- Department of Pathology, Faculty of Medicine, The University of Valencia, Valencia, Spain; Cytometry Laboratory, Incliva Foundation, Clinical University Hospital, The University of Valencia, Valencia, Spain
| |
Collapse
|
14
|
Singh S, Carpenter AE, Genovesio A. Increasing the Content of High-Content Screening: An Overview. ACTA ACUST UNITED AC 2014; 19:640-50. [PMID: 24710339 PMCID: PMC4230961 DOI: 10.1177/1087057114528537] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/31/2013] [Indexed: 01/17/2023]
Abstract
Target-based high-throughput screening (HTS) has recently been critiqued for its relatively poor yield compared to phenotypic screening approaches. One type of phenotypic screening, image-based high-content screening (HCS), has been seen as particularly promising. In this article, we assess whether HCS is as high content as it can be. We analyze HCS publications and find that although the number of HCS experiments published each year continues to grow steadily, the information content lags behind. We find that a majority of high-content screens published so far (60−80%) made use of only one or two image-based features measured from each sample and disregarded the distribution of those features among each cell population. We discuss several potential explanations, focusing on the hypothesis that data analysis traditions are to blame. This includes practical problems related to managing large and multidimensional HCS data sets as well as the adoption of assay quality statistics from HTS to HCS. Both may have led to the simplification or systematic rejection of assays carrying complex and valuable phenotypic information. We predict that advanced data analysis methods that enable full multiparametric data to be harvested for entire cell populations will enable HCS to finally reach its potential.
Collapse
Affiliation(s)
- Shantanu Singh
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Auguste Genovesio
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA École Normale Supérieure, 45, Rue d'Ulm, 75005 Paris
| |
Collapse
|
15
|
Beltran-Sastre V, Navarro E. Measuring activity of endocytosis-regulating factors in T-lymphocytes by flow cytometry. Cytotechnology 2014; 67:551-8. [PMID: 24504563 DOI: 10.1007/s10616-014-9696-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/24/2014] [Indexed: 11/25/2022] Open
Abstract
Elucidation of the mechanisms regulating membrane traffic of lymphocyte receptors is of great interest to manipulate the immune response, as well as for accurately delivering drugs and nanoprobes to cells. Aiming to detect and characterize regulators of endocytosis and intracellular traffic, we have modified the FACS-based endocytosis assay to measure and quantify the activity of putative endocytic regulators as EGFP chimeras. To study the activity of putative endocytosis regulators, we transfected Jurkat T-lymphocytes with EGFP-tagged constructs of the regulators to be tested. Cells were then incubated with a αCD3(APC) antibody, and were allowed to internalize the label. After acid-washing the cells, APC fluorescence was measured by flow cytometry in cells gated for EGFP(+), as well as in their EGFP(-) (transfection-resistant) counterparts that were taken as internal controls. This approach facilitated intra- and inter-assay normalization of endocytic rates/loads by comparison with the internal control. We have used this assay to test the regulatory activity of polarity kinase EMK1, and here we substantiate a role for EMK1 in the control of receptor internalization in T-lymphocytes. The method here presented gives quantitative measures of internalization, and will facilitate the development of tools to modulate endocytic rates or the intracellular fate of internalized materials.
Collapse
Affiliation(s)
- Violeta Beltran-Sastre
- Laboratori d'Oncologia Molecular (LOM), Bellvitge Research Institute (IDIBELL), Gran Via 199-203 Hospitalet de Llobregat, 08908, Barcelona, Spain
| | | |
Collapse
|
16
|
Leonard AP, Appleton KM, Luttrell LM, Peterson YK. A high-content, live-cell, and real-time approach to the quantitation of ligand-induced β-Arrestin2 and Class A/Class B GPCR mobilization. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:150-170. [PMID: 23351552 PMCID: PMC4169994 DOI: 10.1017/s1431927612014067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We report the development of a method to analyze receptor and β-arrestin2 mobilization between Class A and B GPCRs via time-resolved fluorescent microscopy coupled with semiautomated high-content multiparametric analysis. Using transiently expressed, tagged β2-adrenergic receptor (β₂-AR) or parathyroid hormone receptor type 1 (PTH₁R), we quantified trafficking of the receptors along with the mobilization and colocalization of coexpressed tagged β-arrestin2. This classification system allows for exclusion of cells with nonoptimal characteristics and calculation of multiple morphological and spatial parameters including receptor endosome formation, β-arrestin mobilization, colocalization, areas, and shape. Stimulated Class A and B receptors demonstrate dramatically different patterns with regard to β-arrestin interactions. The method provides high kinetic resolution measurement of receptor translocation, which allows for the identification of the fleeting β-arrestin interaction found with β₂-AR agonist stimulation, in contrast to stronger mobilization and receptor colocalization with agonist stimulation of the PTH₁R. Though especially appropriate for receptor kinetic studies, this method is generalizable to any dual fluorescence probe system in which quantification of object formation and movement is desired. These methodologies allow for quantitative, unbiased measurement of microscopy data and are further enhanced by providing real-time kinetics.
Collapse
Affiliation(s)
- Anthony P. Leonard
- Medical University of South Carolina, Pharmaceutical and Biomedical Sciences, Charleston, SC 29425, USA
| | - Kathryn M. Appleton
- Medical University of South Carolina, Pharmaceutical and Biomedical Sciences, Charleston, SC 29425, USA
| | - Louis M. Luttrell
- Medical University of South Carolina, Medicine, Charleston, SC 29425, USA
| | - Yuri K. Peterson
- Medical University of South Carolina, Pharmaceutical and Biomedical Sciences, Charleston, SC 29425, USA
| |
Collapse
|
17
|
Gao Y, Vogt A, Forsyth CJ, Koide K. Comparison of splicing factor 3b inhibitors in human cells. Chembiochem 2012; 14:49-52. [PMID: 23172726 DOI: 10.1002/cbic.201200558] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Indexed: 01/05/2023]
Abstract
Name your splice: FR901464 analogues and herboxidiene inhibit constitutive splicing, most likely by inhibiting spliceosomal subunit SF3b. A parallel comparison of these compounds in a cell-based assay system showed meayamycin B as the most potent splicing inhibitor among these small molecules.
Collapse
Affiliation(s)
- Yang Gao
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
18
|
Are we just learning the scales on the chemokine receptor pianos? Future Med Chem 2012; 4:825-7. [DOI: 10.4155/fmc.12.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
Conway BR, Demarest KT. The Use of Biosensors to Study GPCR Function: Applications for High-Content Screening. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820214641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Jin S, Ellis E, Veetil JV, Yao H, Ye K. Visualization of human immunodeficiency virus protease inhibition using a novel Förster resonance energy transfer molecular probe. Biotechnol Prog 2011; 27:1107-14. [PMID: 21584951 DOI: 10.1002/btpr.628] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 03/23/2011] [Indexed: 11/11/2022]
Abstract
The in vivo high-throughput screening (HTS) of human immunodeficiency virus (HIV) protease inhibitors is a significant challenge because of the lack of reliable assays that allow the visualization of HIV targets within living cells. In this study, we developed a new molecular probe that utilizes the principles of Förster resonance energy transfer (FRET) to visualize HIV-1 protease inhibition within living cells. The probe is constructed by linking two fluorescent proteins: AcGFP1 (a mutant green fluorescent protein) and mCherry (a red fluorescent protein) with an HIV-1 protease cleavable p2/p7 peptide. The cleavage of the linker peptide by HIV-1 protease leads to separation of AcGFP1 from mCherry, quenching FRET between AcGFP1 and mCherry. Conversely, the addition of a protease inhibitor prevents the cleavage of the linker peptide by the protease, allowing FRET from AcGFP1 to mCherry. Thus, HIV-1 protease inhibition can be determined by measuring the FRET signal's change generated from the probe. Both in vitro and in vivo studies demonstrated the feasibility of applying the probe for quantitative analyses of HIV-1 protease inhibition. By cotransfecting HIV-1 protease and the probe expression plasmids into 293T cells, we showed that the inhibition of HIV-1 protease by inhibitors can be visualized or quantitatively determined within living cells through ratiometric FRET microscopy imaging measurement. It is expected that this new probe will allow high-content screening (HCS) of new anti-HIV drugs.
Collapse
Affiliation(s)
- Sha Jin
- Biomedical Engineering Program, College of Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| | | | | | | | | |
Collapse
|
21
|
|
22
|
Bauer A, Stockwell B. Neurobiological applications of small molecule screening. Chem Rev 2008; 108:1774-86. [PMID: 18447397 DOI: 10.1021/cr0782372] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Andras Bauer
- Columbia University, Department of Biological Sciences, 614 Fairchild Center, New York, New York 10027, USA
| | | |
Collapse
|
23
|
Bednarek R, Boncela J, Smolarczyk K, Cierniewska-Cieslak A, Wyroba E, Cierniewski CS. Ku80 as a Novel Receptor for Thymosin β4 That Mediates Its Intracellular Activity Different from G-actin Sequestering. J Biol Chem 2008; 283:1534-1544. [DOI: 10.1074/jbc.m707539200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
24
|
Haasen D, Merk S, Seither P, Martyres D, Hobbie S, Heilker R. Pharmacological Profiling of Chemokine Receptor–Directed Compounds Using High-Content Screening. ACTA ACUST UNITED AC 2007; 13:40-53. [DOI: 10.1177/1087057107312128] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
High-content screening, typically defined as automated fluorescence microscopy combined with image analysis, is now well established as a means to study test compound effects in cellular disease-modeling systems. In this work, the authors establish several high-content screening assays in the 384-well format to measure the activation of the CC-type chemokine receptors 2B and 3 (CCR2B, CCR3). As a cellular model system, the authors use Chinese hamster ovary cells, stably transfected with 1 of the respective receptors. They characterize receptor stimulation by human monocyte chemoattractant protein-1 for CCR2B and by human eotaxin-1 for CCR3: Receptor internalization and receptor-induced phosphorylation of ERK1/2 (pERK) were quantified using fluorescence imaging and image analysis. The 4 assay formats were robust, displayed little day-to-day variability, and delivered good Z′ statistics for both CCRs. For each of the 2 receptors, the authors evaluated the potency of inhibitory compounds in the internalization format and the pERK assay and compared the results with those from other assays (ligand displacement binding, Ca2+ mobilization, guanosine triphosphate exchange, chemotaxis). Both physiological agonists and test compounds differed significantly with respect to potencies and efficacies in the various profiling assays. The diverse assay formats delivered partially overlapping and partially complementary information, enabling the authors to reduce the probability of test compound—related technology artifacts and to specify the mode of action for individual test compounds. Transfer of the high-content screening format to a fully automated medium-throughput screening platform for CCR3 enabled the profiling of large compound numbers with respect to G protein signaling and possible tolerance-inducing liabilities. ( Journal of Biomolecular Screening 2008:40-53)
Collapse
Affiliation(s)
- Dorothea Haasen
- Department of Integrated Lead Discovery, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Susanne Merk
- Department of Integrated Lead Discovery, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Peter Seither
- Department of Respiratory Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Domnic Martyres
- Department of Chemical Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Silke Hobbie
- Department of Respiratory Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Ralf Heilker
- Department of Integrated Lead Discovery, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany, -ingelheim.com
| |
Collapse
|
25
|
Vogt A, Lazo JS. Implementation of high-content assay for inhibitors of mitogen-activated protein kinase phosphatases. Methods 2007; 42:268-77. [PMID: 17532514 PMCID: PMC1950282 DOI: 10.1016/j.ymeth.2007.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 02/14/2007] [Indexed: 10/23/2022] Open
Abstract
Small molecule inhibitors of protein tyrosine kinases have become both powerful chemical probes of biological processes and clinically effective therapeutics. In contrast, few small molecule inhibitors of protein tyrosine phosphatases have been identified and none are currently approved for clinical use. New cell-based high-content methods have been developed that should enable investigators to probe for selective inhibitors of diseases-relevant protein phosphatases. Details of these methods are described herein.
Collapse
Affiliation(s)
- Andreas Vogt
- Department of Pharmacology, The University of Pittsburgh Drug Discovery Institute, The Pittsburgh Molecular Library Screening Center, Biomedical Science Tower 3, Suite 10040, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
26
|
Heilker R. High Content Screening to Monitor G Protein-Coupled Receptor Internalisation. ACTA ACUST UNITED AC 2007:229-47. [PMID: 17703585 DOI: 10.1007/2789_2006_011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
G protein-coupled receptors (GPCRs) fulfil a broad diversity of physiological functions in areas such as neurotransmission, respiration, cardiovascular action, pain and more. Consequently, they are considered as the most successful group of therapeutic targets on the pharmaceutical market, and the search for compounds that interfere with GPCR function in a specific and selective way is a major focus of the pharmaceutical industry. High Content Screening (HCS), a combination of fluorescence microscopic imaging and automated image analysis, has become a frequently employed tool to study test compound effects in cellular disease modelling systems. One way to functionally analyse the effect of test compounds on GPCRs by HCS relies on the broadly observed phenomenon of desensitisation. Agonist stimulation of most GPCRs leads to their intracellular phosphorylation and subsequent internalisation, resulting in the termination of receptor signalling and the seclusion of the GPCR from further extracellular stimulation. Complementary to other functional GPCR drug discovery assays, GPCR internalisation assays enable a desensitisation-focussed pharmacological analysis of test compounds.
Collapse
Affiliation(s)
- R Heilker
- Boehringer Ingelheim Pharma GmbH Co. KG, Department of Lead Discovery, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany.
| |
Collapse
|
27
|
Grove LE, Ghosh RN. Quantitative characterization of mitosis-blocked tetraploid cells using high content analysis. Assay Drug Dev Technol 2007; 4:421-42. [PMID: 16945015 DOI: 10.1089/adt.2006.4.421] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A range of cellular evidence supporting a G1 tetraploidy checkpoint was obtained from different assay methods including flow cytometry, immunoblotting, and microscopy. Cancer research would benefit if these cellular properties could instead be measured by a single, quantitative, automated assay method, such as high content analysis (HCA). Thus, nocodazole-treated cells were fluorescently labeled for different cell cycle-associated properties, including DNA content, retinoblastoma (Rb) and histone H3 phosphorylation, p53 and p21(WAF1) expression, nuclear and cell sizes, and cell morphology, and automatically imaged, analyzed, and correlated using HCA. HCA verified that nocodazole-induced mitosis block resulted in tetraploid cells. Rb and histone H3 were maximally hyperphosphorylated by 24 h of nocodazole treatment, accompanied by cell and nuclear size decreases and cellular rounding. Cells remained tetraploid and mononucleated with longer treatments, but other targets reverted to G1 levels, including Rb and histone H3 dephosphorylation accompanied by cellular respreading. This was accompanied by increased p53 and p21(WAF1) expression levels. The range of effects accompanying nocodazole-induced block of mitosis and the resulting tetraploid cells' reversal to a pseudo-G1 state can be quantitatively measured by HCA in an automated manner, recommending this assay method for the large-scale biology challenges of modern cancer drug discovery.
Collapse
|
28
|
Wolff M, Wiedenmann J, Nienhaus GU, Valler M, Heilker R. Novel fluorescent proteins for high-content screening. Drug Discov Today 2006; 11:1054-60. [PMID: 17129823 DOI: 10.1016/j.drudis.2006.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 08/18/2006] [Accepted: 09/11/2006] [Indexed: 12/01/2022]
Abstract
The development of fast microscopic imaging devices has enabled the application of automated fluorescence microscopy to pharmaceutical high-throughput drug-discovery assays, referred to as high-content screening (HCS). Initially, green fluorescent protein and its derivatives from Aequorea Victoria, and later anthozoan fluorescent proteins (FPs) have become potent tools as live-cell markers in HCS assays. We illustrate the broad applicability of classic and novel FPs to drug-discovery assays, giving example applications of the use of FPs in multiplexed imaging as fluorescent timers, photosensitizers and pulse-chase labels, and for robotically integrated compound testing.
Collapse
Affiliation(s)
- Michael Wolff
- Department of Lead Discovery, Boehringer Ingelheim Pharma GmbH and Co. KG, Birkendorfer Str.65, D-88397 Biberach, Germany
| | | | | | | | | |
Collapse
|
29
|
Cromlish WA, Tang M, Kyskan R, Tran L, Kennedy BP. PTP1B-dependent insulin receptor phosphorylation/residency in the endocytic recycling compartment of CHO-IR cells. Biochem Pharmacol 2006; 72:1279-92. [PMID: 16956584 DOI: 10.1016/j.bcp.2006.07.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 07/31/2006] [Accepted: 07/31/2006] [Indexed: 12/22/2022]
Abstract
Insulin binds to the alpha subunit of the insulin receptor (IR) on the cell surface. The insulin-IR complex is subsequently internalized and trafficked within the cell. Endocytosed receptors, devoid of insulin, recycle back to the plasma membrane through the endocytic recycling compartment (ERC). Using a high content screening system, we investigate the intracellular trafficking of the IR and its phosphorylation state, within the ERC, in response to protein tyrosine phosphatase-1B (PTP1B) inhibition. Insulin stimulates, in a time- and dose-dependent manner, the accumulation of phosphorylated IR (pY(1158,1162,1163 IR) in the ERC of CHO-IR cells. Treatment of CHO-IR cells with PTP1B-specific inhibitors or siRNA leads to dose-dependent increases in IR residency and phosphorylation within the ERC. The results also demonstrate that PTP1B redistributes within CHO-IR cells upon insulin challenge. The established system will allow for efficient screening of candidate inhibitors for the modulation of PTP1B activity.
Collapse
Affiliation(s)
- Wanda A Cromlish
- Department of Biochemistry & Molecular Biology, Merck Frosst Centre for Therapeutic Research, Pointe-Claire-Dorval, Pointe-Claire-Dorval, Quebec, Canada.
| | | | | | | | | |
Collapse
|
30
|
Wüstner D. Steady State Analysis and Experimental Validation of a Model for Hepatic High-Density Lipoprotein Transport. Traffic 2006; 7:699-715. [PMID: 16637891 DOI: 10.1111/j.1398-9219.2006.00421.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Transport of high-density lipoprotein (HDL) in the hepatocyte plays a fundamental role in reverse cholesterol transport and regulation of plasma HDL levels. On the basis of a recently developed kinetic model, the steady state distribution of HDL was analyzed. Fractional fluorescence of labeled HDL in the basolateral membrane, sorting endosomes (SE), the subapical compartment/ apical recycling compartment, the biliary canaliculus and in late endosomes and lysosomes (LE/LYS) including expected standard deviation is predicted. Improved parameter estimation was obtained by including kinetic data of apical endocytosis of fluorescent markers for LE/LYS, asialoorosomucoid and Rhodamine-dextran, in the regression. Predicted values using the refined kinetic parameters are in good agreement with experimental values of compartmental steady state fluorescence of Alexa488-HDL in polarized hepatic HepG2 cells. From calculated steady state fluxes, it is suggested that export of HDL from basolateral SE is the key step for determining the transport of HDL through the hepatocyte. The analysis provides testable predictions for high-throughput fluorescence microscopy screening experiments on potential inhibitors of hepatic HDL processing. By quantitative fluorescence imaging and model analysis, it is shown that the phosphoinositide kinase inhibitor wortmannin prevents apical transport of fluorescent HDL from basolateral SE. The results support that endosomes of polarized hepatic cells have different sorting functions and that apical endocytosis is an integrative trafficking step in hepatocytes.
Collapse
Affiliation(s)
- Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.
| |
Collapse
|
31
|
Nienhaus GU, Nienhaus K, Hölzle A, Ivanchenko S, Renzi F, Oswald F, Wolff M, Schmitt F, Röcker C, Vallone B, Weidemann W, Heilker R, Nar H, Wiedenmann J. Photoconvertible Fluorescent Protein EosFP: Biophysical Properties and Cell Biology Applications. Photochem Photobiol 2006; 82:351-8. [PMID: 16613485 DOI: 10.1562/2005-05-19-ra-533] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
EosFP is a fluorescent protein from the coral Lobophyllia hemprichii that changes its fluorescence emission from green to red upon irradiation with near-UV light. Here we present the spectroscopic properties of wild-type EosFP and a variety of monomeric and dimeric mutants and provide a structural interpretation of its oligomerization and photoconversion, which is based on X-ray structure analysis of the green and red species that we reported recently. Because functional expression of the monomeric EosFP variant is limited to temperatures of 30 degrees C, we have developed a tandem dimer. This construct, in which two EosFP subunits are connected by a flexible 12 amino acid linker, expresses well after fusion with the androgen and endothelin A receptors at 37 degrees C. A variety of applications in cellular imaging, developmental biology and automated high-content screening applications are presented, which demonstrate that EosFP is a powerful tool for in vivo monitoring of cellular processes.
Collapse
|
32
|
Haasen D, Schnapp A, Valler MJ, Heilker R. G Protein‐Coupled Receptor Internalization Assays in the High‐Content Screening Format. Methods Enzymol 2006; 414:121-39. [PMID: 17110190 DOI: 10.1016/s0076-6879(06)14008-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
High-content screening (HCS), a combination of fluorescence microscopic imaging and automated image analysis, has become a frequently applied tool to study test compound effects in cellular disease-modeling systems. This chapter describes the measurement of G protein-coupled receptor (GPCR) internalization in the HCS format using a high-throughput, confocal cellular imaging device. GPCRs are the most successful group of therapeutic targets on the pharmaceutical market. Accordingly, the search for compounds that interfere with GPCR function in a specific and selective way is a major focus of the pharmaceutical industry today. This chapter describes methods for the ligand-induced internalization of GPCRs labeled previously with either a fluorophore-conjugated ligand or an antibody directed against an N-terminal tag of the GPCR. Both labeling techniques produce robust assay formats. Complementary to other functional GPCR drug discovery assays, internalization assays enable a pharmacological analysis of test compounds. We conclude that GPCR internalization assays represent a valuable medium/high-throughput screening format to determine the cellular activity of GPCR ligands.
Collapse
Affiliation(s)
- Dorothea Haasen
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | | | | |
Collapse
|
33
|
Mikic I, Planey S, Zhang J, Ceballos C, Seron T, von Massenbach B, Watson R, Callaway S, McDonough PM, Price JH, Hunter E, Zacharias D. A live cell, image-based approach to understanding the enzymology and pharmacology of 2-bromopalmitate and palmitoylation. Methods Enzymol 2006; 414:150-87. [PMID: 17110192 DOI: 10.1016/s0076-6879(06)14010-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The addition of a lipid moiety to a protein increases its hydrophobicity and subsequently its attraction to lipophilic environments like membranes. Indeed most lipid-modified proteins are localized to membranes where they associate with multiprotein signaling complexes. Acylation and prenylation are the two common categories of lipidation. The enzymology and pharmacology of prenylation are well understood but relatively very little is known about palmitoylation, the most common form of acylation. One distinguishing characteristic of palmitoylation is that it is a dynamic modification. To understand more about how palmitoylation is regulated, we fused palmitoylation substrates to fluorescent proteins and reported their subcellular distribution and trafficking. We used automated high-throughput fluorescence microscopy and a specialized computer algorithm to image and measure the fraction of palmitoylation reporter on the plasma membrane versus the cytoplasm. Using this system we determined the residence half-life of palmitate on the dipalmitoyl substrate peptide from GAP43 as well as the EC(50) for 2-bromopalmitate, a common inhibitor of palmitoylation.
Collapse
|
34
|
Greasley PJ, Jansen FP. G-protein-coupled receptor screening technologies. DRUG DISCOVERY TODAY. TECHNOLOGIES 2005; 2:163-170. [PMID: 24981844 DOI: 10.1016/j.ddtec.2005.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The choice of assay for high throughput screening (HTS) is of strategic importance to the successful identification of chemical entities that can be developed into drugs. During the past decade several technologies have emerged permitting large compound collections to be screened against biologically relevant models in a high throughput fashion. In this review, we summarise the technologies that are available for screening G-protein-coupled receptors (GPCRs) and discuss the issues that impact upon the choice of screening methodology.:
Collapse
Affiliation(s)
- Peter J Greasley
- Lead Discovery Sciences, Department of Molecular Pharmacology, AstraZeneca R&D, SE43183 Mölndal, Sweden.
| | - Frank P Jansen
- Lead Discovery Sciences, Department of Molecular Pharmacology, AstraZeneca R&D, SE43183 Mölndal, Sweden
| |
Collapse
|
35
|
Vakkila J, DeMarco RA, Lotze MT. Imaging analysis of STAT1 and NF-kappaB translocation in dendritic cells at the single cell level. J Immunol Methods 2004; 294:123-34. [PMID: 15604022 DOI: 10.1016/j.jim.2004.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 07/08/2004] [Accepted: 09/06/2004] [Indexed: 11/21/2022]
Abstract
Rapid assessment of immune or stem cells, which are now widely applied in the clinical setting of cancer treatment, is necessary to speed their development and to determine their quality. We have evaluated immature dendritic cells (iDC) by semiautomated imaging cytometry which provides detailed assessment at a single cell level. Nuclear translocation of NF-kappaB was studied by imaging analysis as well as electrophoretic mobility shift assay with an excellent correlation (r=0.981) over a broad range of lipopolysaccharide (LPS) concentrations. Imaging analysis was time saving (5 h vs. 3 days), and required 30- to 100-fold less cells per analysis. Single cell information revealed remarkable heterogeneity between individual iDC and permitted detection of responses to 40 pg/ml of LPS. In IL-1beta/IFNgamma activated iDC, STAT1 responses preceded NF-kappaB responses, and the expression of both was strongly correlated in individual cells (p<0.001). IFNgamma amplified IL-1-induced NF-kappaB responses. NF-kappaB responses to IL-1beta, CD40L, and LPS were donor-dependent (n=7), correlated with the quality of iDC preparations (p=0.002), and IL-12 p70 production (p=0.010). NF-kappaB measurements in iDC within mixed cell cultures (iDC, NK, K562) demonstrated that these strategies are applicable for analyses of complex cell-cell interactions. Imaging analysis is a method that could be valuable for quality control of cell therapy preparations.
Collapse
Affiliation(s)
- Jukka Vakkila
- Molecular Medicine Institute, University of Pittsburgh, 300 Technology Drive, Pittsburgh, PA 15219, USA
| | | | | |
Collapse
|
36
|
Ghosh RN, Grove L, Lapets O. A Quantitative Cell-Based High-Content Screening Assay for the Epidermal Growth Factor Receptor-Specific Activation of Mitogen-Activated Protein Kinase. Assay Drug Dev Technol 2004; 2:473-81. [PMID: 15671645 DOI: 10.1089/adt.2004.2.473] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The complexity of mitogen-activated protein kinase (MAPK) signaling pathways and their activation by different stimuli makes assaying the activation of particular MAPKs by specific receptors a challenging problem. The multiplexing capability of quantitative high-content screening (HCS) assays enables the simultaneous monitoring and correlation, in the same cell, of an MAPK's specific activation with a particular receptor's post-signaling behavior, such as its internalization. We demonstrate a cell-based HCS assay to quantify the epidermal growth factor (EGF) receptor-specific activation of the MAPK ERK. Activation was quantified by measuring immunofluorescently labeled phosphorylated extracellular signal-regulated protein kinases (ERK) in the nucleus. Specificity of ERK activation by the EGF receptor was simultaneously confirmed in the same cell by quantitatively monitoring fluorescent EGF's internalization and subsequent intracellular degradation. Quantitative analysis of the temporal behavior of these two activities showed that phosphorylated ERK's accumulation in the nucleus peaked at 5 min before falling to basal levels by 30 min. Cellular accumulation of fluorescent EGF was slower, peaking around 30 min, before being degraded. This assay strategy can serve as a paradigm to study other signaling pathways and their activation by specific receptors. The flexibility and multiplexing capability of HCS assays allow the use of additional targets to further qualify the specificity of response by including other MAPKs or receptors, to rule out cross-talk from competing signaling pathways, or to simultaneously monitor toxicity effects of compounds. This automated, non-subjective, easy-to-use assay procedure provides information rich, quantitative results, and demonstrates the potential of the HCS assay approach in deconvolving intracellular signaling pathways.
Collapse
Affiliation(s)
- Richik N Ghosh
- Cellomics, Inc., 100 Technology Drive, Pittsburgh, PA 15219, USA.
| | | | | |
Collapse
|
37
|
Giuliano KA, Haskins JR, Taylor DL. Advances in high content screening for drug discovery. Assay Drug Dev Technol 2004; 1:565-77. [PMID: 15090253 DOI: 10.1089/154065803322302826] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cell-based target validation, secondary screening, lead optimization, and structure-activity relationships have been recast with the advent of HCS. Prior to HCS, a computational approach to the characterization of the functions of specific target proteins and other cellular constituents, along with whole-cell functions employing fluorescence cell-based assays and microscopy, required extensive interaction among the researcher, instrumentation, and software tools. Early HCS platforms were instrument-centric and addressed the need to interface fully automated fluorescence microscopy, plate-handling automation, and seamless image analysis. HCS has since evolved into an integrated solution for accelerated drug discovery by encompassing the workflow components of assay and reagent design, robust instrumentation for automated fixed-end-point and live cell kinetic analysis, generalized and specific BioApplication software (Cellomics, Pittsburgh, PA) modules that produce information on drug responses from cell image data, and informatics/bioinformatics solutions that build knowledge from this information while providing a means to globalize HCS throughout an entire organization. This review communicates how these recent advances are incorporated into the drug discovery workflow by presenting a real-world use case.
Collapse
|
38
|
Romsicki Y, Reece M, Gauthier JY, Asante-Appiah E, Kennedy BP. Protein tyrosine phosphatase-1B dephosphorylation of the insulin receptor occurs in a perinuclear endosome compartment in human embryonic kidney 293 cells. J Biol Chem 2004; 279:12868-75. [PMID: 14722096 DOI: 10.1074/jbc.m309600200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein tyrosine phosphatase-1B (PTP-1B) is a negative regulator of insulin signaling. It is thought to carry out this role by interacting with and dephosphorylating the activated insulin receptor (IR). However, little is known regarding the nature of the cellular interaction between these proteins, especially because the IR is localized to the plasma membrane and PTP-1B to the endoplasmic reticulum. Using confocal microscopy and fluorescence resonance energy transfer (FRET), the interaction between PTP-1B and the IR was examined in co-transfected human embryonic kidney 293 cells. Biological activities were not significantly affected for either PTP-1B or the IR with the fusion of W1B-green fluorescent protein (GFP) to the N terminus of PTP-1B (W1B-PTP-1B) or the fusion of Topaz-GFP to the C terminus of the IR (Topaz-IR). FRET between W1B and Topaz was monitored in cells transfected with either wild type PTP-1B (W1B-PTP-1B) or the substrate-trapping form PTP-1B(D181A) (W1B-PTP-1B(D181A)) and Topaz-IR. Co-expression of W1B-PTP-1B with Topaz-IR resulted in distribution of Topaz-IR to the plasma membrane, but no FRET was obtained upon insulin treatment. In contrast, co-expression of W1B-PTP-1B(D181A) with Topaz-IR caused an increase in cytosolic Topaz-IR fluorescence and, in some cells, a significant basal FRET signal, suggesting that PTP-1B is interacting with the IR during its synthesis. Stimulation of these cells with insulin resulted in a rapid induction of FRET that increased over time and was localized to a perinuclear spot. Co-expression of Topaz-IR with a GFP-labeled RhoB endosomal marker and treatment of the cells with insulin identified a perinuclear endosome compartment as the site of localization. Furthermore, the insulin-induced FRET could be prevented by the treatment of the cells with a specific PTP-1B inhibitor. These results suggest that PTP-1B appears not only to interact with and dephosphorylate the insulin-stimulated IR in a perinuclear endosome compartment but is also involved in maintaining the IR in a dephosphorylated state during its biosynthesis.
Collapse
MESH Headings
- Blotting, Western
- Cell Line
- Cell Membrane/metabolism
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Endoplasmic Reticulum/metabolism
- Endosomes/metabolism
- Enzyme Inhibitors/pharmacology
- Fluorescence Resonance Energy Transfer
- Genetic Vectors
- Green Fluorescent Proteins
- Humans
- Image Processing, Computer-Assisted
- Insulin/metabolism
- Kinetics
- Luminescent Proteins/metabolism
- Microscopy, Confocal
- Microscopy, Fluorescence
- Models, Chemical
- Phosphorylation
- Precipitin Tests
- Protein Binding
- Protein Structure, Tertiary
- Protein Tyrosine Phosphatase, Non-Receptor Type 1
- Protein Tyrosine Phosphatases/chemistry
- Protein Tyrosine Phosphatases/metabolism
- Receptor, Insulin/chemistry
- Receptor, Insulin/metabolism
- Recombinant Fusion Proteins/metabolism
- Signal Transduction
- Transfection
Collapse
Affiliation(s)
- Yolanda Romsicki
- Department of Biochemistry & Molecular Biology, Merck Frosst Centre for Therapeutic Research, Pointe-Claire-Dorval, Quebec H9R 4P8, Canada
| | | | | | | | | |
Collapse
|
39
|
Ecker RC, Steiner GE. Microscopy-based multicolor tissue cytometry at the single-cell level. ACTA ACUST UNITED AC 2004; 59:182-90. [PMID: 15170597 DOI: 10.1002/cyto.a.20052] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cytomics is a novel perspective from which to look at life. As with genomics and proteomics before, this discipline requires novel and innovative techniques and technologies to focus on its substrate of research--the cytome. With cytomics being the discipline that analyzes cellular systems and their interdependencies, advanced microscopy represents a key technology in cytomics research. Yet, conventional microscopy-based investigations, i.e., "look and conclude" analyses, do not meet the major cytomics criteria of 1) relating multiple parameters to each other, 2) within large populations of cells, 3) on a single-cell basis, and 4) in a quantitative and observer-independent manner. However, emerging improvements in the fields of fluorophore technology, sensitive fluorescence detection devices, and sophisticated image analysis procedures, are important and necessary steps into the cytomics era. Tissue represents an important class of cytomes, hence tissue cytometry--on the single cell level--can be expected to become an important cytomics technology. In this report, the techniques and technologies of microscopy-based multicolor tissue cytometry (MMTC) are outlined and applications are discussed, including the phenotypic characterization of tissue infiltrating leukocytes, in situ quantification of proliferation markers and tumor suppressors, and in situ quantification of apoptosis.
Collapse
Affiliation(s)
- Rupert C Ecker
- Competence Center BioMolecular Therapeutics, Vienna, Austria.
| | | |
Collapse
|
40
|
Liebel U, Starkuviene V, Erfle H, Simpson JC, Poustka A, Wiemann S, Pepperkok R. A microscope-based screening platform for large-scale functional protein analysis in intact cells. FEBS Lett 2003; 554:394-8. [PMID: 14623100 DOI: 10.1016/s0014-5793(03)01197-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A modular microscope-based screening platform, with applications in large-scale analysis of protein function in intact cells is described. It includes automated sample preparation, image acquisition, data management and analysis, and the genome-wide automated retrieval of bioinformatic information. The modular nature of the system ensures that it is rapidly adaptable to new biological questions or sets of proteins. Two automated functional assays addressing protein secretion and the integrity of the Golgi complex were developed and tested. This shows the potential of the system in large-scale, cell-based functional proteomic projects.
Collapse
Affiliation(s)
- Urban Liebel
- Cell Biology and Cell Biophysics Programme, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Giuliano KA. High-content profiling of drug-drug interactions: cellular targets involved in the modulation of microtubule drug action by the antifungal ketoconazole. JOURNAL OF BIOMOLECULAR SCREENING 2003; 8:125-35. [PMID: 12844433 DOI: 10.1177/1087057103252616] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drug-drug interactions play an important role in the discovery and development of therapeutic agents. High-content profiling was developed to unravel the complexity of these interactions by providing multiparameter measurements of target activity at the cellular and subcellular levels. Two microtubule drugs, vinblastine and curacin A, were shown to modulate multiple cellular processes, including nuclear condensation, the activation of the extracellular signal-regulated kinase pathway as measured by RSK90 phosphorylation, and the regulation of the microtubule cytoskeleton as measured in detergent-extracted cells. The heterogeneity of the response, addressed through population analysis and multiparameter comparisons within single cells, was consistent with vinblastine and curacin A having similar effects on nuclear morphology and 90 kDa ribosomal s6 kinase (RSK90) phosphorylation despite having distinct effects on the microtubule cytoskeleton. Ketoconazole, originally developed as an antifungal agent, exhibited concentration-dependent inhibitory and potentiating effects on both drugs in HeLa and PC-3 cells at concentration ranges near the plasma levels of ketoconazole attained in human subjects. Thus, high-content profiling was used to dissect the cellular and molecular responses to interacting drugs and is therefore a potentially important tool in the selection, characterization, and optimization of lead therapeutic compounds.
Collapse
|
42
|
Abstract
The desire for more biologically relevant data from primary screening has resulted in a dramatic increase of cell-based assays in HTS labs. Consequently, new cell-array technologies are being developed to increase the quality and quantity of data emerging from such screens. These technologies take the form of both positional and non-positional formats, each with their own advantages. Notably, screens using these technologies generate databases of high-quality data that can be analyzed in ways currently not possible. The power of cell-based assays combined with new array and analytical technologies will enable the condensation of serial drug discovery processes, thereby decreasing the time and cost of taking a hit compound into clinical trials. Here, we compare array strategies being developed towards the goal of integrating multiplexed cell-based assays into HTS.
Collapse
Affiliation(s)
- Oren E Beske
- Virtual Arrays, 1190 Bordeaux Drive, Sunnyvale, CA 94089, USA
| | | |
Collapse
|
43
|
Conway BR, Minor LK, Xu JZ, D'Andrea MR, Ghosh RN, Demarest KT. Quantitative analysis of agonist-dependent parathyroid hormone receptor trafficking in whole cells using a functional green fluorescent protein conjugate. J Cell Physiol 2001; 189:341-55. [PMID: 11748592 DOI: 10.1002/jcp.10028] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many G-protein coupled receptors (GPCRs) undergo ligand-dependent internalization upon activation. The parathyroid hormone (PTH) receptor undergoes endocytosis following prolonged exposure to ligand although the ultimate fate of the receptor following internalization is largely unknown. To investigate compartmentalization of the PTH receptor, we have established a stable cell line expressing a PTH receptor-green fluorescent protein (PTHR-GFP) conjugate and an algorithm to quantify PTH receptor internalization. HEK 293 cells expressing the PTHR-GFP were compared with cells expressing the wild-type PTH receptor in whole-cell binding and functional assays. 125I-PTH binding studies revealed similar Bmax and kD values in cells expressing either the PTHR-GFP or the wild-type PTH receptor. PTH-induced cAMP accumulation was similar in both cell lines suggesting that addition of the GFP to the cytoplasmic tail of the PTH receptor does not alter the ligand binding or G-protein coupling properties of the receptor. Using confocal fluorescence microscopy, we demonstrated that PTH treatment of cells expressing the PTHR-GFP conjugate produced a time-dependent redistribution of the receptor to the endosomal compartment which was blocked by pretreatment with PTH antagonist peptides. Treatment with hypertonic sucrose prevented PTH-induced receptor internalization, suggesting that the PTH receptor internalizes via a clathrin-dependent mechanism. Moreover, co-localization with internalized transferrin showed that PTHR-GFP trafficking utilized the endocytic recycling compartment. Experiments using cycloheximide to inhibit protein synthesis demonstrated that recycling of the PTHR-GFP back to the plasma membrane was complete within 1-2 h of ligand removal and was partially blocked by pretreatment with cytochalasin D, but not nocodazole. We also demonstrated that the PTH receptor, upon recycling to the plasma membrane, is capable of undergoing a second round of internalization, a finding consistent with a role for receptor recycling in functional resensitization.
Collapse
Affiliation(s)
- B R Conway
- Department of Drug Discovery, R.W. Johnson Pharmaceutical Research Institute, Raritan, New Jersey, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Simpson PB, Bacha JI, Palfreyman EL, Woollacott AJ, McKernan RM, Kerby J. Retinoic acid evoked-differentiation of neuroblastoma cells predominates over growth factor stimulation: an automated image capture and quantitation approach to neuritogenesis. Anal Biochem 2001; 298:163-9. [PMID: 11757502 DOI: 10.1006/abio.2001.5346] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To facilitate the characterization of compounds that have positive growth factor mimetic effects on neuritogenesis, we have implemented a high-throughput functional assay which measures, in a multiparametric manner, the proliferation and differentiation characteristics of cells in a microtiter plate. Conditions were established using chronic incubation of SH-SY5Y human neuroblastoma cells with retinoic acid (RA) and/or nerve growth factor (NGF) in which discernible alterations in proliferation, growth, and differentiation of cells were induced. SH-SY5Y cells were fixed and labeled by immunocytochemistry, and an automated image acquisition and analysis package on Cellomics ArrayScanII was utilized to quantify the effects of these treatments on cell characteristics. NGF and retinoic acid were found to increase multiple parameters of SH-SY5Y differentiation, including an increased proportion of cells having neurites and increased extent of branching. However, marked differences in the effects of these compounds on SH-SY5Y growth and differentiation were also detected: whereas NGF increased cell number, RA treatment decreased cell number, and RA but not NGF caused significant elongation of neurites. This study quantifies and characterizes the effects of differentiating and proliferating agents on a human-derived neuroblastoma cell line. The high-content, rapid-throughput nature of this assay makes it ideal for functional identification and characterization of compounds regulating cell behavior.
Collapse
Affiliation(s)
- P B Simpson
- Department of Biochemistry and Molecular Biology, Neuroscience Research Centre, Merck Sharp & Dohme Research Laboratories, Harlow, Essex, United Kingdom.
| | | | | | | | | | | |
Collapse
|