1
|
Thongchot S, Aksonnam K, Prasopsiri J, Warnnissorn M, Sa-Nguanraksa D, O-Charoenrat P, Thuwajit P, Yenchitsomanus PT, Thuwajit C. Mesothelin- and nucleolin-specific T cells from combined short peptides effectively kill triple-negative breast cancer cells. BMC Med 2024; 22:400. [PMID: 39294656 PMCID: PMC11411782 DOI: 10.1186/s12916-024-03625-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC), known for its aggressiveness and limited treatment options, presents a significant challenge. Adoptive cell transfer, involving the ex vivo generation of antigen-specific T cells from peripheral blood mononuclear cells (PBMCs), emerges as a promising approach. The overexpression of mesothelin (MSLN) and nucleolin (NCL) in TNBC samples underscores their potential as targets for T cell therapy. This study explored the efficacy of multi-peptide pulsing of PBMCs to generate MSLN/NCL-specific T cells targeting MSLN+/NCL+ TNBC cells. METHODS TNBC patient samples were confirmed for both MSLN and NCL expression via immunohistochemistry. Synthesized MSLN and NCL peptides were combined and administered to activate PBMCs from healthy donors. The cancer-killing ability of the resultant T cells was assessed using crystal violet staining, and their subtypes and cytotoxic cytokines were characterized through flow cytometry and cytokine bead array. RESULTS Findings showed that 85.3% (127/149) of TNBC cases were positive for either MSLN or NCL, or both; with single positivity rates for MSLN and NCL of 14.1% and 28.9%, respectively. MSLN and NCL peptides, with high binding affinity for HLA-A*02, were combined and introduced to activated PBMCs from healthy donors. The co-pulsed PBMCs significantly induced TEM and TEMRA CD3+/CD8+ T cells and IFN-γ production, compared to single-peptide pulsed or unpulsed conditions. Notably, MSLN/NCL-specific T cells successfully induced cell death in MSLN+/NCL+ MDA-MB-231 cells, releasing key cytotoxic factors such as perforin, granzymes A and B, Fas ligand, IFN-γ, and granulysin. CONCLUSIONS These findings serve as a proof-of-concept for using multiple immunogenic peptides as a novel therapeutic approach in TNBC patients.
Collapse
Affiliation(s)
- Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Krittaya Aksonnam
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Jaturawitt Prasopsiri
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Malee Warnnissorn
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Doonyapat Sa-Nguanraksa
- Division of Head Neck and Breast Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | | | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
2
|
Yazdani Z, Rafiei A, Ghoreyshi M, Abediankenari S. In Silico Analysis of a Candidate Multi-epitope Peptide Vaccine Against Human Brucellosis. Mol Biotechnol 2024; 66:769-783. [PMID: 36940016 PMCID: PMC10026239 DOI: 10.1007/s12033-023-00698-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/13/2023] [Indexed: 03/21/2023]
Abstract
Brucellosis is one of the neglected endemic zoonoses in the world. Vaccination appears to be a promising health strategy to prevent it. This study used advanced computational techniques to develop a potent multi-epitope vaccine for human brucellosis. Seven epitopes from four main brucella species that infect humans were selected. They had significant potential to induce cellular and humoral responses. They showed high antigenic ability without the allergenic characteristic. In order to improve its immunogenicity, suitable adjuvants were also added to the structure of the vaccine. The physicochemical and immunological properties of the vaccine were evaluated. Then its two and three-dimensional structure was predicted. The vaccine was docked with toll-like receptor4 to assess its ability to stimulate innate immune responses. For successful expression of the vaccine protein in Escherichia coli, in silico cloning, codon optimization, and mRNA stability were evaluated. The immune simulation was performed to reveal the immune response profile of the vaccine after injection. The designed vaccine showed the high ability to induce immune response, especially cellular responses to human brucellosis. It showed the appropriate physicochemical properties, a high-quality structure, and a high potential for expression in a prokaryotic system.
Collapse
Affiliation(s)
- Zahra Yazdani
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Students Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Rafiei
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mehrafarin Ghoreyshi
- Students Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abediankenari
- Immunogenetics Research Center, Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
3
|
Identification of B and T Cell Epitopes to Design an Epitope-Based Peptide Vaccine against the Cell Surface Binding Protein of Monkeypox Virus: An Immunoinformatics Study. J Immunol Res 2023; 2023:2274415. [PMID: 36874624 PMCID: PMC9977553 DOI: 10.1155/2023/2274415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/07/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Background Although the monkeypox virus-associated illness was previously confined to Africa, recently, it has started to spread across the globe and become a significant threat to human lives. Hence, this study was designed to identify the B and T cell epitopes and develop an epitope-based peptide vaccine against this virus's cell surface binding protein through an in silico approach to combat monkeypox-associated diseases. Results The analysis revealed that the cell surface binding protein of the monkeypox virus contains 30 B cell and 19 T cell epitopes within the given parameter. Among the T cell epitopes, epitope "ILFLMSQRY" was found to be one of the most potential peptide vaccine candidates. The docking analysis revealed an excellent binding affinity of this epitope with the human receptor HLA-B∗15:01 with a very low binding energy (-7.5 kcal/mol). Conclusion The outcome of this research will aid the development of a T cell epitope-based peptide vaccine, and the discovered B and T cell epitopes will facilitate the creation of other epitope and multi-epitope-based vaccines in the future. This research will also serve as a basis for further in vitro and in vivo analysis to develop a vaccine that is effective against the monkeypox virus.
Collapse
|
4
|
Ali MC, Khatun MS, Jahan SI, Das R, Munni YA, Rahman MM, Dash R. In silico design of epitope-based peptide vaccine against non-typhoidal Salmonella through immunoinformatic approaches. J Biomol Struct Dyn 2022; 40:10696-10714. [PMID: 36529187 DOI: 10.1080/07391102.2021.1947381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Non-typhoidal Salmonella (NTS) is one of the leading bacterial causes of many invasive human infections with a high antibiotic resistance profile. With this concern, the current study aimed to design an effective epitope-based peptide vaccine against NTS species as a successive and substitutive protective measure of invasive NTS disease. To design rationally, the current study considered a comprehensive in silico workflow combination of both immunoinformatics and molecular modeling approaches, including molecular docking and molecular dynamics (MD) simulation. We identified the two most promising T cell epitopes KVLYGIFAI and YGIFAITAL, and three B cell epitopes AAPVQVGEAAGS, TGGGDGSNT, and TGGGDGSNTGTTTT, in the outer membrane of NTS. Using these epitopes, a multiepitope vaccine was subsequently constructed along with appropriate adjuvant and linkers, which showed a good binding affinity and stability with toll-like receptor 2 (TLR2) in both molecular docking and MD simulation. Furthermore, in silico immune simulation described a strong immune response with a high number of antibodies, interferon-γ, and activated B and T cells. This study collectively suggests that predicted vaccine constructs could be considered potential vaccine candidates against common NTS species.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Chayan Ali
- Department of Biotechnology & Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Mst Shanzeda Khatun
- Department of Biotechnology & Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Sultana Israt Jahan
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Raju Das
- Department of Physiology, Dongguk University College of Medicine, Gyeongju, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, Republic of Korea
| | - Md Mafizur Rahman
- Department of Biotechnology & Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, Republic of Korea
| |
Collapse
|
5
|
Jalal K, Khan K, Uddin R. Immunoinformatic-guided designing of multi-epitope vaccine construct against Brucella Suis 1300. Immunol Res 2022; 71:247-266. [PMID: 36459272 PMCID: PMC9716126 DOI: 10.1007/s12026-022-09346-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022]
Abstract
Brucella suis mediates the transmission of brucellosis in humans and animals and a significant facultative zoonotic pathogen found in livestock. It has the capacity to survive and multiply in a phagocytic environment and to acquire resistance under hostile conditions thus becoming a threat globally. Antibiotic resistance is posing a substantial public health threat, hence there is an unmet and urgent clinical need for immune-based non-antibiotic methods to treat brucellosis. Hence, we aimed to explore the whole proteome of Brucella suis to predict antigenic proteins as a vaccine target and designed a novel chimeric vaccine (multi-epitope vaccine) through subtractive genomics-based reverse vaccinology approaches. The applied subsequent hierarchical shortlisting resulted in the identification of Multidrug efflux Resistance-nodulation-division (RND) transporter outer membrane subunit (gene BepC) that may act as a potential vaccine target. T-cell and B-cell epitopes have been predicted from target proteins using a number of immunoinformatic methods. Six MHC I, ten MHC II, and four B-cell epitopes were used to create a 324-amino-acid MEV construct, which was coupled with appropriate linkers and adjuvant. To boost the immunological response to the vaccine, the vaccine was combined with the TLR4 agonist HBHA protein. The MEV structure predicted was found to be highly antigenic, non-toxic, non-allergenic, flexible, stable, and soluble. To confirm the interactions with the receptors, a molecular docking simulation of the MEV was done using the human TLR4 (toll-like receptor 4) and HLAs. The stability and binding of the MEV-docked complexes with TLR4 were assessed using molecular dynamics (MD) simulation. Finally, MEV was reverse translated, its cDNA structure was evaluated, and then, in silico cloning into an E. coli expression host was conducted to promote maximum vaccine protein production with appropriate post-translational modifications. These comprehensive computer calculations backed up the efficacy of the suggested MEV in protecting against B. suis infections. However, more experimental validations are needed to adequately assess the vaccine candidate's potential. HIGHLIGHTS: • Subtractive genomic analysis and reverse vaccinology for the prioritization of novel vaccine target • Examination of chimeric vaccine in terms of allergenicity, antigenicity, MHC I, II binding efficacy, and structural-based studies • Molecular docking simulation method to rank based vaccine candidate and understand their binding modes.
Collapse
Affiliation(s)
- Khurshid Jalal
- HEJ Research Institute of Chemistry International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Kanwal Khan
- Lab 103 PCMD Ext. Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Reaz Uddin
- Lab 103 PCMD Ext. Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
6
|
Salod Z, Mahomed O. Mapping Potential Vaccine Candidates Predicted by VaxiJen for Different Viral Pathogens between 2017-2021-A Scoping Review. Vaccines (Basel) 2022; 10:1785. [PMID: 36366294 PMCID: PMC9695814 DOI: 10.3390/vaccines10111785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 09/29/2023] Open
Abstract
Reverse vaccinology (RV) is a promising alternative to traditional vaccinology. RV focuses on in silico methods to identify antigens or potential vaccine candidates (PVCs) from a pathogen's proteome. Researchers use VaxiJen, the most well-known RV tool, to predict PVCs for various pathogens. The purpose of this scoping review is to provide an overview of PVCs predicted by VaxiJen for different viruses between 2017 and 2021 using Arksey and O'Malley's framework and the Preferred Reporting Items for Systematic Reviews extension for Scoping Reviews (PRISMA-ScR) guidelines. We used the term 'vaxijen' to search PubMed, Scopus, Web of Science, EBSCOhost, and ProQuest One Academic. The protocol was registered at the Open Science Framework (OSF). We identified articles on this topic, charted them, and discussed the key findings. The database searches yielded 1033 articles, of which 275 were eligible. Most studies focused on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), published between 2020 and 2021. Only a few articles (8/275; 2.9%) conducted experimental validations to confirm the predictions as vaccine candidates, with 2.2% (6/275) articles mentioning recombinant protein expression. Researchers commonly targeted parts of the SARS-CoV-2 spike (S) protein, with the frequently predicted epitopes as PVCs being major histocompatibility complex (MHC) class I T cell epitopes WTAGAAAYY, RQIAPGQTG, IAIVMVTIM, and B cell epitope IAPGQTGKIADY, among others. The findings of this review are promising for the development of novel vaccines. We recommend that vaccinologists use these findings as a guide to performing experimental validation for various viruses, with SARS-CoV-2 as a priority, because better vaccines are needed, especially to stay ahead of the emergence of new variants. If successful, these vaccines could provide broader protection than traditional vaccines.
Collapse
Affiliation(s)
- Zakia Salod
- Discipline of Public Health Medicine, University of KwaZulu-Natal, Durban 4051, South Africa
| | | |
Collapse
|
7
|
Islam SI, Sanjida S, Ahmed SS, Almehmadi M, Allahyani M, Aljuaid A, Alsaiari AA, Halawi M. Core Proteomics and Immunoinformatic Approaches to Design a Multiepitope Reverse Vaccine Candidate against Chagas Disease. Vaccines (Basel) 2022; 10:vaccines10101669. [PMID: 36298534 PMCID: PMC9607777 DOI: 10.3390/vaccines10101669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/23/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022] Open
Abstract
Chagas disease is a tropical ailment indigenous to South America and caused by the protozoan parasite Trypanosoma cruzi, which has serious health consequences globally. Insect vectors transmit the parasite and, due to the lack of vaccine availability and limited treatment options, we implemented an integrated core proteomics analysis to design a reverse vaccine candidate based on immune epitopes for disease control. Firstly, T. cruzi core proteomics was used to identify immunodominant epitopes. Therefore, we designed the vaccine sequence to be non-allergic, antigenic, immunogenic, and to have better solubility. After predicting the tertiary structure, docking and molecular dynamics simulation (MDS) were performed with TLR4, MHC-I, and MHC-II receptors to discover the binding affinities. The final vaccine design demonstrated significant hydrogen bond interactions upon docking with TLR4, MHC-I, and MHC-II receptors. This indicated the efficacy of the vaccine candidate. A server-based immune simulation approach was generated to predict the efficacy. Significant structural compactness and binding stability were found based on MDS. Finally, by optimizing codons on Escherichia coli K12, a high GC content and CAI value were obtained, which were then incorporated into the cloning vector pET2+ (a). Thus, the developed vaccine sequence may be a viable therapy option for Chagas disease.
Collapse
Affiliation(s)
- Sk Injamamul Islam
- The International Graduate Program of Veterinary Science and Technology (VST), Department of Veterinary Microbiology, Faculty of Veterinary Science and Technology, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: or
| | - Saloa Sanjida
- Department of Environmental Science and Technology, Faculty of Applied Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Sheikh Sunzid Ahmed
- Department of Botany, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Abdulelah Aljuaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Mustafa Halawi
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan 54943, Saudi Arabia
| |
Collapse
|
8
|
Enhanced In Vitro and In Vivo Potency of a T Cell Epitope in the Ebola Virus Glycoprotein Following Amino Acid Replacement at HLA-A*02:01 Binding Positions. J Virol 2022; 96:e0116621. [PMID: 36069549 PMCID: PMC9517714 DOI: 10.1128/jvi.01166-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies on Ebola virus disease (EVD) survivors and clinical studies on Ebola virus (EBOV) vaccine candidates have pinpointed the importance of a strong antibody response in protection and survival from EBOV infection. However, little is known about the T cell responses to EBOV or EBOV vaccines. We used HLA-A*02:01 (HLA-A2) transgenic mice to study HLA-A2-specific T cell responses elicited following vaccination with EBOV glycoprotein (EBOV-GP) presented with three different systems: (i) recombinant protein (rEBOV-GP), (ii) vesicular stomatitis replication-competent recombinant virus (VSV-EBOV-GP), and (iii) modified vaccinia Ankara virus recombinant (MVA-EBOV-GP). T cells from immunized animals were analyzed using peptide pools representing the entire GP region and individual peptides. Regardless of the vaccine formulation, we identified a minimal 9mer epitope containing an HLA-A2 motif (FLDPATTS), which was confirmed through HLA-A2 binding affinity and immunization studies. Using binding prediction software, we identified substitutions surrounding position 9 (S9V, P10V, and Q11V) that predicted enhanced binding to the HLA-A2 molecule. This enhanced binding was confirmed through in vitro binding studies and enhanced potency was shown with in vivo immunization studies using the enhanced sequences and the wild-type sequence. Of note, in silico studies predicted the enhanced 9mer epitope carrying the S9V substitution as the best overall HLA-A2 epitope for the full-length EBOV-GP. These results suggest that EBOV-GP-S9V and EBOV-GP-P10V represent more potent in vivo immunogens. Identification and enhancement of EBOV-specific human HLA epitopes could lead to the development of tools and reagents to induce more robust T cell responses in human subjects. IMPORTANCE Vaccine efficacy and immunity to viral infection are often measured by neutralizing antibody titers. T cells are specialized subsets of immune cells with antiviral activity, but this response is variable and difficult to track. We showed that the HLA-A2-specific T cell response to the Ebola virus glycoprotein can be enhanced significantly by a single residue substitution designed to improve an epitope binding affinity to one of the most frequent MHC alleles in the human population. This strategy could be applied to improve T cell responses to Ebola vaccines designed to elicit antibodies and adapted to target MHC alleles of populations in regions where endemic infections, like Ebola virus disease, are still causing outbreaks with concerning pandemic potential.
Collapse
|
9
|
Islam SI, Mou MJ, Sanjida S. Application of reverse vaccinology to design a multi-epitope subunit vaccine against a new strain of Aeromonas veronii. J Genet Eng Biotechnol 2022; 20:118. [PMID: 35939149 PMCID: PMC9358925 DOI: 10.1186/s43141-022-00391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Aeromonas veronii is one of the most common pathogens of freshwater fishes that cause sepsis and ulcers. There are increasing numbers of cases showing that it is a significant zoonotic and aquatic agent. Epidemiological studies have shown that A. veronii virulence and drug tolerance have both increased over the last few years as a result of epidemiological investigations. Cadaverine reverse transporter (CadB) and maltoporin (LamB protein) contribute to the virulence of A. veronii TH0426. TH0426 strain is currently showing severe cases on fish species, and its resistance against therapeutic has been increasing. Despite these devastating complications, there is still no effective cure or vaccine for this strain of A.veronii. RESULTS In this regard, an immunoinformatic method was used to generate an epitope-based vaccine against this pathogen. The immunodominant epitopes were identified using the CadB and LamB protein of A. veronii. The final constructed vaccine sequence was developed to be immunogenic, non-allergenic as well as have better solubility. Molecular dynamic simulation revealed significant binding stability and structural compactness. Finally, using Escherichia coli K12 as a model, codon optimization yielded ideal GC content and a higher CAI value, which was then included in the cloning vector pET2+ (a). CONCLUSION Altogether, our outcomes imply that the proposed peptide vaccine might be a good option for A. veronii TH0426 prophylaxis.
Collapse
Affiliation(s)
- Sk Injamamul Islam
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- The International Graduate Program of Veterinary Science and Technology (VST), Department of Veterinary Microbiology, Faculty of Veterinary Science and Technology, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Moslema Jahan Mou
- Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Science, University of Rajshahi, Rajshahi, Bangladesh
| | - Saloa Sanjida
- Department of Environmental Science and Technology, Faculty of Applied Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| |
Collapse
|
10
|
Imran MA, Islam MR, Saha A, Ferdousee S, Mishu MA, Ghosh A. Development of Multi-epitope Based Subunit Vaccine Against Crimean-Congo Hemorrhagic Fever Virus Using Reverse Vaccinology Approach. Int J Pept Res Ther 2022; 28:124. [PMID: 35789799 PMCID: PMC9244561 DOI: 10.1007/s10989-022-10430-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Md. Ashik Imran
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Md. Rubiath Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Akash Saha
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Shahida Ferdousee
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Moshiul Alam Mishu
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| |
Collapse
|
11
|
Dash R, Munni YA, Mitra S, Choi HJ, Jahan SI, Chowdhury A, Jang TJ, Moon IS. Dynamic insights into the effects of nonsynonymous polymorphisms (nsSNPs) on loss of TREM2 function. Sci Rep 2022; 12:9378. [PMID: 35672339 PMCID: PMC9174165 DOI: 10.1038/s41598-022-13120-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/16/2022] [Indexed: 11/09/2022] Open
Abstract
Single nucleotide variations in Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) are associated with many neurodegenerative diseases, including Nasu-Hakola disease (NHD), frontotemporal dementia (FTD), and late-onset Alzheimer's disease because they disrupt ligand binding to the extracellular domain of TREM2. However, the effects of nonsynonymous single nucleotide polymorphisms (nsSNPs) in TREM2 on disease progression remain unknown. In this study, we identified several high-risk nsSNPs in the TREM2 gene using various deleterious SNP predicting algorithms and analyzed their destabilizing effects on the ligand recognizing region of the TREM2 immunoglobulin (Ig) domain by molecular dynamics (MD) simulation. Cumulative prediction by all tools employed suggested the three most deleterious nsSNPs involved in loss of TREM2 function are rs549402254 (W50S), rs749358844 (R52C), and rs1409131974 (D104G). MD simulation showed that these three variants cause substantial structural alterations and conformational remodeling of the apical loops of the TREM2 Ig domain, which is responsible for ligand recognition. Detailed analysis revealed that these variants substantially increased distances between apical loops and induced conformation remodeling by changing inter-loop nonbonded contacts. Moreover, all nsSNPs changed the electrostatic potentials near the putative ligand-interacting region (PLIR), which suggested they might reduce specificity or loss of binding affinity for TREM2 ligands. Overall, this study identifies three potential high-risk nsSNPs in the TREM2 gene. We propose further studies on the molecular mechanisms responsible for loss of TREM2 function and the associations between TREM2 nsSNPs and neurodegenerative diseases.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Ho Jin Choi
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Sultana Israt Jahan
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Apusi Chowdhury
- Department of Pharmaceutical Science, North-South University, Dhaka, 1229, Bangladesh
| | - Tae Jung Jang
- Department of Pathology, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea.
| |
Collapse
|
12
|
Achar SR, Bourassa FXP, Rademaker TJ, Lee A, Kondo T, Salazar-Cavazos E, Davies JS, Taylor N, François P, Altan-Bonnet G. Universal antigen encoding of T cell activation from high-dimensional cytokine dynamics. Science 2022; 376:880-884. [PMID: 35587980 DOI: 10.1126/science.abl5311] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Systems immunology lacks a framework with which to derive theoretical understanding from high-dimensional datasets. We combined a robotic platform with machine learning to experimentally measure and theoretically model CD8+ T cell activation. High-dimensional cytokine dynamics could be compressed onto a low-dimensional latent space in an antigen-specific manner (so-called "antigen encoding"). We used antigen encoding to model and reconstruct patterns of T cell immune activation. The model delineated six classes of antigens eliciting distinct T cell responses. We generalized antigen encoding to multiple immune settings, including drug perturbations and activation of chimeric antigen receptor T cells. Such universal antigen encoding for T cell activation may enable further modeling of immune responses and their rational manipulation to optimize immunotherapies.
Collapse
Affiliation(s)
- Sooraj R Achar
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | | | - Angela Lee
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Taisuke Kondo
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Emanuel Salazar-Cavazos
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - John S Davies
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Naomi Taylor
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Paul François
- Department of Physics, McGill University, Montréal, Québec, Canada
| | - Grégoire Altan-Bonnet
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
13
|
Islam SI, Mou MJ, Sanjida S, Tariq M, Nasir S, Mahfuj S. Designing a novel mRNA vaccine against Vibrio harveyi infection in fish: an immunoinformatics approach. Genomics Inform 2022; 20:e11. [PMID: 35399010 PMCID: PMC9002004 DOI: 10.5808/gi.21065] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/07/2022] [Indexed: 11/20/2022] Open
Abstract
Vibrio harveyi belongs to the family Vibrionaceae of class Gammaproteobacteria. Around 12 Vibrio species can cause gastroenteritis (gastrointestinal illness) in humans. A large number of bacterial particles can be found in the infected cells, which may cause death. Despite these devastating complications, there is still no cure or vaccine for the bacteria. As a result, we used an immunoinformatics approach to develop a multi-epitope vaccine against the most pathogenic hemolysin gene of V. harveyi. The immunodominant T- and B-cell epitopes were identified using the hemolysin protein. We developed a vaccine employing three possible epitopes: cytotoxic T-lymphocytes, helper T-lymphocytes, and linear B-lymphocyte epitopes, after thorough testing. The vaccine was developed to be antigenic, immunogenic, and non-allergenic, as well as have a better solubility. Molecular dynamics simulation revealed significant structural stiffness and binding stability. In addition, the immunological simulation generated by computers revealed that the vaccination might elicit immune reactions Escherichia coli K12 as a model, codon optimization yielded ideal GC content and a higher codon adaptation index value, which was then included in the cloning vector pET2+ (a). Altogether, our experiment implies that the proposed peptide vaccine might be a good option for vibriosis prophylaxis.
Collapse
Affiliation(s)
- Sk Injamamul Islam
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science, Jashore University of Science and Technology, Jashore 7408, Bangladesh.,Chulalongkorn University, Department of Veterinary Microbiology, Faculty of Veterinary Science and Technology, Bangkok 10330, Thailand
| | - Moslema Jahan Mou
- Department of Genetic Engineering & Biotechnology, Faculty of Earth and Life Science, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Saloa Sanjida
- Department of Environmental Science and Technology, Faculty of Applied Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Muhammad Tariq
- Department of Biotechnology, Faculty of Biological Sciences, University of Malakand, Chakdara 18800, Pakistan
| | - Saad Nasir
- Department of Clinical Medicine and Surgery, Faculty of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Sarower Mahfuj
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
14
|
Damas MSF, Mazur FG, Freire CCDM, da Cunha AF, Pranchevicius MCDS. A Systematic Immuno-Informatic Approach to Design a Multiepitope-Based Vaccine Against Emerging Multiple Drug Resistant Serratia marcescens. Front Immunol 2022; 13:768569. [PMID: 35371033 PMCID: PMC8967166 DOI: 10.3389/fimmu.2022.768569] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/14/2022] [Indexed: 11/24/2022] Open
Abstract
Serratia marcescens is now an important opportunistic pathogen that can cause serious infections in hospitalized or immunocompromised patients. Here, we used extensive bioinformatic analyses based on reverse vaccinology and subtractive proteomics-based approach to predict potential vaccine candidates against S. marcescens. We analyzed the complete proteome sequence of 49 isolate of Serratia marcescens and identified 5 that were conserved proteins, non-homologous from human and gut flora, extracellular or exported to the outer membrane, and antigenic. The identified proteins were used to select 5 CTL, 12 HTL, and 12 BCL epitopes antigenic, non-allergenic, conserved, hydrophilic, and non-toxic. In addition, HTL epitopes were able to induce interferon-gamma immune response. The selected peptides were used to design 4 multi-epitope vaccines constructs (SMV1, SMV2, SMV3 and SMV4) with immune-modulating adjuvants, PADRE sequence, and linkers. Peptide cleavage analysis showed that antigen vaccines are processed and presented via of MHC class molecule. Several physiochemical and immunological analyses revealed that all multiepitope vaccines were non-allergenic, stable, hydrophilic, and soluble and induced the immunity with high antigenicity. The secondary structure analysis revealed the designed vaccines contain mainly coil structure and alpha helix structures. 3D analyses showed high-quality structure. Molecular docking analyses revealed SMV4 as the best vaccine construct among the four constructed vaccines, demonstrating high affinity with the immune receptor. Molecular dynamics simulation confirmed the low deformability and stability of the vaccine candidate. Discontinuous epitope residues analyses of SMV4 revealed that they are flexible and can interact with antibodies. In silico immune simulation indicated that the designed SMV4 vaccine triggers an effective immune response. In silico codon optimization and cloning in expression vector indicate that SMV4 vaccine can be efficiently expressed in E. coli system. Overall, we showed that SMV4 multi-epitope vaccine successfully elicited antigen-specific humoral and cellular immune responses and may be a potential vaccine candidate against S. marcescens. Further experimental validations could confirm its exact efficacy, the safety and immunogenicity profile. Our findings bring a valuable addition to the development of new strategies to prevent and control the spread of multidrug-resistant Gram-negative bacteria with high clinical relevance.
Collapse
Affiliation(s)
| | - Fernando Gabriel Mazur
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | | | | | - Maria-Cristina da Silva Pranchevicius
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
- Centro de Ciências Biológicas e da Saúde, Biodiversidade Tropical – BIOTROP, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
15
|
Computational identification of host genomic biomarkers highlighting their functions, pathways and regulators that influence SARS-CoV-2 infections and drug repurposing. Sci Rep 2022; 12:4279. [PMID: 35277538 PMCID: PMC8915158 DOI: 10.1038/s41598-022-08073-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 02/15/2022] [Indexed: 12/13/2022] Open
Abstract
The pandemic threat of COVID-19 has severely destroyed human life as well as the economy around the world. Although, the vaccination has reduced the outspread, but people are still suffering due to the unstable RNA sequence patterns of SARS-CoV-2 which demands supplementary drugs. To explore novel drug target proteins, in this study, a transcriptomics RNA-Seq data generated from SARS-CoV-2 infection and control samples were analyzed. We identified 109 differentially expressed genes (DEGs) that were utilized to identify 10 hub-genes/proteins (TLR2, USP53, GUCY1A2, SNRPD2, NEDD9, IGF2, CXCL2, KLF6, PAG1 and ZFP36) by the protein–protein interaction (PPI) network analysis. The GO functional and KEGG pathway enrichment analyses of hub-DEGs revealed some important functions and signaling pathways that are significantly associated with SARS-CoV-2 infections. The interaction network analysis identified 5 TFs proteins and 6 miRNAs as the key regulators of hub-DEGs. Considering 10 hub-proteins and 5 key TFs-proteins as drug target receptors, we performed their docking analysis with the SARS-CoV-2 3CL protease-guided top listed 90 FDA approved drugs. We found Torin-2, Rapamycin, Radotinib, Ivermectin, Thiostrepton, Tacrolimus and Daclatasvir as the top ranked seven candidate drugs. We investigated their resistance performance against the already published COVID-19 causing top-ranked 11 independent and 8 protonated receptor proteins by molecular docking analysis and found their strong binding affinities, which indicates that the proposed drugs are effective against the state-of-the-arts alternatives independent receptor proteins also. Finally, we investigated the stability of top three drugs (Torin-2, Rapamycin and Radotinib) by using 100 ns MD-based MM-PBSA simulations with the two top-ranked proposed receptors (TLR2, USP53) and independent receptors (IRF7, STAT1), and observed their stable performance. Therefore, the proposed drugs might play a vital role for the treatment against different variants of SARS-CoV-2 infections.
Collapse
|
16
|
Ahmad F, Albutti A, Tariq MH, Din G, Tahir ul Qamar M, Ahmad S. Discovery of Potential Antiviral Compounds against Hendra Virus by Targeting Its Receptor-Binding Protein (G) Using Computational Approaches. Molecules 2022; 27:554. [PMID: 35056869 PMCID: PMC8779602 DOI: 10.3390/molecules27020554] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 01/10/2023] Open
Abstract
Hendra virus (HeV) belongs to the paramyxoviridae family of viruses which is associated with the respiratory distress, neurological illness, and potential fatality of the affected individuals. So far, no competitive approved therapeutic substance is available for HeV. For that reason, the current research work was conducted to propose some novel compounds, by adopting a Computer Aided Drug Discovery approach, which could be used to combat HeV. The G attachment Glycoprotein (Ggp) of HeV was selected to achieve the primary objective of this study, as this protein makes the entry of HeV possible in the host cells. Briefly, a library of 6000 antiviral compounds was screened for potential drug-like properties, followed by the molecular docking of short-listed compounds with the Protein Data Bank (PDB) structure of Ggp. Docked complexes of top two hits, having maximum binding affinities with the active sites of Ggp, were further considered for molecular dynamic simulations of 200 ns to elucidate the results of molecular docking analysis. MD simulations and Molecular Mechanics Energies combined with the Generalized Born and Surface Area (MMGBSA) or Poisson-Boltzmann and Surface Area (MMPBSA) revealed that both docked complexes are stable in nature. Furthermore, the same methodology was used between lead compounds and HeV Ggp in complex with its functional receptor in human, Ephrin-B2. Surprisingly, no major differences were found in the results, which demonstrates that our identified compounds can also perform their action even when the Ggp is attached to the Ephrin-B2 ligand. Therefore, in light of all of these results, we strongly suggest that compounds (S)-5-(benzylcarbamoyl)-1-(2-(4-methyl-2-phenylpiperazin-1-yl)-2-oxoethyl)-6-oxo-3,6-dihydropyridin-1-ium-3-ide and 5-(cyclohexylcarbamoyl)-1-(2-((2-(3-fluorophenyl)-2-methylpropyl)amino)-2-oxoethyl)-6-oxo-3,6-dihydropyridin-1-ium-3-ide could be considered as potential therapeutic agents against HeV; however, further in vitro and in vivo experiments are required to validate this study.
Collapse
Affiliation(s)
- Faisal Ahmad
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Muhammad Hamza Tariq
- Department of Biotechnology, Virtual University of Pakistan, Lahore 54000, Pakistan;
| | - Ghufranud Din
- Department of Medical Lab Technology, The University of Haripur, Haripur 22660, Pakistan;
| | | | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| |
Collapse
|
17
|
Sarma VR, Olotu FA, Soliman MES. Integrative immunoinformatics paradigm for predicting potential B-cell and T-cell epitopes as viable candidates for subunit vaccine design against COVID-19 virulence. Biomed J 2021; 44:447-460. [PMID: 34489196 PMCID: PMC8130595 DOI: 10.1016/j.bj.2021.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/16/2020] [Accepted: 05/03/2021] [Indexed: 01/02/2023] Open
Abstract
Background The increase in global mortality rates from SARS-COV2 (COVID-19) infection has been alarming thereby necessitating the continual search for viable therapeutic interventions. Due to minimal microbial components, subunit (peptide-based) vaccines have demonstrated improved efficacies in stimulating immunogenic responses by host B- and T-cells. Methods Integrative immunoinformatics algorithms were used to determine linear and discontinuous B-cell epitopes from the S-glycoprotein sequence. End-point selection of the most potential B-cell epitope was based on highly essential physicochemical attributes. NetCTL-I and NetMHC-II algorithms were used to predict probable MHC-I and II T-cell epitopes for globally frequent HLA-A∗O2:01, HLA-B∗35:01, HLA-B∗51:01 and HLA-DRB1∗15:02 molecules. Highly probable T-cell epitopes were selected based on their high propensities for C-terminal cleavage, transport protein (TAP) processing and MHC-I/II binding. Results Preferential epitope binding sites were further identified on the HLA molecules using a blind peptide-docking method. Phylogenetic analysis revealed close relativity between SARS-CoV-2 and SARS-CoV S-protein. LALHRSYLTPGDSSSGWTAGAA242→263 was the most probable B-cell epitope with optimal physicochemical attributes. MHC-I antigenic presentation pathway was highly favourable for YLQPRTFLL269-277 (HLA-A∗02:01), LPPAYTNSF24-32 (HLA-B∗35:01) and IPTNFTISV714-721 (HLA-B∗51:01). Also, LTDEMIAQYTSALLA865-881 exhibited the highest binding affinity to HLA-DR B1∗15:01 with core interactions mediated by IAQYTSALL870-878. COVID-19 YLQPRTFLL269-277 was preferentially bound to a previously undefined site on HLA-A∗02:01 suggestive of a novel site for MHC-I-mediated T-cell stimulation. Conclusion This study implemented combinatorial immunoinformatics methods to model B- and T-cell epitopes with high potentials to trigger immunogenic responses to the S protein of SARS-CoV-2.
Collapse
Affiliation(s)
- Vyshnavie R Sarma
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.
| |
Collapse
|
18
|
Dash R, Mitra S, Munni YA, Choi HJ, Ali MC, Barua L, Jang TJ, Moon IS. Computational Insights into the Deleterious Impacts of Missense Variants on N-Acetyl-d-glucosamine Kinase Structure and Function. Int J Mol Sci 2021; 22:8048. [PMID: 34360815 PMCID: PMC8347710 DOI: 10.3390/ijms22158048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/05/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
An enzyme of the mammalian amino-sugar metabolism pathway, N-acetylglucosamine kinase (NAGK), that synthesizes N-acetylglucosamine (GlcNAc)-6-phosphate, is reported to promote dynein functions during mitosis, axonal and dendritic growth, cell migration, and selective autophagy, which all are unrelated to its enzyme activity. As non-enzymatic structural functions can be altered by genetic variation, we made an effort in this study aimed at deciphering the pathological effect of nonsynonymous single-nucleotide polymorphisms (nsSNPs) in NAGK gene. An integrated computational approach, including molecular dynamics (MD) simulation and protein-protein docking simulation, was used to identify the damaging nsSNPs and their detailed structural and functional consequences. The analysis revealed the four most damaging variants (G11R, G32R, G120E, and A156D), which are highly conserved and functional, positioned in both small (G11R and G32R) and large (G120E and A156D) domains of NAGK. G11R is located in the ATP binding region, while variants present in the large domain (G120E and A156D) were found to induce substantial alterations in the structural organizations of both domains, including the ATP and substrate binding sites. Furthermore, all variants were found to reduce binding energy between NAGK and dynein subunit DYNLRB1, as revealed by protein-protein docking and MM-GBSA binding energy calculation supporting their deleteriousness on non-canonical function. We hope these findings will direct future studies to gain more insight into the role of these variants in the loss of NAGK function and their role in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (R.D.); (S.M.); (Y.A.M.); (H.J.C.)
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (R.D.); (S.M.); (Y.A.M.); (H.J.C.)
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (R.D.); (S.M.); (Y.A.M.); (H.J.C.)
| | - Ho Jin Choi
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (R.D.); (S.M.); (Y.A.M.); (H.J.C.)
| | - Md. Chayan Ali
- Department of Biotechnology & Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh;
| | - Largess Barua
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
| | - Tae Jung Jang
- Department of Pathology, Dongguk University College of Medicine, Gyeongju 38066, Korea;
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (R.D.); (S.M.); (Y.A.M.); (H.J.C.)
| |
Collapse
|
19
|
Hosseini SS, Aghaiypour Kolyani K, Rafiei Tabatabaei R, Goudarzi H, Akhavan Sepahi A, Salemi M. In silico prediction of B and T cell epitopes based on NDV fusion protein for vaccine development against Newcastle disease virus. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2021; 12:157-165. [PMID: 34345381 PMCID: PMC8328245 DOI: 10.30466/vrf.2019.98625.2351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/07/2019] [Indexed: 11/24/2022]
Abstract
Newcastle disease (ND) is known as the most common diseases of economic importance worldwide. Vaccination against virulent strains of Newcastle disease virus (NDV) has failed during some outbreaks. Here, we aimed to assess the epitopes of NDV fusion protein as targets for a peptide-based vaccine. To explore the most antigenic epitopes on the F protein, we retrieved virulent strains of genotype VII from National Center for Biotechnology Information (NCBI). Linear and conformational B-cell epitopes were identified. Moreover, T-cell epitopes with high and moderate binding affinities to human major histocompatibility complex (MHC) class I and class II alleles were predicted using bioinformatics tools. Subsequently, the overlapped epitopes of B-cell and MHC class I and MHC class II were determined. To validate our predictions, the best epitopes were docked, to chicken MHC class I (B-F) alleles using the HADDOCK flexible docking server. Seven ‘high ranked epitopes’ were identified. Among them, ‘LYCTRIVTF’ and ‘MRATYLETL’ showed the highest scores. The other five epitopes including LSGEFDATY, LTTPPYMALK, LYLTELTTV, DCIKITQQV and SIAATNEAV obtained very encouraging results as well. SIAATNEAV had been recognized as a neutralizing epitope of F protein using monoclonal antibodies before. Taken together, our results demonstrated that the identified epitopes needed to be tested by in vitro and in vivo experiments.
Collapse
Affiliation(s)
| | - Khosrow Aghaiypour Kolyani
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Robab Rafiei Tabatabaei
- Department of Microbiology, Faculty of Basic Sciences, Islamic Azad University, Tehran North Branch, Tehran, Iran
| | - Hossein Goudarzi
- Central Laboratory Department, Razi Vaccine and Serum Research Institute Agricultural Research, AREEO, Karaj, Iran
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Science, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Salemi
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
20
|
Mahmood M, Javaid A, Shahid F, Ashfaq UA. Rational design of multimeric based subunit vaccine against Mycoplasma pneumonia: Subtractive proteomics with immunoinformatics framework. INFECTION GENETICS AND EVOLUTION 2021; 91:104795. [PMID: 33667723 DOI: 10.1016/j.meegid.2021.104795] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/14/2021] [Accepted: 02/27/2021] [Indexed: 02/06/2023]
Abstract
Mycoplasma pneumoniae is the prevalent cause of acquired respiratory infections around the globe. A multi-epitope vaccine (MEV) must be developed to combat infections of M. pneumoniae because there is no specific disease-modifying treatment or vaccination is present. The objective of this research is to design a vaccine that targets M. pneumoniae top five highly antigenic proteins using a combination of immunological techniques and molecular docking. T-cell (HTL & CTL), B-cell, and IFN-γ of target proteins were forecasted and highly conservative epitopes were chosen for further study. For designing of final vaccine, 4LBL, 7CTL, and 5HTL epitopes were joined by linkers of KK, AAY, and GPGPG. The N-end of the vaccine was linked to an adjuvant (Cholera enterotoxin subunit B) with a linker named EAAAK to enhance immunogenicity. After the addition of adjuvants and linkers, the size of the construct was 395 amino acids. The epitopes of IFN-γ and B-cells illustrate that the model construct is optimized for cell-mediated immune or humoral responses. To ensure that the final design is safer and immunogenic, properties like non-allergens, antigenicity, and various physicochemical properties were evaluated. Molecular docking of the vaccine with the toll-like receptor 4 (TLR4) was conducted to check the compatibility of the vaccine with the receptor. Besides, in-silico cloning was utilized for validation of the credibility and proper expression of the vaccine. Furthermore, to confirm that the multi-epitope vaccine created is protective and immunogenic, this research requires experimental validation.
Collapse
Affiliation(s)
- Marvah Mahmood
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Anam Javaid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| |
Collapse
|
21
|
Investigation of olfactory receptor family 51 subfamily j member 1 (OR51J1) gene susceptibility as a potential breast cancer-associated biomarker. PLoS One 2021; 16:e0246752. [PMID: 33566867 PMCID: PMC7875425 DOI: 10.1371/journal.pone.0246752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 01/25/2021] [Indexed: 11/19/2022] Open
Abstract
Among cancer treatment methods, targeted therapy using cancer-associated biomarkers has minimum side effects. Recently olfactory receptor (OR) family attracts the researcher’s attention as a favorable biomarker of cancer. Here, a statistical approach using complete data from the human protein atlas database was used to evaluate the potential of OR51J1 gene as a cancer-associated biomarker. To confirm the findings of statistical analysis, the OR51J1 mRNA and protein expression levels in breast tumor and normal tissue were measured using quantitative Real Time PCR (qRT-PCR) and immunohistochemistry (IHC) techniques. The association with clinicopathological factors was analyzed. Statistical analysis revealed that OR51J1 has a high expression level in more than 20 types of cancer tissues without any expression in 44 normal tissues. In 15 cancer types, including breast cancer, expression score was more than 90%. The qRT-PCR analysis in breast cancer showed OR51J1 have significantly higher expression level in tumors than normal tissues (2.91 fold). The IHC results showed OR51J1 expression on other cellular subtypes than tumor and normal cells, including myoepithelium, fibroblast, and lymphocytes. OR51J1 protein expression in invasive cells, as well as its overall score, showed a significant correlation with ER and PR expression and breast cancer (BC) subtypes. Results revealed the potential of OR51J1 as a cancer-associated biomarker for the diagnosis of breast cancer at the mRNA level.
Collapse
|
22
|
Shankar U, Jain N, Mishra SK, Sk MF, Kar P, Kumar A. Mining of Ebola virus genome for the construction of multi-epitope vaccine to combat its infection. J Biomol Struct Dyn 2021; 40:4815-4831. [PMID: 33463407 DOI: 10.1080/07391102.2021.1874529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Ebola virus is the primary causative agent of viral hemorrhagic fever that is an epidemic disease and responsible for the massive premature deaths in humans. Despite knowing the molecular mechanism of its pathogenesis, to date, no commercial or FDA approved multiepitope vaccine is available against Ebola infection. The current study focuses on designing a multi-epitope subunit vaccine for Ebola using a novel immunoinformatic approach. The best predicted antigenic epitopes of Cytotoxic-T cell (CTL), Helper-T cells (HTL), and B-cell epitopes (BCL) joined by various linkers were selected for the multi-epitope vaccine designing. For the enhanced immune response, two adjuvants were also added to the construct. Further analysis showed the vaccine to be immunogenic and non-allergenic, forming a stable and energetically favorable structure. The stability of the unbound vaccine construct and vaccine/TLR4 was elucidated via atomistic molecular dynamics simulations. The binding free energy analysis (ΔGBind = -194.2 ± 0.5 kcal/mol) via the molecular mechanics Poisson-Boltzmann docking scheme revealed a strong association and thus can initiate the maximal immune response. Next, for the optimal expression of the vaccine construct, its gene construct was cloned in the pET28a + vector system. In summary, the Ebola viral proteome was screened to identify the most potential HTLs, CTLs, and BCL epitopes. Along with various linkers and adjuvants, a multi-epitope vaccine is constructed that showed a high binding affinity with the immune receptor, TLR4. Thus, the current study provides a highly immunogenic multi-epitope subunit vaccine construct that may induce humoral and cellular immune responses against the Ebola infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Uma Shankar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Neha Jain
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Subodh Kumar Mishra
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Md Fulbabu Sk
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Parimal Kar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
| |
Collapse
|
23
|
Fatoba AJ, Maharaj L, Adeleke VT, Okpeku M, Adeniyi AA, Adeleke MA. Immunoinformatics prediction of overlapping CD8 + T-cell, IFN-γ and IL-4 inducer CD4 + T-cell and linear B-cell epitopes based vaccines against COVID-19 (SARS-CoV-2). Vaccine 2021; 39:1111-1121. [PMID: 33478794 PMCID: PMC7831457 DOI: 10.1016/j.vaccine.2021.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/11/2020] [Accepted: 01/02/2021] [Indexed: 02/08/2023]
Abstract
At the beginning of the year 2020, the world was struck with a global pandemic virus referred to as SARS-CoV-2 (COVID-19) which has left hundreds of thousands of people dead. To control this virus, vaccine design becomes imperative. In this study, potential epitopes-based vaccine candidates were explored. Six hundred (600) genomes of SARS-CoV-2 were retrieved from the viPR database to generate CD8+ T-cell, CD4+ T-cell and linear B-cell epitopes which were screened for antigenicity, immunogenicity and non-allergenicity. The results of this study provide 19 promising candidate CD8+ T-cell epitopes that strongly overlap with 8 promising B-cells epitopes. Another 19 CD4+ T-cell epitopes were also identified that can induce IFN-γ and IL-4 cytokines. The most conserved MHC-I and MHC-II for both CD8+ and CD4+ T-cell epitopes are HLA-A*02:06 and HLA-DRB1*01:01 respectively. These epitopes also bound to Toll-like receptor 3 (TLR3). The population coverage of the conserved Major Histocompatibility Complex Human Leukocyte Antigen (HLA) for both CD8+ T-cell and CD4+ T-cell ranged from 65.6% to 100%. The detailed analysis of the potential epitope-based vaccine and their mapping to the complete COVID-19 genome reveals that they are predominantly found in the location of the surface (S) and membrane (M) glycoproteins suggesting the potential involvement of these structural proteins in the immunogenic response and antigenicity of the virus. Since the majority of the potential epitopes are located on M protein, the design of multi-epitope vaccine with the structural protein is highly promising though the whole M protein could also serve as a viable epitope for the development of an attenuated vaccine. Our findings provide a baseline for the experimental design of a suitable vaccine against SARS-CoV-2.
Collapse
Affiliation(s)
- Abiodun J Fatoba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa
| | - Victoria T Adeleke
- Discipline of Chemical Engineering, University of KwaZulu-Natal, Howard Campus, Durban 4041, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa
| | - Adebayo A Adeniyi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa; Department of Industrial Chemistry, Federal University, Oye-Ekiti, Nigeria.
| | - Matthew A Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa.
| |
Collapse
|
24
|
Yazdani Z, Rafiei A, Irannejad H, Yazdani M, Valadan R. Designing a novel multiepitope peptide vaccine against melanoma using immunoinformatics approach. J Biomol Struct Dyn 2020; 40:3312-3324. [DOI: 10.1080/07391102.2020.1846625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zahra Yazdani
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Rafiei
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Reza Valadan
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
25
|
Ahmad I, Ali SS, Zafar B, Hashmi HF, Shah I, Khan S, Suleman M, Khan M, Ullah S, Ali S, Khan J, Ali M, Khan A, Wei DQ. Development of multi-epitope subunit vaccine for protection against the norovirus' infections based on computational vaccinology. J Biomol Struct Dyn 2020; 40:3098-3109. [PMID: 33170093 DOI: 10.1080/07391102.2020.1845799] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human Norovirus belongs to a family Calciviridae, and was identified in the outbreak of gastroenteritis in Norwalk, due to its seasonal prevalence known as "winter vomiting disease." Treatment of Norovirus infection is still mysterious because there is no effective antiviral drugs or vaccine developed to protect against the infection, to eradicate the infection an effective vaccine should be developed. In this study, capsid protein (A7YK10), small protein (A7YK11), and polyprotein (A7YK09) were utilized. These proteins were subjected to B and T cell epitopes prediction by using reliable immunoinformatics tools. The antigenic and non-allergenic epitopes were selected for the subunit vaccine, which can activate cellular and humoral immune responses. Linkers joined these epitopes together. The vaccine structure was modelled and validated by using Errat, ProSA, and rampage servers. The modelled vaccine was docked with TLR-7. The stability of the docked complex was evaluated by MD simulation. To apply the concept in a wet lab, the reverse translated vaccine sequence was cloned in pET28a (+). The vaccine developed in this study requires experimental validation to ensure its effectiveness against the disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Irfan Ahmad
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Syed Shujait Ali
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Bisma Zafar
- Department of Biotechnology, University of Okara, Punjab, Pakistan
| | | | - Ismail Shah
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Shahzeb Khan
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Muhammad Suleman
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Mazhar Khan
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, P.R. China
| | - Saif Ullah
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Shahid Ali
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Jafar Khan
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Mohammad Ali
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China.,State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China.,Peng Cheng Laboratory, Shenzhen, P.R. China
| |
Collapse
|
26
|
Awadelkareem EA, Ali SA. Vaccine design of coronavirus spike (S) glycoprotein in chicken: immunoinformatics and computational approaches. TRANSLATIONAL MEDICINE COMMUNICATIONS 2020; 5:13. [PMID: 32869000 PMCID: PMC7450164 DOI: 10.1186/s41231-020-00063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Infectious bronchitis (IB) is a highly contagious respiratory disease in chickens and produces economic loss within the poultry industry. This disease is caused by a single stranded RNA virus belonging to Cronaviridae family. This study aimed to design a potential multi-epitopes vaccine against infectious bronchitis virus spike protein (S). Protein characterization was also performed for IBV spike protein. METHODS The present study used various tools in Immune Epitope Database (IEDB) to predict conserved B and T cell epitopes against IBV spike (S) protein that may perform a significant role in provoking the resistance response to IBV infection. RESULTS In B cell prediction methods, three epitopes ( 1139 KKSSYY 1144 , 1140 KSSYYT 1145 , 1141 SSYYT 1145 ) were selected as surface, linear and antigenic epitopes.Many MHCI and MHCII epitopes were predicted for IBV S protein. Among them 982YYITARDMY990 and 983 YITARDMYM 991 epitopes displayed high antigenicity, no allergenicity and no toxicity as well as great linkage with MHCI and MHCII alleles. Moreover, docking analysis of MHCI epitopes produced strong binding affinity with BF2 alleles. CONCLUSION Five conserved epitopes were expected from spike glycoprotein of IBV as the best B and T cell epitopes due to high antigenicity, no allergenicity and no toxicity. In addition, MHC epitopes showed great linkage with MHC alleles as well as strong interaction with BF2 alleles. These epitopes should be designed and incorporated and then tested as multi-epitope vaccine against IBV.
Collapse
Affiliation(s)
| | - Sumaia A. Ali
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Sudan University of Science and Technology, Khartoum, Sudan
| |
Collapse
|
27
|
Bhuiyan MA, Quayum ST, Ahammad F, Alam R, Samad A, Nain Z. Discovery of potential immune epitopes and peptide vaccine design - a prophylactic strategy against Rift Valley fever virus. F1000Res 2020. [DOI: 10.12688/f1000research.24975.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Rift Valley fever virus (RVFV) is an emerging arbovirus infecting both animals and humans. Any form of direct contact with body fluids, blood or tissue of infected animals is the mode of transmission of this pathogen. Despite being an emerging virus, no proper vaccinations are yet available for the public. Our objective is to compose a multiepitope vaccine utilizing immuno-bioinformatics as a strategy against RVFV. Methods: To identify immunodominant epitopes and design a potent vaccine candidate, we applied a series of immunoinformatic approaches with molecular dynamics and immune response simulation frameworks. Results: A glycoprotein with the highest antigenicity was selected and employed for determining promising epitopes. We selected T cell epitopes based on their immunological potencies and cytokine inducing properties, while B cell epitopes were selected based on their antigenic features. Finally, we selected four cytotoxic T-lymphocyte, two helper T-lymphocyte, and three linear B-lymphocyte epitopes that were arranged into a vaccine construct with appropriate adjuvants and linkers. The chimera protein was modeled, refined, and validated prior to docking against toll-like receptor 4. Docking studies suggest strong binding interactions while dynamics simulation revealed the stable nature of the docked complex. Furthermore, the immune simulation showed robust and prolonged immune responses with rapid antigen clearance. Finally, codon optimization and cloning conducted with Escherichia coli K12 suggests high translation efficiency within the host system. Conclusion: We believe that our designed multiepitope vaccine is a promising prophylactic candidate against RVFV pathogenesis.
Collapse
|
28
|
Durojaye OA, Mushiana T, Cosmas S, Ibiang GO, Ibiang MO. An in silico epitope-based peptide vaccine design against the 2019-nCoV. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020; 21:35. [PMID: 38624351 PMCID: PMC7382968 DOI: 10.1186/s43042-020-00071-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/09/2020] [Indexed: 12/28/2022] Open
Affiliation(s)
- Olanrewaju Ayodeji Durojaye
- School of Life Sciences, Department of Molecular and Cell Biology, University of Science and Technology of China, Hefei, China
| | - Talifhani Mushiana
- School of Chemistry and Material Sciences, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Samuel Cosmas
- Department of Biochemistry, University of Nigeria, Nsukka, Enugu State Nigeria
| | - Glory Omini Ibiang
- Department of Biological Sciences, Coal City University, Emene, Enugu State Nigeria
| | - Mercy Omini Ibiang
- Department of Biological Sciences, Coal City University, Emene, Enugu State Nigeria
| |
Collapse
|
29
|
Anwar S, Mourosi JT, Khan MF, Hosen MJ. Prediction of Epitope-Based Peptide Vaccine Against the Chikungunya Virus by Immuno-informatics Approach. Curr Pharm Biotechnol 2020; 21:325-340. [PMID: 31721709 DOI: 10.2174/1389201020666191112161743] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/16/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chikungunya is an arthropod-borne viral disease characterized by abrupt onset of fever frequently accompanied by joint pain, which has been identified in over 60 countries in Africa, the Americas, Asia, and Europe. METHODS Regardless of the availability of molecular knowledge of this virus, no definite vaccine or other remedial agents have been developed yet. In the present study, a combination of B-cell and T-cell epitope predictions, followed by molecular docking simulation approach has been carried out to design a potential epitope-based peptide vaccine, which can trigger a critical immune response against the viral infections. RESULTS A total of 52 sequences of E1 glycoprotein from the previously reported isolates of Chikungunya outbreaks were retrieved and examined through in silico methods to identify a potential B-cell and T-cell epitope. From the two separate epitope prediction servers, five potential B-cell epitopes were selected, among them "NTQLSEAHVEKS" was found highly conserved across strains and manifests high antigenicity with surface accessibility, flexibility, and hydrophilicity. Similarly, two highly conserved, non-allergenic, non-cytotoxic putative T-cell epitopes having maximum population coverage were screened to bind with the HLA-C 12*03 molecule. Molecular docking simulation revealed potential T-cell based epitope "KTEFASAYR" as a vaccine candidate for this virus. CONCLUSION A combination of these B-cell and T-cell epitope-based vaccine can open up a new skyline with broader therapeutic application against Chikungunya virus with further experimental and clinical investigation.
Collapse
Affiliation(s)
- Saeed Anwar
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.,Maternal and Child Health Program, Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8440 112 St. NW, Edmonton, AB T6G 2R7, Canada
| | - Jarin T Mourosi
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.,Microbial and Cellular Biology Program, Department of Biology, The Catholic University of America, 620 Michigan Ave. NE, Washington, DC, 20064, United States
| | - Md Fahim Khan
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mohammad J Hosen
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
30
|
Sayed SB, Nain Z, Khan MSA, Abdulla F, Tasmin R, Adhikari UK. Exploring Lassa Virus Proteome to Design a Multi-epitope Vaccine Through Immunoinformatics and Immune Simulation Analyses. Int J Pept Res Ther 2020; 26:2089-2107. [PMID: 32421065 PMCID: PMC7223894 DOI: 10.1007/s10989-019-10003-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2019] [Indexed: 02/06/2023]
Abstract
Lassa virus (LASV) is responsible for a type of acute viral haemorrhagic fever referred to as Lassa fever. Lack of adequate treatment and preventive measures against LASV resulted in a high mortality rate in its endemic regions. In this study, a multi-epitope vaccine was designed using immunoinformatics as a prophylactic agent against the virus. Following a rigorous assessment, the vaccine was built using T-cell (NCTL = 8 and NHTL = 6) and B-cell (NLBL = 4) epitopes from each LASV-derived protein in addition with suitable linkers and adjuvant. The physicochemistry, immunogenic potency and safeness of the designed vaccine (~ 68 kDa) were assessed. In addition, chosen CTL and HTL epitopes of our vaccine showed 97.37% worldwide population coverage. Besides, disulphide engineering also improved the stability of the chimeric vaccine. Molecular docking of our vaccine protein with toll-like receptor 2 (TLR2) showed binding efficiency followed by dynamics simulation for stable interaction. Furthermore, higher levels of cell-mediated immunity and rapid antigen clearance were suggested by immune simulation and repeated-exposure simulation, respectively. Finally, the optimized codons were used in in silico cloning to ensure higher expression within E. coli K12 bacterium. With further assessment both in vitro and in vivo, we believe that our proposed peptide-vaccine would be potential immunogen against Lassa fever.
Collapse
Affiliation(s)
- Sifat Bin Sayed
- 1Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003 Bangladesh
| | - Zulkar Nain
- 1Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003 Bangladesh
| | - Md Shakil Ahmed Khan
- 1Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003 Bangladesh
| | - Faruq Abdulla
- 2Department of Statistics, Faculty of Sciences, Islamic University, Kushtia, 7003 Bangladesh
| | - Rubaia Tasmin
- 3Department of Pharmacy, Faculty of Biological Sciences, Islamic University, Kushtia, 7003 Bangladesh
| | - Utpal Kumar Adhikari
- 4School of Medicine, Western Sydney University, Campbelltown, NSW 2560 Australia
| |
Collapse
|
31
|
Dash R, Ali MC, Dash N, Azad MAK, Hosen SMZ, Hannan MA, Moon IS. Structural and Dynamic Characterizations Highlight the Deleterious Role of SULT1A1 R213H Polymorphism in Substrate Binding. Int J Mol Sci 2019; 20:ijms20246256. [PMID: 31835852 PMCID: PMC6969939 DOI: 10.3390/ijms20246256] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022] Open
Abstract
Sulfotransferase 1A1 (SULT1A1) is responsible for catalyzing various types of endogenous and exogenous compounds. Accumulating data indicates that the polymorphism rs9282861 (R213H) is responsible for inefficient enzymatic activity and associated with cancer progression. To characterize the detailed functional consequences of this mutation behind the loss-of-function of SULT1A1, the present study deployed molecular dynamics simulation to get insights into changes in the conformation and binding energy. The dynamics scenario of SULT1A1 in both wild and mutated types as well as with and without ligand showed that R213H induced local conformational changes, especially in the substrate-binding loop rather than impairing overall stability of the protein structure. The higher conformational changes were observed in the loop3 (residues, 235-263), turning loop conformation to A-helix and B-bridge, which ultimately disrupted the plasticity of the active site. This alteration reduced the binding site volume and hydrophobicity to decrease the binding affinity of the enzyme to substrates, which was highlighted by the MM-PBSA binding energy analysis. These findings highlight the key insights of structural consequences caused by R213H mutation, which would enrich the understanding regarding the role of SULT1A1 mutation in cancer development and also xenobiotics management to individuals in the different treatment stages.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Md Chayan Ali
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Nayan Dash
- Department of Computer Science and Engineering, BGC Trust University, Bangladesh, Chittagong 4381, Bangladesh
| | - Md Abul Kalam Azad
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - S M Zahid Hosen
- Pancreatic Research Group, South Western Sydney Clinical School, University of New South Wales, and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| |
Collapse
|
32
|
Raoufi E, Hemmati M, Eftekhari S, Khaksaran K, Mahmodi Z, Farajollahi MM, Mohsenzadegan M. Epitope Prediction by Novel Immunoinformatics Approach: A State-of-the-art Review. Int J Pept Res Ther 2019; 26:1155-1163. [PMID: 32435171 PMCID: PMC7224030 DOI: 10.1007/s10989-019-09918-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2019] [Indexed: 12/21/2022]
Abstract
Immunoinformatics is a science that helps to create significant immunological information using bioinformatics softwares and applications. One of the most important applications of immunoinformatics is the prediction of a variety of specific epitopes for B cell recognition and T cell through MHC class I and II molecules. This method reduces costs and time compared to laboratory tests. In this state-of-the-art review, we review about 50 papers to find the latest and most used immunoinformatic tools as well as their applications for predicting the viral, bacterial and tumoral structural and linear epitopes of B and T cells. In the clinic, the main application of prediction of epitopes is for designing peptide-based vaccines. Peptide-based vaccines are a considerably potential alternative to low-cost vaccines that may reduce the risks related to the production of common vaccines.
Collapse
Affiliation(s)
- Ehsan Raoufi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Hemmati
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samane Eftekhari
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kamal Khaksaran
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Mahmodi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad M. Farajollahi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Monireh Mohsenzadegan
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences (IUMS), Hemmat Highway, Tehran, Iran
| |
Collapse
|
33
|
Hasan M, Islam S, Chakraborty S, Mustafa AH, Azim KF, Joy ZF, Hossain MN, Foysal SH, Hasan MN. Contriving a chimeric polyvalent vaccine to prevent infections caused by herpes simplex virus (type-1 and type-2): an exploratory immunoinformatic approach. J Biomol Struct Dyn 2019; 38:2898-2915. [PMID: 31328668 DOI: 10.1080/07391102.2019.1647286] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) and 2 (HSV-2) cause a variety of infections including oral-facial infections, genital herpes, herpes keratitis, cutaneous infection and so on. To date, FDA-approved licensed HSV vaccine is not available yet. Hence, the study was conducted to identify and characterize an effective epitope based polyvalent vaccine against both types of Herpes Simplex Virus. The selected proteins were retrieved from ViralZone and assessed to design highly antigenic epitopes by binding analyses of the peptides with MHC class-I and class-II molecules, antigenicity screening, transmembrane topology screening, allergenicity and toxicity assessment, population coverage analysis and molecular docking approach. The final vaccine was constructed by the combination of top CTL, HTL and BCL epitopes from each protein along with suitable adjuvant and linkers. Physicochemical and secondary structure analysis, disulfide engineering, molecular dynamic simulation and codon adaptation were further employed to develop a unique multi-epitope peptide vaccine. Docking analysis of the refined vaccine structure with different MHC molecules and human immune TLR-2 receptor demonstrated higher interaction. Complexed structure of the modeled vaccine and TLR-2 showed minimal deformability at molecular level. Moreover, translational potency and microbial expression of the modeled vaccine was analyzed with pET28a(+) vector for E. coli strain K12 and the vaccine constructs had no similarity with entire human proteome. The study enabled design of a novel chimeric polyvalent vaccine to confer broad range immunity against both HSV serotypes. However, further wet lab based research using model animals are highly recommended to experimentally validate our findings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mahmudul Hasan
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh.,Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Shiful Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Sourav Chakraborty
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Abu Hasnat Mustafa
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Kazi Faizul Azim
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh.,Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Ziaul Faruque Joy
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.,Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Md Nazmul Hossain
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh.,Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Shakhawat Hossain Foysal
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Nazmul Hasan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
34
|
Conserved B and T cell epitopes prediction of ebola virus glycoprotein for vaccine development: An immuno-informatics approach. Microb Pathog 2019; 132:243-253. [PMID: 31075428 PMCID: PMC7270928 DOI: 10.1016/j.micpath.2019.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022]
Abstract
Ebola virus (EBOV), a non-segmented single-stranded RNA virus, is often-most transmitted through body fluids like sweat, tears, saliva, and nasal secretions. Till date, there is no licensed vaccine of EBOV is available in the market; however, the world is increasingly vulnerable to this emerging threat. Hence, it is the need of time to develop a vaccine for EBOV to hinder its dissemination. The current study has been designed for identification and characterization of the potential B and T-cell epitopes using the Immuno-informatics tools, and it helped in finding the potent vaccine candidates against EBOV. Prediction, antigenicity and allergenicity testing of predicted B and T cells' epitopes was done as well to identify their potential as a vaccine candidate and to measure their safety level respectively. Among B-cell epitopes "WIPAGIGVTGVIIA" showed a high antigenicity score and it would play an important role in evoking the immune response. In T-cell epitopes, peptides "AIGLAWIPY" and "IRGFPRCRY" presented high antigenicity score, which binds to MHC class-I and MHC class-II alleles respectively. All predicted epitopes were analyzed and compared with already reported peptides carefully. Comparatively, Peptides predicted in the present study showed more immunogenicity score than already reported peptides, used as positive control, and are more immunogenic as compared to them. Peptides reported in the present study do not target only Zaire EBOV (ZEBOV), as in previous studies, but also other species, i.e. Tai Forest EBOV (TAFV), Sudan EBOV (SUDV), Bundibugyo EBOV (BDBV), and Reston EBOV (RESTV) and would bring the promising results as potent vaccine candidates.
Collapse
|
35
|
Nosrati M, Behbahani M, Mohabatkar H. Towards the first multi-epitope recombinant vaccine against Crimean-Congo hemorrhagic fever virus: A computer-aided vaccine design approach. J Biomed Inform 2019; 93:103160. [PMID: 30928513 PMCID: PMC7106074 DOI: 10.1016/j.jbi.2019.103160] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 03/17/2019] [Accepted: 03/27/2019] [Indexed: 11/25/2022]
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is considered one of the major public health concerns with case fatality rates of up to 80%. Currently, there is no effective approved vaccine for CCHF. In this study, we used a computer-aided vaccine design approach to develop the first multi-epitope recombinant vaccine for CCHF. For this purpose, linear B-cell and T-cell binding epitopes from two structural glycoproteins of CCHF virus including Gc and Gn were predicted. The epitopes were further studied regarding their antigenicity, allergenicity, hydrophobicity, stability, toxicity and population coverage. A total number of seven epitopes including five T-cell and two B-cell epitopes were screened for the final vaccine construct. Final vaccine construct composed of 382 amino acid residues which were organized in four domains including linear B-cell, T-cell epitopes and cholera toxin B-subunit (CTxB) along with heat labile enterotoxin IIc B subunit (LT-IIc) as adjuvants. All the segments were joined using appropriate linkers. The physicochemical properties as well as the presence of IFN-γ inducing epitopes in the proposed vaccine, was also checked to determining the vaccine stability, solubility and its ability to induce cell-mediated immune responses. The 3D structure of proposed vaccine was subjected to the prediction of computational B-cell epitopes and molecular docking studies with MHC-I and II molecules. Furthermore, molecular dynamics stimulations were performed to study the vaccine-MHCs complexes stability during stimulation time. The results suggest that our proposed vaccine was stable, well soluble in water and potentially antigenic. Results also demonstrated that the vaccine can induce both humoral and cell-mediated immune responses and could serve as a promising anti-CCHF vaccine candidate.
Collapse
Affiliation(s)
- Mokhtar Nosrati
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Mandana Behbahani
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Hassan Mohabatkar
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
36
|
Structure-based identification of potent VEGFR-2 inhibitors from in vivo metabolites of a herbal ingredient. J Mol Model 2019; 25:98. [PMID: 30904971 DOI: 10.1007/s00894-019-3979-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/05/2019] [Indexed: 12/22/2022]
Abstract
Vascular endothelial growth factor receptor-2 (VEGFR-2) is one of the regulatory elements of angiogenesis that is expressed highly in various diseases and is also essential for solid tumor growth. The present study was aimed at identifying potent inhibitors of VEGFR-2 by considering herbal secondary metabolites; as natural molecules are less toxic than synthetic derivatives. A structure-based virtual screening protocol consisting of molecular docking, MM-GBSA and ADME/T analysis was initially used to screen a library of in vivo metabolites of the herbal ingredient. Using a fixed cutoff value, four potent virtual hits were identified from molecular docking, ADME/T and binding affinity calculations, which were considered further for molecular dynamics (MD) simulation to broadly describe the binding mechanisms to VEGFR-2. The results suggested that these molecules have high affinity for the catalytic region of VEGFR-2, and form strong hydrophobic and polar interactions with the amino acids involved in the binding site of ATP and linker regions of the catalytic site. Subsequently, the stability of the docked complexes and binding mechanisms were evaluated by MD simulations, and the energy of binding was calculated through MM-PBSA analysis. The results uncovered two virtual hits, designated ZINC14762520 and ZINC36470466, as VEGFR-2 inhibitors, and suggested that they bind to kinase domain in an ATP-competitive manner. These virtual hits will offer a suitable starting point for the further design of their various analogs, allowing a rational search for more effective inhibitors in the future. Graphical abstract.
Collapse
|
37
|
Junaid M, Islam N, Hossain MK, Ullah MO, Halim MA. Metal based donepezil analogues designed to inhibit human acetylcholinesterase for Alzheimer's disease. PLoS One 2019; 14:e0211935. [PMID: 30785927 PMCID: PMC6382135 DOI: 10.1371/journal.pone.0211935] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 01/24/2019] [Indexed: 11/18/2022] Open
Abstract
Among neurodegenerative disorders, Alzheimer's disease (AD) is one of the most common disorders showing slow progressive cognitive decline. Targeting acetylcholinesterase (AChE) is one of the major strategies for AD therapeutics, as cholinergic pathways in the cerebral cortex and basal forebrain are compromised. Herein, we report the design of some copper and other metal based donepezil derivatives, employing density functional theory (DFT). All designed compounds are optimized at the B3LYP/SDD level of theory. Dipole moments, electronic energie, enthalpies, Gibbs free energies, and HOMO-LUMO gaps of these modified compounds are also investigated in the subsequent analysis. The molecules were then subjected to molecular docking analysis with AChE to study the molecular interactions broadly. Ensemble based docking and molecular dynamics (MD) simulations of the best candidates were also performed. Docking and MD simulation reveal that modified drugs are more potent than unmodified donepezil, where Trp86, Tyr337, Phe330 residues play some important roles in drug-receptor interactions. According to ensemble based docking, D9 shows greater binding affinity compared to the parent in most conformations obtained from protein data bank and MD simulation. In addition, it is observed that the π- π stacking with the residues of Trp86, Tyr337, Tyr341, Tyr124 and Trp286 may be required for strong ligand binding. Moreover, ADME/T analysis suggests that modified derivatives are less toxic and have improved pharmacokinetic properties than those of the parent drug. These results further confirm the ability of metal-directed drugs to bind simultaneously to the active sites of AChE and support them as potential candidates for the future treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Md. Junaid
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Nazrul Islam
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Md. Kamal Hossain
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - M. Obayed Ullah
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
- * E-mail: (MOU); (MAH)
| | - Mohammad A. Halim
- Division of Computer-Aided Drug Design, The Red-Green Research Centre, Dhaka, Bangladesh
- * E-mail: (MOU); (MAH)
| |
Collapse
|
38
|
Dhama K, Karthik K, Khandia R, Chakraborty S, Munjal A, Latheef SK, Kumar D, Ramakrishnan MA, Malik YS, Singh R, Malik SVS, Singh RK, Chaicumpa W. Advances in Designing and Developing Vaccines, Drugs, and Therapies to Counter Ebola Virus. Front Immunol 2018; 9:1803. [PMID: 30147687 PMCID: PMC6095993 DOI: 10.3389/fimmu.2018.01803] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/23/2018] [Indexed: 01/10/2023] Open
Abstract
Ebola virus (EBOV), a member of the family Filoviridae, is responsible for causing Ebola virus disease (EVD) (formerly named Ebola hemorrhagic fever). This is a severe, often fatal illness with mortality rates varying from 50 to 90% in humans. Although the virus and associated disease has been recognized since 1976, it was only when the recent outbreak of EBOV in 2014-2016 highlighted the danger and global impact of this virus, necessitating the need for coming up with the effective vaccines and drugs to counter its pandemic threat. Albeit no commercial vaccine is available so far against EBOV, a few vaccine candidates are under evaluation and clinical trials to assess their prophylactic efficacy. These include recombinant viral vector (recombinant vesicular stomatitis virus vector, chimpanzee adenovirus type 3-vector, and modified vaccinia Ankara virus), Ebola virus-like particles, virus-like replicon particles, DNA, and plant-based vaccines. Due to improvement in the field of genomics and proteomics, epitope-targeted vaccines have gained top priority. Correspondingly, several therapies have also been developed, including immunoglobulins against specific viral structures small cell-penetrating antibody fragments that target intracellular EBOV proteins. Small interfering RNAs and oligomer-mediated inhibition have also been verified for EVD treatment. Other treatment options include viral entry inhibitors, transfusion of convalescent blood/serum, neutralizing antibodies, and gene expression inhibitors. Repurposed drugs, which have proven safety profiles, can be adapted after high-throughput screening for efficacy and potency for EVD treatment. Herbal and other natural products are also being explored for EVD treatment. Further studies to better understand the pathogenesis and antigenic structures of the virus can help in developing an effective vaccine and identifying appropriate antiviral targets. This review presents the recent advances in designing and developing vaccines, drugs, and therapies to counter the EBOV threat.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Shyma K. Latheef
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Deepak Kumar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Satya Veer Singh Malik
- Division of Veterinary Public Health, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Raj Kumar Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine SIriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
39
|
Solanki V, Tiwari V. Subtractive proteomics to identify novel drug targets and reverse vaccinology for the development of chimeric vaccine against Acinetobacter baumannii. Sci Rep 2018; 8:9044. [PMID: 29899345 PMCID: PMC5997985 DOI: 10.1038/s41598-018-26689-7] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/17/2018] [Indexed: 11/24/2022] Open
Abstract
The emergence of drug-resistant Acinetobacter baumannii is the global health problem associated with high mortality and morbidity. Therefore it is high time to find a suitable therapeutics for this pathogen. In the present study, subtractive proteomics along with reverse vaccinology approaches were used to predict suitable therapeutics against A. baumannii. Using subtractive proteomics, we have identified promiscuous antigenic membrane proteins that contain the virulence factors, resistance factors and essentiality factor for this pathogenic bacteria. Selected promiscuous targeted membrane proteins were used for the design of chimeric-subunit vaccine with the help of reverse vaccinology. Available best tools and servers were used for the identification of MHC class I, II and B cell epitopes. All selected epitopes were further shortlisted computationally to know their immunogenicity, antigenicity, allergenicity, conservancy and toxicity potentials. Immunogenic predicted promiscuous peptides used for the development of chimeric subunit vaccine with immune-modulating adjuvants, linkers, and PADRE (Pan HLA-DR epitopes) amino acid sequence. Designed vaccine construct V4 also interact with the MHC, and TLR4/MD2 complex as confirm by docking and molecular dynamics simulation studies. Therefore designed vaccine construct V4 can be developed to control the host-pathogen interaction or infection caused by A. baumannii.
Collapse
Affiliation(s)
- Vandana Solanki
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India.
| |
Collapse
|
40
|
Kazi A, Chuah C, Majeed ABA, Leow CH, Lim BH, Leow CY. Current progress of immunoinformatics approach harnessed for cellular- and antibody-dependent vaccine design. Pathog Glob Health 2018. [PMID: 29528265 DOI: 10.1080/20477724.2018.1446773] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Immunoinformatics plays a pivotal role in vaccine design, immunodiagnostic development, and antibody production. In the past, antibody design and vaccine development depended exclusively on immunological experiments which are relatively expensive and time-consuming. However, recent advances in the field of immunological bioinformatics have provided feasible tools which can be used to lessen the time and cost required for vaccine and antibody development. This approach allows the selection of immunogenic regions from the pathogen genomes. The ideal regions could be developed as potential vaccine candidates to trigger protective immune responses in the hosts. At present, epitope-based vaccines are attractive concepts which have been successfully trailed to develop vaccines which target rapidly mutating pathogens. In this article, we provide an overview of the current progress of immunoinformatics and their applications in the vaccine design, immune system modeling and therapeutics.
Collapse
Affiliation(s)
- Ada Kazi
- a Institute for Research in Molecular Medicine (INFORMM) , Universiti Sains Malaysia , Kelantan , Malaysia.,b School of Health Sciences , Universiti Sains Malaysia , Kelantan , Malaysia
| | - Candy Chuah
- c School of Medical Sciences , Universiti Sains Malaysia , Kelantan , Malaysia
| | | | - Chiuan Herng Leow
- d Institute for Research in Molecular Medicine (INFORMM) , Universiti Sains Malaysia , Penang , Malaysia
| | - Boon Huat Lim
- b School of Health Sciences , Universiti Sains Malaysia , Kelantan , Malaysia
| | - Chiuan Yee Leow
- a Institute for Research in Molecular Medicine (INFORMM) , Universiti Sains Malaysia , Kelantan , Malaysia
| |
Collapse
|
41
|
Abstract
Background Ebolavirus (EBOV) is responsible for one of the most fatal diseases encountered by mankind. Cellular T-cell responses have been implicated to be important in providing protection against the virus. Antigenic variation can result in viral escape from immune recognition. Mapping targets of immune responses among the sequence of viral proteins is, thus, an important first step towards understanding the immune responses to viral variants and can aid in the identification of vaccine targets. Herein, we performed a large-scale, proteome-wide mapping and diversity analyses of putative HLA supertype-restricted T-cell epitopes of Zaire ebolavirus (ZEBOV), the most pathogenic species among the EBOV family. Methods All publicly available ZEBOV sequences (14,098) for each of the nine viral proteins were retrieved, removed of irrelevant and duplicate sequences, and aligned. The overall proteome diversity of the non-redundant sequences was studied by use of Shannon’s entropy. The sequences were predicted, by use of the NetCTLpan server, for HLA-A2, -A3, and -B7 supertype-restricted epitopes, which are relevant to African and other ethnicities and provide for large (~86%) population coverage. The predicted epitopes were mapped to the alignment of each protein for analyses of antigenic sequence diversity and relevance to structure and function. The putative epitopes were validated by comparison with experimentally confirmed epitopes. Results & discussion ZEBOV proteome was generally conserved, with an average entropy of 0.16. The 185 HLA supertype-restricted T-cell epitopes predicted (82 (A2), 37 (A3) and 66 (B7)) mapped to 125 alignment positions and covered ~24% of the proteome length. Many of the epitopes showed a propensity to co-localize at select positions of the alignment. Thirty (30) of the mapped positions were completely conserved and may be attractive for vaccine design. The remaining (95) positions had one or more epitopes, with or without non-epitope variants. A significant number (24) of the putative epitopes matched reported experimentally validated HLA ligands/T-cell epitopes of A2, A3 and/or B7 supertype representative allele restrictions. The epitopes generally corresponded to functional motifs/domains and there was no correlation to localization on the protein 3D structure. These data and the epitope map provide important insights into the interaction between EBOV and the host immune system. Electronic supplementary material The online version of this article (10.1186/s12864-017-4328-8) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
Antunes DA, Abella JR, Devaurs D, Rigo MM, Kavraki LE. Structure-based Methods for Binding Mode and Binding Affinity Prediction for Peptide-MHC Complexes. Curr Top Med Chem 2018; 18:2239-2255. [PMID: 30582480 PMCID: PMC6361695 DOI: 10.2174/1568026619666181224101744] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/29/2018] [Accepted: 12/08/2018] [Indexed: 12/26/2022]
Abstract
Understanding the mechanisms involved in the activation of an immune response is essential to many fields in human health, including vaccine development and personalized cancer immunotherapy. A central step in the activation of the adaptive immune response is the recognition, by T-cell lymphocytes, of peptides displayed by a special type of receptor known as Major Histocompatibility Complex (MHC). Considering the key role of MHC receptors in T-cell activation, the computational prediction of peptide binding to MHC has been an important goal for many immunological applications. Sequence- based methods have become the gold standard for peptide-MHC binding affinity prediction, but structure-based methods are expected to provide more general predictions (i.e., predictions applicable to all types of MHC receptors). In addition, structural modeling of peptide-MHC complexes has the potential to uncover yet unknown drivers of T-cell activation, thus allowing for the development of better and safer therapies. In this review, we discuss the use of computational methods for the structural modeling of peptide-MHC complexes (i.e., binding mode prediction) and for the structure-based prediction of binding affinity.
Collapse
Affiliation(s)
| | - Jayvee R. Abella
- Computer Science Department, Rice University, Houston, Texas, USA
| | - Didier Devaurs
- Computer Science Department, Rice University, Houston, Texas, USA
| | - Maurício M. Rigo
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lydia E. Kavraki
- Computer Science Department, Rice University, Houston, Texas, USA
| |
Collapse
|
43
|
Chun S, Muthu M, Gopal J, Paul D, Kim DH, Gansukh E, Anthonydhason V. The unequivocal preponderance of biocomputation in clinical virology. RSC Adv 2018; 8:17334-17345. [PMID: 35539262 PMCID: PMC9080393 DOI: 10.1039/c8ra00888d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/14/2018] [Indexed: 11/22/2022] Open
Abstract
Bioinformatics and computer based data simulation and modeling are captivating biological research, delivering great results already and promising to deliver more. As biological research is a complex, intricate, diverse field, any available support is gladly taken. With recent outbreaks and epidemics, pathogens are a constant threat to the global economy and security. Virus related plagues are somehow the most difficult to handle. Biocomputation has provided appreciable help in resolving clinical virology related issues. This review, for the first time, surveys the current status of the role of computation in virus related research. Advances made in the fields of clinical virology, antiviral drug design, viral immunology and viral oncology, through input from biocomputation, have been discussed. The amount of progress made and the software platforms available are consolidated in this review. The limitations of computation based methods are presented. Finally, the challenges facing the future of biocomputation in clinical virology are speculated upon. Biocomputation in clinical virology.![]()
Collapse
Affiliation(s)
- Sechul Chun
- Department of Environmental Health Science
- Konkuk University
- Seoul 143-701
- Korea
| | - Manikandan Muthu
- Department of Environmental Health Science
- Konkuk University
- Seoul 143-701
- Korea
| | - Judy Gopal
- Department of Environmental Health Science
- Konkuk University
- Seoul 143-701
- Korea
| | - Diby Paul
- Environmental Microbiology
- Department of Environmental Engineering
- Konkuk University
- Seoul 143-701
- Korea
| | - Doo Hwan Kim
- Department of Environmental Health Science
- Konkuk University
- Seoul 143-701
- Korea
| | - Enkhtaivan Gansukh
- Department of Environmental Health Science
- Konkuk University
- Seoul 143-701
- Korea
| | - Vimala Anthonydhason
- Department of Biotechnology
- Indian Institute of Technology-Madras
- Chennai 600036
- India
| |
Collapse
|
44
|
Overlapping CD8+ and CD4+ T-cell epitopes identification for the progression of epitope-based peptide vaccine from nucleocapsid and glycoprotein of emerging Rift Valley fever virus using immunoinformatics approach. INFECTION GENETICS AND EVOLUTION 2017; 56:75-91. [PMID: 29107145 PMCID: PMC7106247 DOI: 10.1016/j.meegid.2017.10.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/02/2017] [Accepted: 10/25/2017] [Indexed: 12/19/2022]
Abstract
Rift Valley fever virus (RVFV) is an emergent arthropod-borne zoonotic infectious viral pathogen which causes fatal diseases in the humans and ruminants. Currently, no effective and licensed vaccine is available for the prevention of RVFV infection in endemic as well as in non-endemic regions. So, an immunoinformatics-driven genome-wide screening approach was performed for the identification of overlapping CD8+ and CD4+ T-cell epitopes and also linear B-cell epitopes from the conserved sequences of the nucleocapsid (N) and glycoprotein (G) of RVFV. We identified overlapping 99.39% conserved 1 CD8+ T-cell epitope (MMHPSFAGM) from N protein and 100% conserved 7 epitopes (AVFALAPVV, LAVFALAPV, FALAPVVFA, VFALAPVVF, IAMTVLPAL, FFDWFSGLM, and FLLIYLGRT) from G protein and also identified IL-4 and IFN-γ induced (99.39% conserved) 1 N protein CD4+ T-cell epitope (HMMHPSFAGMVDPSL) and 100% conserved 5 G protein CD4+ T-cell epitopes (LPALAVFALAPVVFA, PALAVFALAPVVFAE, GIAMTVLPALAVFAL, GSWNFFDWFSGLMSW, and FFLLIYLGRTGLSKM). The overlapping CD8+ and CD4+ T-cell epitopes were bound with most conserved HLA-C*12:03 and HLA-DRB1*01:01, respectively with the high binding affinity (kcal/mol). The combined population coverage analysis revealed that the allele frequencies of these epitopes are high in endemic and non-endemic regions. Besides, we found 100% conserved and non-allergenic 2 decamer B-cell epitopes, GVCEVGVQAL and RVFNCIDWVH of G protein had the sequence similarity with the nonamer CD8+ T-cell epitopes, VCEVGVQAL and RVFNCIDWV, respectively. Consequently, these epitopes may be used for the development of epitope-based peptide vaccine against emerging RVFV. However, in vivo and in vitro experiments are required for their efficient use as a vaccine.
Collapse
|