1
|
Lipkin WI, Mishra N, Briese T. Screening for Viral Infections. ENCYCLOPEDIA OF VIROLOGY 2021. [PMCID: PMC7836304 DOI: 10.1016/b978-0-12-814515-9.00052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This article reviews methods for diagnosis of viral infections including histopathology, culture, nucleic acid tests, and serology. We discuss the principles that underlie individual assays as well as their strengths and limitations. Our intent is to provide insights into selecting strategies for viral diagnosis and discovery that can be pursued by accessing more detailed and granular protocols.
Collapse
|
2
|
Rapid Detection of Microbial Mass Spectra VITEK-MS for Campylobacter jejuni and Listeria monocytogenes. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01663-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
3
|
Ecker DJ, Drader JJ, Gutierrez J, Gutierrez A, Hannis JC, Schink A, Sampath R, Blyn LB, Eshoo MW, Hall TA, Tobarmosquera M, Jiang Y, Sannes-Lowery KA, Cummins LL, Libby B, Walcott DJ, Massire C, Ranken R, Manalili S, Ivy C, Melton R, Levene H, Harpin V, Li F, White N, Pear M, Ecker JA, Samant V, Knize D, Robbins D, Rudnick K, Hajjar F, Hofstadler SA. The Ibis T5000 Universal Biosensor: An Automated Platform for Pathogen Identification and Strain Typing. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.jala.2006.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We describe a new approach to the sensitive and specific identification of bacteria, viruses, fungi, and protozoa based on broad-range PCR and high-performance mass spectrometry. The Ibis T5000 is based on technology developed for the Department of Defense known as T.I.G.E.R. (Triangulation Identification for the Genetic Evaluation of Risks) for pathogen surveillance. The technology uses mass spectrometry—derived base composition signatures obtained from PCR amplification of broadly conserved regions of the pathogen genomes to identify most organisms present in a sample. The process of sample analysis has been automated using a combination of commercially available and custom instrumentation. A software system known as T-Track manages the sample flow, signal analysis, and data interpretation and provides simplified result reports to the user. No specialized expertise is required to use the instrumentation. In addition to pathogen surveillance, the Ibis T5000 is being applied to reducing health care—associated infections (HAIs), emerging and pandemic disease surveillance, human forensics analysis, and pharmaceutical product and food safety, and will be used eventually in human infectious disease diagnosis. In this review, we describe the automated Ibis T5000 instrument and provide examples of how it is used in HAI control.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Feng Li
- Ibis Biosciences, Carlsbad, CA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Alves G, Wang G, Ogurtsov AY, Drake SK, Gucek M, Suffredini AF, Sacks DB, Yu YK. Identification of Microorganisms by High Resolution Tandem Mass Spectrometry with Accurate Statistical Significance. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:194-210. [PMID: 26510657 PMCID: PMC4723618 DOI: 10.1007/s13361-015-1271-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/04/2015] [Accepted: 09/05/2015] [Indexed: 05/13/2023]
Abstract
Correct and rapid identification of microorganisms is the key to the success of many important applications in health and safety, including, but not limited to, infection treatment, food safety, and biodefense. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is challenging correct microbial identification because of the large number of choices present. To properly disentangle candidate microbes, one needs to go beyond apparent morphology or simple 'fingerprinting'; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptidome profiles of microbes to better separate them and by designing an analysis method that yields accurate statistical significance. Here, we present an analysis pipeline that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using MS/MS data of 81 samples, each composed of a single known microorganism, that the proposed pipeline can correctly identify microorganisms at least at the genus and species levels. We have also shown that the proposed pipeline computes accurate statistical significances, i.e., E-values for identified peptides and unified E-values for identified microorganisms. The proposed analysis pipeline has been implemented in MiCId, a freely available software for Microorganism Classification and Identification. MiCId is available for download at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html . Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Gelio Alves
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Guanghui Wang
- Proteomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Aleksey Y Ogurtsov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Steven K Drake
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marjan Gucek
- Proteomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anthony F Suffredini
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David B Sacks
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yi-Kuo Yu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
5
|
Rayner RE, Savill J, Hafner LM, Huygens F. Genotyping Streptococcus pneumoniae. Future Microbiol 2015; 10:653-64. [DOI: 10.2217/fmb.14.153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Streptococcus pneumoniae is a potentially deadly human pathogen associated with high morbidity, mortality and global economic burden. The universally used bacterial genotyping methods are multilocus sequence typing and pulsed field gel electrophoresis. However, another highly discriminatory, rapid and less expensive genotyping technique, multilocus variable number of tandem repeat analysis (MLVA), has been developed. Unfortunately, no universal MLVA protocol exists, and some MLVA protocols do not amplify certain loci for all pneumococcal serotypes, leaving genotyping profiles incomplete. A number of other genotyping or characterization methods have been developed and will be discussed. This review examines the various protocols for genotyping S. pneumoniae and highlights the current direction technology and research is heading to understand this bacterium.
Collapse
Affiliation(s)
- Rachael E Rayner
- Institute of Health & Biomedical Innovation (IHBI), 60 Musk Ave, Kelvin Grove, 4059, Queensland, Australia
| | - John Savill
- Public Health Microbiology Laboratory, Queensland Health Forensic & Scientific Services, Coopers Plains, Queensland, Australia
| | - Louise M Hafner
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Flavia Huygens
- Institute of Health & Biomedical Innovation (IHBI), 60 Musk Ave, Kelvin Grove, 4059, Queensland, Australia
| |
Collapse
|
6
|
Amoako KK. Application of Pyrosequencing® in Food Biodefense. Methods Mol Biol 2015; 1315:363-375. [PMID: 26103911 DOI: 10.1007/978-1-4939-2715-9_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The perpetration of a bioterrorism attack poses a significant risk for public health with potential socioeconomic consequences. It is imperative that we possess reliable assays for the rapid and accurate identification of biothreat agents to make rapid risk-informed decisions on emergency response. The development of advanced methodologies for the detection of biothreat agents has been evolving rapidly since the release of the anthrax spores in the mail in 2001, and recent advances in detection and identification techniques could prove to be an essential component in the defense against biological attacks. Sequence-based approaches such as Pyrosequencing(®), which has the capability to determine short DNA stretches in real time using biotinylated PCR amplicons, have potential biodefense applications. Using markers from the virulence plasmids and chromosomal regions, my laboratory has demonstrated the power of this technology in the rapid, specific, and sensitive detection of B. anthracis spores and Yersinia pestis in food. These are the first applications for the detection of the two organisms in food. Furthermore, my lab has developed a rapid assay to characterize the antimicrobial resistance (AMR) gene profiles for Y. pestis using Pyrosequencing. Pyrosequencing is completed in about 60 min (following PCR amplification) and yields accurate and reliable results with an added layer of confidence, thus enabling rapid risk-informed decisions to be made. A typical run yields 40-84 bp reads with 94-100 % identity to the expected sequence. It also provides a rapid method for determining the AMR profile as compared to the conventional plate method which takes several days. The method described is proposed as a novel detection system for potential application in food biodefense.
Collapse
Affiliation(s)
- Kingsley Kwaku Amoako
- National Centers for Animal Disease, Lethbridge Laboratory, Canadian Food Inspection Agency, P.O. Box 640, Township Road 9-1, Lethbridge, AB, Canada, T1J 3Z4,
| |
Collapse
|
7
|
Hellberg RS, Li F, Sampath R, Yasuda IJ, Carolan HE, Wolfe JM, Brown MK, Alexander RC, Williams-Hill DM, Martin WB. Rapid detection and differentiation of human noroviruses using RT-PCR coupled to electrospray ionization mass spectrometry. Food Microbiol 2014; 44:71-80. [PMID: 25084648 DOI: 10.1016/j.fm.2014.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 04/25/2014] [Accepted: 05/25/2014] [Indexed: 11/26/2022]
Abstract
The goal of this study was to develop an assay for the detection and differentiation of noroviruses using RT-PCR followed by electrospray ionization mass spectrometry (ESI-MS). Detection of hepatitis A virus was also considered. Thirteen primer pairs were designed for use in this assay and a reference database was created using GenBank sequences and reference norovirus samples. The assay was tested for inclusivity and exclusivity using 160 clinical norovirus samples, 3 samples of hepatitis A virus and 3 other closely related viral strains. Results showed that the assay was able to detect norovirus with a sensitivity of 92% and a specificity of 100%. Norovirus identification at the genogroup level was correct for 98% of samples detected by the assay and for 75% of a subset of samples (n = 32) compared at the genotype level. Identification of norovirus genotypes is expected to improve as more reference samples are added to the database. The assay was also capable of detecting and genotyping hepatitis A virus in all 3 samples tested. Overall, the assay developed here allows for detection and differentiation of noroviruses within one working day and may be used as a tool in surveillance efforts or outbreak investigations.
Collapse
Affiliation(s)
- Rosalee S Hellberg
- Chapman University, Schmid College of Science and Technology, Food Science and Nutrition, One University Drive, Orange, CA 92866, USA.
| | - Feng Li
- Ibis Biosciences, Abbott, 2251 Faraday Ave., Suite 150, Carlsbad, CA 92008, USA
| | - Rangarajan Sampath
- Ibis Biosciences, Abbott, 2251 Faraday Ave., Suite 150, Carlsbad, CA 92008, USA
| | - Irene J Yasuda
- Ibis Biosciences, Abbott, 2251 Faraday Ave., Suite 150, Carlsbad, CA 92008, USA
| | - Heather E Carolan
- Ibis Biosciences, Abbott, 2251 Faraday Ave., Suite 150, Carlsbad, CA 92008, USA
| | - Julia M Wolfe
- Orange County Public Health Laboratory, 1729 West 17th Street, Santa Ana, CA 92706, USA
| | - Michael K Brown
- Orange County Public Health Laboratory, 1729 West 17th Street, Santa Ana, CA 92706, USA
| | - Richard C Alexander
- Orange County Public Health Laboratory, 1729 West 17th Street, Santa Ana, CA 92706, USA
| | - Donna M Williams-Hill
- U.S. Food and Drug Administration, Office of Regulatory Affairs, Pacific Regional Laboratory Southwest, 19701 Fairchild, Irvine, CA 92612, USA
| | - William B Martin
- U.S. Food and Drug Administration, Office of Regulatory Affairs, Pacific Regional Laboratory Southwest, 19701 Fairchild, Irvine, CA 92612, USA
| |
Collapse
|
8
|
Kaslow RA, Stanberry LR, Le Duc JW. Diagnosis, Discovery and Dissection of Viral Diseases. VIRAL INFECTIONS OF HUMANS 2014. [PMCID: PMC7122662 DOI: 10.1007/978-1-4899-7448-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Richard A. Kaslow
- Department of Epidemiology, University of Alabama, Birmingham School of Public Health, Birmingham, Alabama USA
| | - Lawrence R. Stanberry
- Departmant of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York USA
| | - James W. Le Duc
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas USA
| |
Collapse
|
9
|
Amoako KK, Janzen TW, Shields MJ, Hahn KR, Thomas MC, Goji N. Rapid detection and identification of Bacillus anthracis in food using pyrosequencing technology. Int J Food Microbiol 2013; 165:319-25. [DOI: 10.1016/j.ijfoodmicro.2013.05.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 04/23/2013] [Accepted: 05/29/2013] [Indexed: 12/22/2022]
|
10
|
Braga PAC, Tata A, Gonçalves dos Santos V, Barreiro JR, Schwab NV, Veiga dos Santos M, Eberlin MN, Ferreira CR. Bacterial identification: from the agar plate to the mass spectrometer. RSC Adv 2013. [DOI: 10.1039/c2ra22063f] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
11
|
Khot PD, Fisher MA. Mass Spectrometry in the Clinical Microbiology Laboratory, Part I: PCR-MS. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.clinmicnews.2012.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Wolk DM, Kaleta EJ, Wysocki VH. PCR-electrospray ionization mass spectrometry: the potential to change infectious disease diagnostics in clinical and public health laboratories. J Mol Diagn 2012; 14:295-304. [PMID: 22584138 PMCID: PMC7106027 DOI: 10.1016/j.jmoldx.2012.02.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 02/04/2012] [Accepted: 02/09/2012] [Indexed: 12/18/2022] Open
Abstract
During the past 20 years, microbial detection methods that are genetically based, such as real-time PCR and peptide nucleic acid fluorescent hybridization, coexisted with traditional microbiological methods and were typically based on the identification of individual genetic targets. For these methods to be successful, a potential cause of infection must be suspected. More recently, multiplex PCR and multiplex RT-PCR were used to enable more broad-range testing based on panels of suspected pathogens. PCR–electrospray ionization mass spectrometry (PCR-ESI/MS) has emerged as a technology that is capable of identifying nearly all known human pathogens either from microbial isolates or directly from clinical specimens. Assay primers are strategically designed to target one or more of the broad pathogen categories: bacterial, mycobacterial, fungal, or viral. With broad-range amplification followed by detection of mixed amplicons, the method can identify genetic evidence of known and unknown pathogens. This unique approach supports a higher form of inquiry, asking the following question: What is the genetic evidence of known or unknown pathogens in the patient sample? This approach has advantages over traditional assays that commonly target the presence or absence of one or more pathogens with known genetic composition. This review considers the breadth of the published literature and explores the possibilities, advantages, and limitations for implementation of PCR-ESI/MS in diagnostic laboratories.
Collapse
Affiliation(s)
- Donna M Wolk
- Division of Clinical Microbiology, Department of Pathology/BIO5 Institute, University of Arizona, Tucson, AZ 85724, USA.
| | | | | |
Collapse
|
13
|
Beer B, Erb R, Pitterl F, Niederstätter H, Maroñas O, Gesteira A, Carracedo A, Piatkov I, Oberacher H. CYP2D6 genotyping by liquid chromatography-electrospray ionization mass spectrometry. Anal Bioanal Chem 2011; 400:2361-70. [DOI: 10.1007/s00216-010-4597-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/10/2010] [Accepted: 12/12/2010] [Indexed: 10/25/2022]
|
14
|
Abstract
The threat posed by terrorism remains many years ahead. Bioterrorism remains a real threat, but because actual incidents remain at a low level, complacency is a constant enemy; hence the continuing background of false alarms may indeed be beneficial, encouraging responding agencies to keep practiced and alert. The Australian Federal Police (AFP) model of an integrated intelligence and forensic approach is a useful model for other nations of similar size or maturity to consider as a measured contribution to a whole of government approach to threats posed by bioterrorism. The Australian microbial forensic capability is reliant on the combined and coordinated efforts of numerous government facilities, departments, and agencies within law enforcement and public health at the state, territory, and commonwealth levels, as well as the private sector. It is a shining example of how a coordinated effort can provide a comprehensive capability that does well to protect the Australian community. The AFP and Australian Chemical, Biological, Radiological and Nuclear Data Center also work closely with international law enforcement partners in the United Kingdom, Canada, and the United States. The contribution of these and other international partners can be understated in the ongoing united effort to protect the citizens and assets of Australia and other countries against bioterrorism.
Collapse
|
15
|
Abstract
Platforms for pathogen discovery have improved since the days of Koch and Pasteur; nonetheless, the challenges of proving causation are at least as daunting as they were in the late 1800 s. Although we will almost certainly continue to accumulate low-hanging fruit, where simple relationships will be found between the presence of a cultivatable agent and a disease, these successes will be increasingly infrequent. The future of the field rests instead in our ability to follow footprints of infectious agents that cannot be characterized using classical microbiological techniques and to develop the laboratory and computational infrastructure required to dissect complex host-microbe interactions. I have tried to refine the criteria used by Koch and successors to prove linkage to disease. These refinements are working constructs that will continue to evolve in light of new technologies, new models, and new insights. What will endure is the excitement of the chase. Happy hunting!
Collapse
|
16
|
Abstract
Recent advances in nucleic acid diagnostic technologies have revolutionized microbiology by facilitating rapid, sensitive pathogen surveillance and differential diagnosis of infectious diseases. With the expansion and dissemination of genomic sequencing technology scientists are discovering new microbes at an accelerating pace. In this article we review recent progress in the field of pathogen surveillance and discovery with a specific focus on applications in the field of laboratory animal research. We discuss the challenges in proving a causal relationship between the presence of a candidate organism and disease. We also discuss the strengths and limitations of various assay platforms and describe a staged strategy for viral diagnostics. To illustrate the complexity of pursuing pathogen discovery research, we include examples from our own work that are intended to provide insights into the process that led to the selection of particular strategies.
Collapse
Affiliation(s)
- Gustavo Palacio
- Mailman School of Public Health, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
17
|
Pelletier N, La Scola B. Détection moléculaire et immunologique des bactéries dans le cadre du bioterrorisme. Med Mal Infect 2010; 40:506-16. [DOI: 10.1016/j.medmal.2010.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 02/04/2010] [Accepted: 03/08/2010] [Indexed: 12/18/2022]
|
18
|
Abstract
Mass spectrometry has become an important analytical tool in biology in the past two decades. In principle, mass spectrometry offers high-throughput, sensitive and specific analysis for many applications in microbiology, including clinical diagnostics and environmental research. Recently, several mass spectrometry methods for the classification and identification of bacteria and other microorganisms, as well as new software analysis tools, have been developed. In this Review we discuss the application range of these mass spectrometry procedures and their potential for successful transfer into microbiology laboratories.
Collapse
|
19
|
Il’ina EN, Govorun VM. Mass spectrometry of nucleic acids in molecular medicine. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2009. [DOI: 10.1134/s1068162009020010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Feng X, Liu X, Luo Q, Liu BF. Mass spectrometry in systems biology: an overview. MASS SPECTROMETRY REVIEWS 2008; 27:635-660. [PMID: 18636545 DOI: 10.1002/mas.20182] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
As an emerging field, systems biology is currently the talk of the town, which challenges our philosophy in comprehending biology. Instead of the reduction approach advocated in molecular biology, systems biology aims at systems-level understanding of correlations among molecular components. Such comprehensive investigation requires massive information from the "omics" cascade demanding high-throughput screening techniques. Being one of the most versatile analytical methods, mass spectrometry has already been playing a significant role at this early stage of systems biology. In this review, we documented the advances in modern mass spectrometry technologies as well as nascent inventions. Recent applications of mass spectrometry-based techniques and methodologies in genomics, proteomics, transcriptomics and metabolomics will be further elaborated individually. Undoubtedly, more applications of mass spectrometry in systems biology can be expected in the near future.
Collapse
Affiliation(s)
- Xiaojun Feng
- The Key Laboratory of Biomedical Photonics of MOE, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | |
Collapse
|
21
|
Okinaka RT, Henrie M, Hill KK, Lowery KS, Van Ert M, Pearson T, Schupp J, Kenefic L, Beaudry J, Hofstadler SA, Jackson PJ, Keim P. Single nucleotide polymorphism typing of Bacillus anthracis from Sverdlovsk tissue. Emerg Infect Dis 2008; 14:653-6. [PMID: 18394287 PMCID: PMC2570946 DOI: 10.3201/eid1404.070984] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A small number of conserved canonical single nucleotide polymorphisms (canSNP) that define major phylogenetic branches for Bacillus anthracis were used to place a Sverdlovsk patient’s B. anthracis genotype into 1 of 12 subgroups. Reconstruction of the pagA gene also showed a unique SNP that defines a new lineage for B. anthracis.
Collapse
|
22
|
Quan PL, Briese T, Palacios G, Ian Lipkin W. Rapid sequence-based diagnosis of viral infection. Antiviral Res 2008; 79:1-5. [PMID: 18367256 PMCID: PMC10071640 DOI: 10.1016/j.antiviral.2008.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 12/27/2022]
Abstract
With globalization of microbial threats and an increasing appreciation for the role of infection in chronic as well as acute diseases, there is burgeoning interest in the development of specific antiviral drugs. Less attention has been focused on the establishment and implementation of rapid viral diagnostic methods, without which it will not be possible to obtain the full benefit of new therapies. Here we review the current status of viral diagnostics and the utility of various sequence-based diagnostic platforms for applications in clinical microbiology, surveillance and pathogen discovery.
Collapse
|
23
|
On the use of different mass spectrometric techniques for characterization of sequence variability in genomic DNA. Anal Bioanal Chem 2008; 391:135-49. [DOI: 10.1007/s00216-008-1929-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/25/2008] [Accepted: 01/31/2008] [Indexed: 10/22/2022]
|
24
|
Forensic DNA fingerprinting by liquid chromatography-electrospray ionization mass spectrometry. Biotechniques 2007; 43:vii-xiii. [PMID: 18019345 DOI: 10.2144/000112581] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The determination of the molecular mass of a DNA sequence has several benefits over conventional fragment-length analysis that are advantageous to the forensic field: (i) sequence variation is captured that increases the power of discrimination compared with that obtained by conventional fragment-length analysis. First experiments showed that this increase makes up to 20%-30% for STR analysis. The new technical approach does not invalidate established developments and data, but adds to this information with additional discriminative categories. (ii) ICEMS is faster and cheaper than electrophoresis, does not require internal size standards, allelic ladders, or spectral calibration, which are necessary for fluorescence-based electrophoresis. (iii) ICEMS can unequivocally detect any single sequence variation in DNA molecules with lengths up to 250 nucleotides. This allows for maximum discrimination of forensically relevant DNA fragments, covering all sorts of STRs, SNPs, and also the analysis of the hypervariable segments of mtDNA. More effort, however, needs to be put into software development that escorts the analysis and data interpretation processes to make this technology manageable for the practical user.
Collapse
|
25
|
Hofstadler SA, Sannes‐Lowery KA. Interrogation of Noncovalent Complexes by ESI‐MS: A Powerful Platform for High Throughput Drug Discovery. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/9783527610907.ch10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Sampath R, Hall TA, Massire C, Li F, Blyn LB, Eshoo MW, Hofstadler SA, Ecker DJ. Rapid identification of emerging infectious agents using PCR and electrospray ionization mass spectrometry. Ann N Y Acad Sci 2007; 1102:109-20. [PMID: 17470915 PMCID: PMC7167958 DOI: 10.1196/annals.1408.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Newly emergent infectious diseases are a global public health problem. The population dense regions of Southeast Asia are the epicenter of many emerging diseases, as evidenced by the outbreak of Nipah, SARS, avian influenza (H5N1), Dengue, and enterovirus 71 in this region in the past decade. Rapid identification, epidemiologic surveillance, and mitigation of transmission are major challenges in ensuring public health safety. Here we describe a powerful new approach for infectious disease surveillance that is based on polymerase chain reaction (PCR) to amplify nucleic acid targets from large groupings of organisms, electrospray ionization mass spectrometry (ESI-MS) for accurate mass measurements of the PCR products, and base composition signature analysis to identify organisms in a sample. This approach is capable of automated analysis of more than 1,500 PCR reactions a day. It is applicable to the surveillance of bacterial, viral, fungal, or protozoal pathogens and will facilitate rapid characterization of known and emerging pathogens.
Collapse
Affiliation(s)
- Rangarajan Sampath
- Ibis Biosciences Inc, Subsidiary of Isis Pharmaceuticals, Carlsbad, CA 92008, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Background: Mitochondrial DNA (mtDNA) mutations cause a large spectrum of clinically important neurodegenerative, neuromuscular, cardiovascular, and endocrine disorders. We describe the novel application of electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR MS) to the rapid and accurate identification of pathogenic mtDNA variants. Methods: In a blinded study, we used ESI-FTICR MS to analyze 24 unrelated samples of total cellular DNA containing 12 mtDNA variants and compared the results with those obtained by conventional PCR-restriction fragment length polymorphism (PCR-RFLP) analysis and gel electrophoresis. Results: From the 24-sample blinded panel, we correctly identified 12 of the samples as bearing an mtDNA variant and found the remaining 12 samples to have no pathogenic variants. The correlation coefficient between the 2 methods for mtDNA variant detection was 1.0; there were no false positives or false negatives in this sample set. In addition, the ESI-FTICR method identified 4 single-nucleotide polymorphisms (SNP) that had previously been missed by standard PCR-RFLP analysis. Conclusions: ESI-FTICR MS is a rapid, sensitive, and accurate method for the identification and quantification of mtDNA mutations and SNPs.
Collapse
Affiliation(s)
- Yun Jiang
- Ibis Biosciences, a division of Isis Pharmaceuticals, Carlsbad, CA
| | - Thomas A Hall
- Ibis Biosciences, a division of Isis Pharmaceuticals, Carlsbad, CA
| | - Steven A Hofstadler
- Ibis Biosciences, a division of Isis Pharmaceuticals, Carlsbad, CA
- Address correspondence to these authors at: fax (to R.K.N.) 619-543-7868; e-mail or (to S.A.H.) 760-603-4653; e-mail
| | - Robert K Naviaux
- Departments of Medicine and Pediatrics, University of California, San Diego, The Mitochondrial and Metabolic Disease Center, San Diego, CA
- Address correspondence to these authors at: fax (to R.K.N.) 619-543-7868; e-mail or (to S.A.H.) 760-603-4653; e-mail
| |
Collapse
|
28
|
Van Ert MN, Easterday WR, Simonson TS, U'Ren JM, Pearson T, Kenefic LJ, Busch JD, Huynh LY, Dukerich M, Trim CB, Beaudry J, Welty-Bernard A, Read T, Fraser CM, Ravel J, Keim P. Strain-specific single-nucleotide polymorphism assays for the Bacillus anthracis Ames strain. J Clin Microbiol 2006; 45:47-53. [PMID: 17093023 PMCID: PMC1828967 DOI: 10.1128/jcm.01233-06] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Highly precise diagnostics and forensic assays can be developed through a combination of evolutionary analysis and the exhaustive examination of genomic sequences. In Bacillus anthracis, whole-genome sequencing efforts revealed ca. 3,500 single-nucleotide polymorphisms (SNPs) among eight different strains and evolutionary analysis provides the identification of canonical SNPs. We have previously shown that SNPs are highly evolutionarily stable, and the clonal nature of B. anthracis makes them ideal signatures for subtyping this pathogen. Here we identified SNPs that define the lineage of B. anthracis that contains the Ames strain, the strain used in the 2001 bioterrorist attacks in the United States. Sequencing and real-time PCR were used to validate these SNPs across B. anthracis strains, including (i) 88 globally and genetically diverse isolates; (ii) isolates that were shown to be genetic relatives of the Ames strain by multiple-locus variable number tandem repeat analysis (MLVA); and (iii) several different lab stocks of the Ames strain, including a clinical isolate from the 2001 letter attack. Six SNPs were found to be highly specific for the Ames strain; four on the chromosome, one on the pX01 plasmid, and one on the pX02 plasmid. All six SNPs differentiated the B. anthracis Ames strain from the 88 unique B. anthracis strains, while five of the six separated Ames from its close genetic relatives. The use of these SNPs coupled with real-time PCR allows specific and sensitive (<100 fg of template DNA) identification of the Ames strain. This evolutionary and genomics-based approach provides an effective means for the discovery of strain-specific SNPs in B. anthracis.
Collapse
Affiliation(s)
- Matthew N Van Ert
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-5640, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Oberacher H, Niederstätter H, Parson W. Liquid chromatography-electrospray ionization mass spectrometry for simultaneous detection of mtDNA length and nucleotide polymorphisms. Int J Legal Med 2006; 121:57-67. [PMID: 16955300 DOI: 10.1007/s00414-006-0117-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 07/05/2006] [Indexed: 10/24/2022]
Abstract
We demonstrate the applicability of ion-pair reversed-phase high-performance liquid chromatography-electrospray ionization time-of-flight mass spectrometry (ICEMS) for the simultaneous characterization of length and nucleotide polymorphisms. Two sections within the first (HVS-I) and second (HVS-II) hypervariable segments of the mitochondrial (mt)DNA control region were selected as targets, both containing poly-cytosine (C) tracts, which display length heteroplasmy at a substantial frequency in the population. The two mtDNA sections were simultaneously amplified and analyzed by ICEMS in 90 maternally unrelated mother-offspring pairs from Austria. The findings were confirmed by direct sequencing of the polymerase chain reaction products. For the detailed characterization of present-length heteroplasmic variants, the results retrieved through ICEMS were more informative compared with those derived from direct sequencing. Hence, ICEMS represents an interesting option for successful application in forensic science.
Collapse
Affiliation(s)
- Herbert Oberacher
- Institute of Legal Medicine, Innsbruck Medical University, Müllerstrasse 44, 6020, Innsbruck, Austria
| | | | | |
Collapse
|
30
|
Budowle B, Johnson MD, Fraser CM, Leighton TJ, Murch RS, Chakraborty R. Genetic analysis and attribution of microbial forensics evidence. Crit Rev Microbiol 2006; 31:233-54. [PMID: 16417203 DOI: 10.1080/10408410500304082] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Because of the availability of pathogenic microorganisms and the relatively low cost of preparing and disseminating bioweapons, there is a continuing threat of biocrime and bioterrorism. Thus, enhanced capabilities are needed that enable the full and robust forensic exploitation and interpretation of microbial evidence from acts of bioterrorism or biocrimes. To respond to the need, greater resources and efforts are being applied to the burgeoning field of microbial forensics. Microbial forensics focuses on the characterization, analysis and interpretation of evidence for attributional purposes from a bioterrorism act, biocrime, hoax or inadvertent agent release. To enhance attribution capabilities, a major component of microbial forensics is the analysis of nucleic acids to associate or eliminate putative samples. The degree that attribution can be addressed depends on the context of the case, the available knowledge of the genetics, phylogeny, and ecology of the target microorganism, and technologies applied. The types of genetic markers and features that can impact statistical inferences of microbial forensic evidence include: single nucleotide polymorphisms, repetitive sequences, insertions and deletions, mobile elements, pathogenicity islands, virulence and resistance genes, house keeping genes, structural genes, whole genome sequences, asexual and sexual reproduction, horizontal gene transfer, conjugation, transduction, lysogeny, gene conversion, recombination, gene duplication, rearrangements, and mutational hotspots. Nucleic acid based typing technologies include: PCR, real-time PCR, MLST, MLVA, whole genome sequencing, and microarrays.
Collapse
|
31
|
Oberacher H, Niederstätter H, Huber CG, Parson W. Accurate determination of allelic frequencies in mitochondrial DNA mixtures by electrospray ionization time-of-flight mass spectrometry. Anal Bioanal Chem 2006; 384:1155-63. [PMID: 16421710 DOI: 10.1007/s00216-005-0269-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 12/01/2005] [Accepted: 12/02/2005] [Indexed: 10/25/2022]
Abstract
The mitochondrial locus 16519T/C was used as a model for the evaluation of the benefits of ion-pair reversed-phase high-performance liquid chromatography on-line hyphenated to electrospray ionization time-of-flight mass spectrometry (ICEMS assay) for the determination of allelic frequencies of single nucleotide polymorphisms. This marker has gained interest in forensic science owing to its ability to increase the discrimination power of mitochondrial DNA testing as a consequence of its high variability across various populations. In a first set of experiments, artificial mitochondrial DNA mixtures prepared from all four theoretically possible 16519 alleles served as samples. Any allele occurring at a frequency of as low as 1-5% was unequivocally detectable irrespective of the kind of allelic mixture. Measured and expected allelic frequencies correlated well following correction of observed experimental bias, which was most probably attributable to differential PCR amplification and/or preferential ionization. For thirteen different T/C mixtures with C contents in the range 1.0-99.0%, an average error of 1.2% and a maximum error of 2.2% were observed. Furthermore, ICEMS was applied to the quantitative genotyping of eight selected individuals of which four were heteroplasmic with C contents in the range 1.9-34.1%. To check the reliability of these results, allelic proportions were additionally determined by a cloning assay. The results of the two assays correlated well (R (2)=0.9971). In all cases, deviations were obtained that were smaller than 5.4%. The overall observed assay performance suggests that the described mass spectrometric technique represents one of the most powerful assays for the determination of allelic frequencies available today.
Collapse
Affiliation(s)
- Herbert Oberacher
- Institute of Legal Medicine, Innsbruck Medical University, Muellerstrasse 44, 6020 Innsbruck, Austria.
| | | | | | | |
Collapse
|
32
|
Abstract
Pyrosequencing technology was used to rapidly and specifically identify Bacillus anthracis. Pyrosequencing technology is a sequencing method that screens DNA nucleotide incorporation in real time. A set of coupled enzymatic reactions, together with bioluminescence, detects incorporated nucleotides in the form of light pulses, which produces a profile of characteristic peaks in a pyrogram. We used this technology to identify the warfare agent Bacillus anthracis by sequencing 4 single nucleotide polymorphisms (SNPs) in the rpoB gene as chromosomal markers for B. anthracis. In addition, 1 segment in each of the B. anthracis plasmids pXO1 and pXO2 was analyzed to determine the virulence status of the bacterial strains. Pyrosequencing technology is a powerful method to identify B. anthracis.
Collapse
Affiliation(s)
- Tara Wahab
- Swedish Institute for Infectious Disease Control, Solna, Sweden
| | | | - Ralfh Wollin
- Swedish Institute for Infectious Disease Control, Solna, Sweden
| | - Lars Engstrand
- Swedish Institute for Infectious Disease Control, Solna, Sweden
| |
Collapse
|
33
|
Abstract
In the 21st century, one of the greatest challenges to public health and clinical microbiologists is the rapid detection and identification of emerging and reemerging pathogens. Complex factors such as genetic variation in the host and pathogen, environmental changes, population pressures, and global travel can all influence the emergence of infectious diseases. The SARS epidemic of 2003 highlighted the potential of an emerging pathogen to spread globally in a very short time frame (Peruski and Peruski, 2003). The diagnostics of such infectious diseases has been greatly affected in the past 20 years. No longer is cultivation and microscopy the only means of detecting infectious agents. With the introduction of molecular diagnostics, the ability to detect minute amounts of microbial nucleic acids in clinical specimens has revolutionized clinical microbiology. In particular, the utility of PCR allows the detection and quantitation of specific agents in a matter of hours. PCR sequencing of specific segments of nucleic acid allows for the determination of specific drug resistance that now aids in guiding viral therapies.
Collapse
|
34
|
Hall TA, Budowle B, Jiang Y, Blyn L, Eshoo M, Sannes-Lowery KA, Sampath R, Drader JJ, Hannis JC, Harrell P, Samant V, White N, Ecker DJ, Hofstadler SA. Base composition analysis of human mitochondrial DNA using electrospray ionization mass spectrometry: a novel tool for the identification and differentiation of humans. Anal Biochem 2005; 344:53-69. [PMID: 16054106 DOI: 10.1016/j.ab.2005.05.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 05/20/2005] [Accepted: 05/21/2005] [Indexed: 11/20/2022]
Abstract
In traditional approaches, mitochondrial DNA (mtDNA) variation is exploited for forensic identity testing by sequencing the two hypervariable regions of the human mtDNA control region. To reduce time and labor, single nucleotide polymorphism (SNP) assays are being sought to possibly replace sequencing. However, most SNP assays capture only a portion of the total variation within the desired regions, require a priori knowledge of the position of the SNP in the genome, and are generally not quantitative. Furthermore, with mtDNA, the clustering of SNPs complicates the design of SNP extension primers or hybridization probes. This article describes an automated electrospray ionization mass spectrometry method that can detect a number of clustered SNPs within an amplicon without a priori knowledge of specific SNP positions and can do so quantitatively. With this technique, the base composition of a PCR amplicon, less than 140 nucleotides in length, can be calculated. The difference in base composition between two samples indicates the presence of an SNP. Therefore, no post-PCR analytical construct needs to be developed to assess variation within a fragment. Of the 2754 different mtDNA sequences in the public forensic mtDNA database, nearly 90% could be resolved by the assay. The mass spectrometer is well suited to characterize and quantitate heteroplasmic samples or those containing mixtures. This makes possible the interpretation of mtDNA mixtures (as well as mixtures when assaying other SNPs). This assay can be expanded to assess genetic variation in the coding region of the mtDNA genome and can be automated to facilitate analysis of a large number of samples such as those encountered after a mass disaster.
Collapse
Affiliation(s)
- Thomas A Hall
- Ibis Therapeutics, A Division of Isis Pharmaceuticals, 1891 Rutherford Road, Carlsbad, CA 92008, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lim DV, Simpson JM, Kearns EA, Kramer MF. Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin Microbiol Rev 2005; 18:583-607. [PMID: 16223949 PMCID: PMC1265906 DOI: 10.1128/cmr.18.4.583-607.2005] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent events have made public health officials acutely aware of the importance of rapidly and accurately detecting acts of bioterrorism. Because bioterrorism is difficult to predict or prevent, reliable platforms to rapidly detect and identify biothreat agents are important to minimize the spread of these agents and to protect the public health. These platforms must not only be sensitive and specific, but must also be able to accurately detect a variety of pathogens, including modified or previously uncharacterized agents, directly from complex sample matrices. Various commercial tests utilizing biochemical, immunological, nucleic acid, and bioluminescence procedures are currently available to identify biological threat agents. Newer tests have also been developed to identify such agents using aptamers, biochips, evanescent wave biosensors, cantilevers, living cells, and other innovative technologies. This review describes these current and developing technologies and considers challenges to rapid, accurate detection of biothreat agents. Although there is no ideal platform, many of these technologies have proved invaluable for the detection and identification of biothreat agents.
Collapse
Affiliation(s)
- Daniel V Lim
- Department of Biology, Center for Biological Defense, University of South Florida, Tampa, FL 33620-5200, USA.
| | | | | | | |
Collapse
|
36
|
Lindstedt BA. Multiple-locus variable number tandem repeats analysis for genetic fingerprinting of pathogenic bacteria. Electrophoresis 2005; 26:2567-82. [PMID: 15937984 DOI: 10.1002/elps.200500096] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA fingerprinting has attracted considerable interest as means for identifying, tracing and preventing the dissemination of infectious agents. Various methods have been developed for typing of pathogenic bacteria, which differ in discriminative power, reproducibility and ease of interpretation. During recent years a typing method, which uses the information provided by whole genome sequencing of bacterial species, has gained increased attention. Short sequence repeat (SSR) motifs are known to undergo frequent variation in the number of repeated units through cellular mechanisms most commonly active during chromosome replication. A class of SSRs, named variable number of tandem repeats (VNTRs), has proven to be a suitable target for assessing genetic polymorphisms within bacterial species. This review attempts to give an overview of bacterial agents where VNTR-based typing, or multiple-locus variant-repeat analysis (MLVA) has been developed for typing purposes, together with addressing advantages and drawbacks associated with the use of tandem repeated DNA motifs as targets for bacterial typing and identification.
Collapse
Affiliation(s)
- Bjørn-Arne Lindstedt
- Norwegian Institute of Public Health, Division for Infectious Diseases Control, Oslo, Norway.
| |
Collapse
|
37
|
Oberacher H, Niederstätter H, Parson W. Characterization of synthetic nucleic acids by electrospray ionization quadrupole time-of-flight mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:932-45. [PMID: 15918177 DOI: 10.1002/jms.870] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The potential of electrospray ionization quadrupole-quadrupole-time-of-flight mass spectrometry (ESI-QqTOF-MS) for the characterization of synthetic nucleic acids was evaluated. Oligonucleotides ranging in size from 12 up to 51 nucleotides were analyzed via direct infusion MS as well as via liquid chromatography (LC) online hyphenated to MS. These experiments proved the outstanding mass spectrometric performance of the TOF mass analyzer in regard of accuracy, reproducibility, resolution, and sensitivity. During a 1-min run, the monoisotopic mass of (dT)(24) was measured with a maximum relative mass deviation of 7.64 ppm proving the high mass accuracy of the TOF analyzer. Over a period of 1 h, mean deviations were determined in the range between -3.58 ppm and 3.06 ppm demonstrating the high stability of the applied external calibration. The molecular mass of a 51-mer was measured with a deviation smaller than 3.23 ppm from the theoretical value. The resolution exceeded a value of m/Deltam = 20 000 (m is the measured mass and Deltam the full peak width at half-maximum), which enabled the separation of the isotopic peaks of all investigated oligonucleotides. Because of the outstanding transmission and detection efficiency of the TOF mass analyzer, detection limits in the amol/microl to low fmol/microl range were reached. The usability of LC-ESI-QqTOF-MS for the qualitative and quantitative analysis of synthetic oligonucleotide mixtures was demonstrated.
Collapse
Affiliation(s)
- Herbert Oberacher
- Institute of Legal Medicine, Innsbruck Medical University, Muellerstrasse 44, 6020 Innsbruck, Austria.
| | | | | |
Collapse
|
38
|
Castanha ER, Swiger RR, Senior B, Fox A, Waller LN, Fox KF. Strain discrimination among B. anthracis and related organisms by characterization of bclA polymorphisms using PCR coupled with agarose gel or microchannel fluidics electrophoresis. J Microbiol Methods 2005; 64:27-45. [PMID: 15992950 DOI: 10.1016/j.mimet.2005.04.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 04/08/2005] [Accepted: 04/09/2005] [Indexed: 11/16/2022]
Abstract
The bclA gene codes for the protein backbone of the exosporium glycoprotein BclA of B. anthracis. BclA has a central collagen-like region formed by polymorphic GXX repeats and conserved amino- and carboxy-termini. It is noted here that the bclA gene is also present in the genome of Bacillus cereus and Bacillus thuringiensis. There is considerable size heterogeneity among the BclA proteins, both for species and strains, due to different numbers of GPT repeats and [GPT]5GDTGTT repeats (BclA repeats). PCR products that included the entire variable region were analyzed by conventional agarose gel electrophoresis and by micro-channel fluidics (MCF) LabChip to assess differences in molecular weight (MW). Both methods provided discrimination at the strain level for B. cereus group organisms. Results obtained by MCF electrophoresis were superior to conventional agarose gel analysis demonstrating improved reproducibility and much faster analysis time. The expression of a carbohydrate-rich exosporium (corresponding to BclA) in other members of the B. cereus group, in addition to B. anthracis, was also demonstrated ultra-structurally. Analysis of sequence variability within the bclA gene CLR revealed even greater potential for strain and species identification.
Collapse
Affiliation(s)
- Elisangela R Castanha
- Department of Pathology and Microbiology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | | | | | | | | | | |
Collapse
|
39
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:693-704. [PMID: 15880598 DOI: 10.1002/jms.806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
|
40
|
Drake RR, Deng Y, Schwegler EE, Gravenstein S. Proteomics for biodefense applications: progress and opportunities. Expert Rev Proteomics 2005; 2:203-13. [PMID: 15892565 PMCID: PMC7105753 DOI: 10.1586/14789450.2.2.203] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The increasing threat of bioterrorism and continued emergence of new infectious diseases has driven a major resurgence in biomedical research efforts to develop improved treatments, diagnostics and vaccines, as well as increase the fundamental understanding of the host immune response to infectious agents. The availability of multiple mass spectrometry platforms combined with multidimensional separation technologies and microbial genomic databases provides an unprecedented opportunity to develop these much needed resources. An overview of current proteomic strategies applied to microbes and viruses considered potential bioterrorism agents is presented. The emerging area of immunoproteomics as applied to the development of new vaccine targets is also summarized. These powerful research approaches can generate a multitude of potential new protein targets; however, translating these proteomic discoveries to useful counter-bioterrorism products will require large collaborative research efforts across multiple basic science and clinical disciplines. A translational proteomic research paradigm illustrating this approach using influenza virus as an example is discussed.
Collapse
Affiliation(s)
- Richard R Drake
- Scientific Center for Biodefense, Center for Biomedical ProteomicsDepartment of Microbiology & Molecular Cell BiologyEastern Virginia Medical School700 W. OlneyNorfolk, VA 23507USATel.: +1 757 446 5656Fax: +1 757 624 2255
| | - Yuping Deng
- Glennan Center for Geriatrics & GerontologyDepartment of Internal MedicineEastern Virginia Medical School700 W. OlneyNorfolk, VA 23507USATel.: +1 757 446 7335Fax: +1 757 446 7049
| | - E Ellen Schwegler
- Center for Biomedical ProteomicsDepartment of Microbiology & Molecular Cell BiologyEastern Virginia Medical School825 Fairfax Ave.Norfolk, VA 23507USATel.: +1 757 446 5760Fax: +1 757 624 2255
| | - Stefan Gravenstein
- Glennan Center for Geriatrics & GerontologyDepartment of Internal MedicineEastern Virginia Medical School825 Fairfax Ave.Norfolk, VA 23507USATel.: +1 757 446 7040Fax: +1 757 446 7049
| |
Collapse
|