1
|
Quintero-Hernández V, Ramírez-Carreto S, Romero-Gutiérrez MT, Valdez-Velázquez LL, Becerril B, Possani LD, Ortiz E. Transcriptome analysis of scorpion species belonging to the Vaejovis genus. PLoS One 2015; 10:e0117188. [PMID: 25659089 PMCID: PMC4319844 DOI: 10.1371/journal.pone.0117188] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/22/2014] [Indexed: 12/24/2022] Open
Abstract
Scorpions belonging to the Buthidae family have traditionally drawn much of the biochemist's attention due to the strong toxicity of their venoms. Scorpions not toxic to mammals, however, also have complex venoms. They have been shown to be an important source of bioactive peptides, some of them identified as potential drug candidates for the treatment of several emerging diseases and conditions. It is therefore important to characterize the large diversity of components found in the non-Buthidae venoms. As a contribution to this goal, this manuscript reports the construction and characterization of cDNA libraries from four scorpion species belonging to the Vaejovis genus of the Vaejovidae family: Vaejovis mexicanus, V. intrepidus, V. subcristatus and V. punctatus. Some sequences coding for channel-acting toxins were found, as expected, but the main transcribed genes in the glands actively producing venom were those coding for non disulfide-bridged peptides. The ESTs coding for putative channel-acting toxins, corresponded to sodium channel β toxins, to members of the potassium channel-acting α or κ families, and to calcium channel-acting toxins of the calcin family. Transcripts for scorpine-like peptides of two different lengths were found, with some of the species coding for the two kinds. One sequence coding for La1-like peptides, of yet unknown function, was found for each species. Finally, the most abundant transcripts corresponded to peptides belonging to the long chain multifunctional NDBP-2 family and to the short antimicrobials of the NDBP-4 family. This apparent venom composition is in correspondence with the data obtained to date for other non-Buthidae species. Our study constitutes the first approach to the characterization of the venom gland transcriptome for scorpion species belonging to the Vaejovidae family.
Collapse
Affiliation(s)
- Verónica Quintero-Hernández
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autonóma de México, Cuernavaca, Morelos, México
| | - Santos Ramírez-Carreto
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autonóma de México, Cuernavaca, Morelos, México
| | - María Teresa Romero-Gutiérrez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autonóma de México, Cuernavaca, Morelos, México
| | | | - Baltazar Becerril
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autonóma de México, Cuernavaca, Morelos, México
| | - Lourival D. Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autonóma de México, Cuernavaca, Morelos, México
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autonóma de México, Cuernavaca, Morelos, México
| |
Collapse
|
2
|
González-Morales L, Pedraza-Escalona M, Diego-Garcia E, Restano-Cassulini R, Batista CVF, Gutiérrez MDC, Possani LD. Proteomic characterization of the venom and transcriptomic analysis of the venomous gland from the Mexican centipede Scolopendra viridis. J Proteomics 2014; 111:224-37. [PMID: 24780725 DOI: 10.1016/j.jprot.2014.04.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 11/29/2022]
Abstract
UNLABELLED This communication reports the results of proteomic, transcriptomic, biochemical and electrophysiological analysis of the soluble venom and venom glands of the Mexican centipede Scolopendra viridis Say (here thereafter abbreviated S. viridis). Separation of the soluble venom permitted to obtain 54 different fractions, from which a mass finger printing analysis permitted the identification of at least 86 components, where 70% of the molecules have low molecular masses. Two-dimensional electrophoretic separation of this venom revealed the presence of about forty proteins with molecular weights ranging from 17 to 58kDa. The novo sequencing of 149 peptides obtained by LC-MS/MS from the 2D-gels showed the presence of proteins with amino acid sequences similar to several enzymes and venom allergens type 3. Furthermore, a total of 180 sequences were obtained from a cDNA library prepared with two venomous glands. From this, 155 sequences correspond to complete genes containing more than 200 base pairs each. Comparative sequence analyses of these sequences indicated the presence of different types of enzymes and toxin-like genes. Two proteins with molecular weights around 37,000 and 42,000Da were shown to contain hyaluronidase activity. Electrophysiological assays performed with soluble venom show that it decreases mammalian sodium channel currents. BIOLOGICAL SIGNIFICANCE Animal venoms of Scolopendra species have been scarcely studied, although they have been reported to contain several bioactive compounds, some of which with potential therapeutic interest. The Mexican centipede S. viridis contains a powerful venom, capable of inflicting immediate effects on their preys. This communication is focused on the identification and description of a proteomic and transcriptomic analysis of the protein components of this venom. Several amino acid sequences similar to reported enzymes are the principal components in the S. viridis venom, but also a low number of toxins were identified. This knowledge should contribute to the understanding of the pharmacological effects caused by bites of this centipede species.
Collapse
Affiliation(s)
- Lidia González-Morales
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Cuernavaca 62210, Mexico; Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Martha Pedraza-Escalona
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Cuernavaca 62210, Mexico
| | - Elia Diego-Garcia
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Cuernavaca 62210, Mexico
| | - Rita Restano-Cassulini
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Cuernavaca 62210, Mexico
| | - Cesar V F Batista
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Cuernavaca 62210, Mexico
| | - Maria del Carmen Gutiérrez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Lourival D Possani
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Cuernavaca 62210, Mexico.
| |
Collapse
|
3
|
Valdez-Velázquez LL, Quintero-Hernández V, Romero-Gutiérrez MT, Coronas FIV, Possani LD. Mass fingerprinting of the venom and transcriptome of venom gland of scorpion Centruroides tecomanus. PLoS One 2013; 8:e66486. [PMID: 23840487 PMCID: PMC3688770 DOI: 10.1371/journal.pone.0066486] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/06/2013] [Indexed: 01/02/2023] Open
Abstract
Centruroides tecomanus is a Mexican scorpion endemic of the State of Colima, that causes human fatalities. This communication describes a proteome analysis obtained from milked venom and a transcriptome analysis from a cDNA library constructed from two pairs of venom glands of this scorpion. High perfomance liquid chromatography separation of soluble venom produced 80 fractions, from which at least 104 individual components were identified by mass spectrometry analysis, showing to contain molecular masses from 259 to 44,392 Da. Most of these components are within the expected molecular masses for Na+- and K+-channel specific toxic peptides, supporting the clinical findings of intoxication, when humans are stung by this scorpion. From the cDNA library 162 clones were randomly chosen, from which 130 sequences of good quality were identified and were clustered in 28 contigs containing, each, two or more expressed sequence tags (EST) and 49 singlets with only one EST. Deduced amino acid sequence analysis from 53% of the total ESTs showed that 81% (24 sequences) are similar to known toxic peptides that affect Na+-channel activity, and 19% (7 unique sequences) are similar to K+-channel especific toxins. Out of the 31 sequences, at least 8 peptides were confirmed by direct Edman degradation, using components isolated directly from the venom. The remaining 19%, 4%, 4%, 15% and 5% of the ESTs correspond respectively to proteins involved in cellular processes, antimicrobial peptides, venom components, proteins without defined function and sequences without similarity in databases. Among the cloned genes are those similar to metalloproteinases.
Collapse
Affiliation(s)
| | | | | | - Fredy I. V. Coronas
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Lourival D. Possani
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- * E-mail:
| |
Collapse
|
4
|
Kumari A, Kumar A, Wany A, Prajapati GK, Pandey DM. Identification and annotation of abiotic stress responsive candidate genes in peanut ESTs. Bioinformation 2012; 8:1211-9. [PMID: 23275722 PMCID: PMC3530874 DOI: 10.6026/97320630081211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 11/11/2012] [Indexed: 11/23/2022] Open
Abstract
Peanut (Arachis hypogaea L.) ranks fifth among the world oil crops and is widely grown in India and neighbouring countries. Due to its large and unknown genome size, studies on genomics and genetic modification of peanut are still scanty as compared to other model crops like Arabidopsis, rice, cotton and soybean. Because of its favourable cultivation in semi-arid regions, study on abiotic stress responsive genes and its regulation in peanut is very much important. Therefore, we aim to identify and annotate the abiotic stress responsive candidate genes in peanut ESTs. Expression data of drought stress responsive corresponding genes and EST sequences were screened from dot blot experiments shown as heat maps and supplementary tables, respectively as reported by Govind et al. (2009). Some of the screened genes having no information about their ESTs in above mentioned supplementary tables were retrieved from NCBI. A phylogenetic analysis was performed to find a group of utmost similar ESTs for each selected gene. Individual EST of the said group were further searched in peanut ESTs (1,78,490 whole EST sequences) using stand alone BLAST. For the prediction as well as annotation of abiotic stress responsive selected genes, various tools (like Vec-Screen, Repeat Masker, EST-Trimmer, DNA Baser, WISE2 and I-TASSER) were used. Here we report the predicted result of Contigs, domain as well as 3D structure for HSP 17.3KDa protein, DnaJ protein and Type 2 Metallothionein protein.
Collapse
Affiliation(s)
- Archana Kumari
- Department of Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand-835215, India
| | - Ashutosh Kumar
- Department of Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand-835215, India
| | - Aakanksha Wany
- Department of Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand-835215, India
| | - Gopal Kumar Prajapati
- Department of Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand-835215, India
| | - Dev Mani Pandey
- Department of Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand-835215, India
| |
Collapse
|
5
|
Sehgal SK, Li W, Rabinowicz PD, Chan A, Šimková H, Doležel J, Gill BS. Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat. BMC PLANT BIOLOGY 2012; 12:64. [PMID: 22559868 PMCID: PMC3438119 DOI: 10.1186/1471-2229-12-64] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/09/2012] [Indexed: 05/24/2023]
Abstract
BACKGROUND Bread wheat, one of the world's staple food crops, has the largest, highly repetitive and polyploid genome among the cereal crops. The wheat genome holds the key to crop genetic improvement against challenges such as climate change, environmental degradation, and water scarcity. To unravel the complex wheat genome, the International Wheat Genome Sequencing Consortium (IWGSC) is pursuing a chromosome- and chromosome arm-based approach to physical mapping and sequencing. Here we report on the use of a BAC library made from flow-sorted telosomic chromosome 3A short arm (t3AS) for marker development and analysis of sequence composition and comparative evolution of homoeologous genomes of hexaploid wheat. RESULTS The end-sequencing of 9,984 random BACs from a chromosome arm 3AS-specific library (TaaCsp3AShA) generated 11,014,359 bp of high quality sequence from 17,591 BAC-ends with an average length of 626 bp. The sequence represents 3.2% of t3AS with an average DNA sequence read every 19 kb. Overall, 79% of the sequence consisted of repetitive elements, 1.38% as coding regions (estimated 2,850 genes) and another 19% of unknown origin. Comparative sequence analysis suggested that 70-77% of the genes present in both 3A and 3B were syntenic with model species. Among the transposable elements, gypsy/sabrina (12.4%) was the most abundant repeat and was significantly more frequent in 3A compared to homoeologous chromosome 3B. Twenty novel repetitive sequences were also identified using de novo repeat identification. BESs were screened to identify simple sequence repeats (SSR) and transposable element junctions. A total of 1,057 SSRs were identified with a density of one per 10.4 kb, and 7,928 junctions between transposable elements (TE) and other sequences were identified with a density of one per 1.39 kb. With the objective of enhancing the marker density of chromosome 3AS, oligonucleotide primers were successfully designed from 758 SSRs and 695 Insertion Site Based Polymorphisms (ISBPs). Of the 96 ISBP primer pairs tested, 28 (29%) were 3A-specific and compared to 17 (18%) for 96 SSRs. CONCLUSION This work reports on the use of wheat chromosome arm 3AS-specific BAC library for the targeted generation of sequence data from a particular region of the huge genome of wheat. A large quantity of sequences were generated from the A genome of hexaploid wheat for comparative genome analysis with homoeologous B and D genomes and other model grass genomes. Hundreds of molecular markers were developed from the 3AS arm-specific sequences; these and other sequences will be useful in gene discovery and physical mapping.
Collapse
Affiliation(s)
- Sunish K Sehgal
- Wheat Genetic and Genomic Resources Center, Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Wanlong Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Pablo D Rabinowicz
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Agnes Chan
- The J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Hana Šimková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Sokolovska 6, Olomouc CZ-77200, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Sokolovska 6, Olomouc CZ-77200, Czech Republic
| | - Bikram S Gill
- Wheat Genetic and Genomic Resources Center, Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
- Faculty of Science, Genomics and Biotechnology Section, Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
Identification and phylogenetic analysis of Tityus pachyurus and Tityus obscurus novel putative Na+-channel scorpion toxins. PLoS One 2012; 7:e30478. [PMID: 22355312 PMCID: PMC3280238 DOI: 10.1371/journal.pone.0030478] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/16/2011] [Indexed: 11/19/2022] Open
Abstract
Background Colombia and Brazil are affected by severe cases of scorpionism. In Colombia the most dangerous accidents are caused by Tityus pachyurus that is widely distributed around this country. In the Brazilian Amazonian region scorpion stings are a common event caused by Tityus obscurus. The main objective of this work was to perform the molecular cloning of the putative Na+-channel scorpion toxins (NaScTxs) from T. pachyurus and T. obscurus venom glands and to analyze their phylogenetic relationship with other known NaScTxs from Tityus species. Methodology/Principal Findings cDNA libraries from venom glands of these two species were constructed and five nucleotide sequences from T. pachyurus were identified as putative modulators of Na+-channels, and were named Tpa4, Tpa5, Tpa6, Tpa7 and Tpa8; the latter being the first anti-insect excitatory β-class NaScTx in Tityus scorpion venom to be described. Fifteen sequences from T. obscurus were identified as putative NaScTxs, among which three had been previously described, and the others were named To4 to To15. The peptides Tpa4, Tpa5, Tpa6, To6, To7, To9, To10 and To14 are closely related to the α-class NaScTxs, whereas Tpa7, Tpa8, To4, To8, To12 and To15 sequences are more related to the β-class NaScTxs. To5 is possibly an arthropod specific toxin. To11 and To13 share sequence similarities with both α and β NaScTxs. By means of phylogenetic analysis using the Maximum Parsimony method and the known NaScTxs from Tityus species, these toxins were clustered into 14 distinct groups. Conclusions/Significance This communication describes new putative NaScTxs from T. pachyurus and T. obscurus and their phylogenetic analysis. The results indicate clear geographic separation between scorpions of Tityus genus inhabiting the Amazonian and Mountain Andes regions and those distributed over the Southern of the Amazonian rainforest. Based on the consensus sequences for the different clusters, a new nomenclature for the NaScTxs is proposed.
Collapse
|
7
|
Cloning and characterization of cDNA sequences encoding for new venom peptides of the Brazilian scorpion Opisthacanthus cayaporum. Toxicon 2009; 54:252-61. [PMID: 19379768 DOI: 10.1016/j.toxicon.2009.04.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/07/2009] [Accepted: 04/08/2009] [Indexed: 11/21/2022]
Abstract
Scorpion venom glands produce a large variety of bioactive peptides. This communication reports the identification of venom components obtained by sequencing clones isolated from a cDNA library prepared with venomous glands of the Brazilian scorpion Opisthacanthus cayaporum (Ischnuridae). Two main types of components were identified: peptides with toxin-like sequences and proteins involved in cellular processes. Using the expressed sequence tag (EST) strategy 118 clones were identified, from which 61 code for unique sequences (17 contigs and 44 singlets) with an average length of 531 base-pairs (bp). These results were compared with those previously obtained by the proteomic analysis of the same venom, showing a considerable degree of similarity in terms of the molecular masses expected and DNA sequences found. About 36% of the ESTs correspond to toxin-like peptides and proteins with identifiable open reading frames (ORFs). The cDNA sequencing results also show the presence of sequences whose putative products correspond to a scorpine-like component; three short antimicrobial peptides; three K(+)-channel blockers; and an additional peptide containing 78 amino acid residues, whose sequence resembles peptide La1 from another Ischnuridae scorpion Liocheles australiasiae, thus far with unknown function.
Collapse
|
8
|
Huo N, Lazo GR, Vogel JP, You FM, Ma Y, Hayden DM, Coleman-Derr D, Hill TA, Dvorak J, Anderson OD, Luo MC, Gu YQ. The nuclear genome of Brachypodium distachyon: analysis of BAC end sequences. Funct Integr Genomics 2007; 8:135-47. [PMID: 17985162 DOI: 10.1007/s10142-007-0062-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/04/2007] [Accepted: 10/06/2007] [Indexed: 10/22/2022]
Abstract
Due in part to its small genome (approximately 350 Mb), Brachypodium distachyon is emerging as a model system for temperate grasses, including important crops like wheat and barley. We present the analysis of 10.9% of the Brachypodium genome based on 64,696 bacterial artificial chromosome (BAC) end sequences (BES). Analysis of repeat DNA content in BES revealed that approximately 11.0% of the genome consists of known repetitive DNA. The vast majority of the Brachypodium repetitive elements are LTR retrotransposons. While Bare-1 retrotransposons are common to wheat and barley, Brachypodium repetitive element sequence-1 (BRES-1), closely related to Bare-1, is also abundant in Brachypodium. Moreover, unique Brachypodium repetitive element sequences identified constitute approximately 7.4% of its genome. Simple sequence repeats from BES were analyzed, and flanking primer sequences for SSR detection potentially useful for genetic mapping are available at http://brachypodium.pw.usda.gov . Sequence analyses of BES indicated that approximately 21.2% of the Brachypodium genome represents coding sequence. Furthermore, Brachypodium BES have more significant matches to ESTs from wheat than rice or maize, although these species have similar sizes of EST collections. A phylogenetic analysis based on 335 sequences shared among seven grass species further revealed a closer relationship between Brachypodium and Triticeae than Brachypodium and rice or maize.
Collapse
Affiliation(s)
- Naxin Huo
- Genomics and Gene Discovery Research Unit, USDA-ARS Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Transcriptome analysis of the venom gland of the Mexican scorpion Hadrurus gertschi (Arachnida: Scorpiones). BMC Genomics 2007; 8:119. [PMID: 17506894 PMCID: PMC1904202 DOI: 10.1186/1471-2164-8-119] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Accepted: 05/16/2007] [Indexed: 11/19/2022] Open
Abstract
Background Scorpions like other venomous animals posses a highly specialized organ that produces, secretes and disposes the venom components. In these animals, the last postabdominal segment, named telson, contains a pair of venomous glands connected to the stinger. The isolation of numerous scorpion toxins, along with cDNA-based gene cloning and, more recently, proteomic analyses have provided us with a large collection of venom components sequences. However, all of them are secreted, or at least are predicted to be secretable gene products. Therefore very little is known about the cellular processes that normally take place inside the glands for production of the venom mixture. To gain insights into the scorpion venom gland biology, we have decided to perform a transcriptomic analysis by constructing a cDNA library and conducting a random sequencing screening of the transcripts. Results From the cDNA library prepared from a single venom gland of the scorpion Hadrurus gertschi, 160 expressed sequence tags (ESTs) were analyzed. These transcripts were further clustered into 68 unique sequences (20 contigs and 48 singlets), with an average length of 919 bp. Half of the ESTs can be confidentially assigned as homologues of annotated gene products. Annotation of these ESTs, with the aid of Gene Ontology terms and homology to eukaryotic orthologous groups, reveals some cellular processes important for venom gland function; including high protein synthesis, tuned posttranslational processing and trafficking. Nonetheless, the main group of the identified gene products includes ESTs similar to known scorpion toxins or other previously characterized scorpion venom components, which account for nearly 60% of the identified proteins. Conclusion To the best of our knowledge this report contains the first transcriptome analysis of genes transcribed by the venomous gland of a scorpion. The data were obtained for the species Hadrurus gertschi, belonging to the family Caraboctonidae. One hundred and sixty ESTs were analyzed, showing enrichment in genes that encode for products similar to known venom components, but also provides the first sketch of cellular components, molecular functions, biological processes and some unique sequences of the scorpion venom gland.
Collapse
|
10
|
Webster RB, Rodriguez Y, Klimecki WT, Vercelli D. The Human IL-13 Locus in Neonatal CD4+ T Cells Is Refractory to the Acquisition of a Repressive Chromatin Architecture. J Biol Chem 2007; 282:700-9. [PMID: 17090525 DOI: 10.1074/jbc.m609501200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Th2 cytokine IL-13 is a major effector molecule in human allergic inflammation. Notably, IL-13 expression at birth correlates with subsequent susceptibility to atopic disease. In order to characterize the chromatin-based mechanisms that regulate IL-13 expression in human neonatal CD4(+) T cells, we analyzed patterns of DNase I hypersensitivity and epigenetic modifications within the IL-13 locus in cord blood CD4(+) T cells, naive or differentiated in vitro under Th1- or Th2-polarizing conditions. In naive CD4(+) T cells, hypersensitivity associated with DNA hypomethylation was limited to the distal promoter. Unexpectedly, during both Th1 and Th2 differentiation, the locus was extensively remodeled, as revealed by the formation of numerous HS sites and decreased DNA methylation. Obvious differences in chromatin architecture were limited to the proximal promoter, where strong hypersensitivity, hypomethylation, and permissive histone modifications were found selectively in Th2 cells. In addition to revealing the locations of putative cis-regulatory elements that may be required to control IL-13 expression in neonatal CD4(+) T cells, our results suggest that differential IL-13 expression may depend on the acquisition of a permissive chromatin architecture at the proximal promoter in Th2 cells rather than the formation of locus-wide repressive chromatin in Th1 cells.
Collapse
Affiliation(s)
- Robin B Webster
- Functional Genomics Laboratory, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | |
Collapse
|
11
|
Magalhães GS, Junqueira-de-Azevedo ILM, Lopes-Ferreira M, Lorenzini DM, Ho PL, Moura-da-Silva AM. Transcriptome analysis of expressed sequence tags from the venom glands of the fish Thalassophryne nattereri. Biochimie 2006; 88:693-9. [PMID: 16488069 DOI: 10.1016/j.biochi.2005.12.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 12/22/2005] [Indexed: 11/18/2022]
Abstract
Thalassophryne nattereri (niquim) is a venomous fish found on the northern and northeastern coasts of Brazil. Every year, hundreds of humans are affected by the poison, which causes excruciating local pain, edema, and necrosis, and can lead to permanent disabilities. In experimental models, T. nattereri venom induces edema and nociception, which are correlated to human symptoms and dependent on venom kininogenase activity; myotoxicity; impairment of blood flow; platelet lysis and cytotoxicity on endothelial cells. These effects were observed with minute amounts of venom. To characterize the primary structure of T. nattereri venom toxins, a list of transcripts within the venom gland was made using the expressed sequence tag (EST) strategy. Here we report the analysis of 775 ESTs that were obtained from a directional cDNA library of T. nattereri venom gland. Of these ESTs, 527 (68%) were related to sequences previously described. These were categorized into 10 groups according to their biological functions. Sequences involved in gene and protein expression accounted for 14.3% of the ESTs, reflecting the important role of protein synthesis in this gland. Other groups included proteins engaged in the assembly of disulfide bonds (0.5%), chaperones involved in the folding of nascent proteins (1.4%), and sequences related to clusterin (1.5%), as well as transcripts related to calcium binding proteins (1.0%). We detected a large cluster (1.3%) related to cocaine- and amphetamine-regulated transcript (CART), a peptide involved in the regulation of food intake. Surprisingly, several retrotransposon-like sequences (1.0%) were found in the library. It may be that their presence accounts for some of the variation in venom toxins. The toxin category (18.8%) included natterins (18%), which are a new group of kininogenases recently described by our group, and a group of C-type lectins (0.8%). In addition, a considerable number of sequences (32%) was not related to sequences in the databases, which indicates that a great number of new toxins and proteins are still to be discovered from this fish venom gland.
Collapse
Affiliation(s)
- G S Magalhães
- Laboratório de Imunopatologia, Instituto Butantan, Av. Vital Brasil 1500, 05503-900 São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
12
|
Junqueira-de-Azevedo ILM, Ching ATC, Carvalho E, Faria F, Nishiyama MY, Ho PL, Diniz MRV. Lachesis muta (Viperidae) cDNAs reveal diverging pit viper molecules and scaffolds typical of cobra (Elapidae) venoms: implications for snake toxin repertoire evolution. Genetics 2006; 173:877-89. [PMID: 16582429 PMCID: PMC1526512 DOI: 10.1534/genetics.106.056515] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Efforts to describe toxins from the two major families of venomous snakes (Viperidae and Elapidae) usually reveal proteins belonging to few structural types, particular of each family. Here we carried on an effort to determine uncommon cDNAs that represent possible new toxins from Lachesis muta (Viperidae). In addition to nine classes of typical toxins, atypical molecules never observed in the hundreds of Viperidae snakes studied so far are highly expressed: a diverging C-type lectin that is related to Viperidae toxins but appears to be independently originated; an ohanin-like toxin, which would be the third member of the most recently described class of Elapidae toxins, related to human butyrophilin and B30.2 proteins; and a 3FTx-like toxin, a new member of the widely studied three-finger family of proteins, which includes major Elapidae neurotoxins and CD59 antigen. The presence of these common and uncommon molecules suggests that the repertoire of toxins could be more conserved between families than has been considered, and their features indicate a dynamic process of venom evolution through molecular mechanisms, such as multiple recruitments of important scaffolds and domain exchange between paralogs, always keeping a minimalist nature in most toxin structures in opposition to their nontoxin counterparts.
Collapse
|
13
|
Lazo GR, Chao S, Hummel DD, Edwards H, Crossman CC, Lui N, Matthews DE, Carollo VL, Hane DL, You FM, Butler GE, Miller RE, Close TJ, Peng JH, Lapitan NLV, Gustafson JP, Qi LL, Echalier B, Gill BS, Dilbirligi M, Randhawa HS, Gill KS, Greene RA, Sorrells ME, Akhunov ED, Dvorák J, Linkiewicz AM, Dubcovsky J, Hossain KG, Kalavacharla V, Kianian SF, Mahmoud AA, Miftahudin, Ma XF, Conley EJ, Anderson JA, Pathan MS, Nguyen HT, McGuire PE, Qualset CO, Anderson OD. Development of an expressed sequence tag (EST) resource for wheat (Triticum aestivum L.): EST generation, unigene analysis, probe selection and bioinformatics for a 16,000-locus bin-delineated map. Genetics 2004; 168:585-93. [PMID: 15514037 PMCID: PMC1448819 DOI: 10.1534/genetics.104.034777] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Accepted: 06/01/2004] [Indexed: 01/06/2023] Open
Abstract
This report describes the rationale, approaches, organization, and resource development leading to a large-scale deletion bin map of the hexaploid (2n = 6x = 42) wheat genome (Triticum aestivum L.). Accompanying reports in this issue detail results from chromosome bin-mapping of expressed sequence tags (ESTs) representing genes onto the seven homoeologous chromosome groups and a global analysis of the entire mapped wheat EST data set. Among the resources developed were the first extensive public wheat EST collection (113,220 ESTs). Described are protocols for sequencing, sequence processing, EST nomenclature, and the assembly of ESTs into contigs. These contigs plus singletons (unassembled ESTs) were used for selection of distinct sequence motif unigenes. Selected ESTs were rearrayed, validated by 5' and 3' sequencing, and amplified for probing a series of wheat aneuploid and deletion stocks. Images and data for all Southern hybridizations were deposited in databases and were used by the coordinators for each of the seven homoeologous chromosome groups to validate the mapping results. Results from this project have established the foundation for future developments in wheat genomics.
Collapse
Affiliation(s)
- G R Lazo
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Western Regional Research Center, Albany, California 94710-1105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2001. [PMCID: PMC2447222 DOI: 10.1002/cfg.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|