1
|
Malik AE, Slauenwhite D, McAlpine SM, Hanly JG, Marshall JS, Dérfalvi B, Issekutz TB. Differential type I and type III interferon expression profiles in rheumatoid and juvenile idiopathic arthritis. Front Med (Lausanne) 2024; 11:1466397. [PMID: 39399119 PMCID: PMC11468860 DOI: 10.3389/fmed.2024.1466397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Background The role of type I and type III interferons (IFNs) in rheumatoid arthritis (RA) and juvenile idiopathic arthritis (JIA) is still poorly understood. The objective of this study was to examine the hypothesis that IFN expression profiles in the peripheral blood differ between subsets of arthritic subjects. Multiple type I and type III IFNs were examined in patients with RA and JIA, as well as among subtypes of JIA. Methods Treatment-naïve RA and JIA patients were enrolled. Droplet digital PCR was used to measure the expression of type I, II, and III interferons in blood and synovial fluid leukocytes. Dendritic cell subsets were isolated from synovial fluid to examine IFN expression in each subset. Additionally, synovial mononuclear cells and JIA-derived fibroblast-like synoviocytes were stimulated with TNF, IFNγ, and poly(I:C) to examine inducible IFN expression. Results The predominant type I IFN gene expressed by blood leukocytes was IFNκ and was significantly lower in RA than JIA and controls. Oligoarticular and psoriatic JIA subgroups showed higher IFNκ expression compared to polyarticular JIA and RA. JIA synovial fluid leukocytes expressed abundant IFNγ and type III IFNs (IFNλ1, IFNλ3), with distinct dendritic cell subset contributions. JIA fibroblast-like synoviocytes produced IFNβ, IFNλ1, and IFNλ2 mRNA upon poly(I:C) stimulation. Conclusion This study revealed differences in IFN expression patterns in RA and JIA, with notable differences between JIA subtypes. The expression levels of IFNκ, IFNγ, IFNλ1 and IFNλ3 in JIA suggest specific roles in disease pathology, influenced by disease subtype and joint microenvironment. This study contributes to understanding IFN-mediated mechanisms in arthritis, potentially guiding targeted therapeutic strategies.
Collapse
Affiliation(s)
- Anikó E. Malik
- IWK Health Centre, Halifax, NS, Canada
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Drew Slauenwhite
- IWK Health Centre, Halifax, NS, Canada
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Sarah M. McAlpine
- IWK Health Centre, Halifax, NS, Canada
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - John G. Hanly
- Division of Rheumatology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada
| | - Jean S. Marshall
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Beáta Dérfalvi
- IWK Health Centre, Halifax, NS, Canada
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Thomas B. Issekutz
- IWK Health Centre, Halifax, NS, Canada
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
2
|
Alsabbagh MM. Cytokines in psoriasis: From pathogenesis to targeted therapy. Hum Immunol 2024; 85:110814. [PMID: 38768527 DOI: 10.1016/j.humimm.2024.110814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Psoriasis is a multifactorial disease that affects 0.84% of the global population and it can be associated with disabling comorbidities. As patients present with thick scaly lesions, psoriasis was long believed to be a disorder of keratinocytes. Psoriasis is now understood to be the outcome of the interaction between immunological and environmental factors in individuals with genetic predisposition. While it was initially thought to be solely mediated by cytokines of type-1 immunity, namely interferon-γ, interleukin-2, and interleukin-12 because it responds very well to cyclosporine, a reversible IL-2 inhibitor; the discovery of Th-17 cells advanced the understanding of the disease and helped the development of biological therapy. This article aims to provide a comprehensive review of the role of cytokines in psoriasis, highlighting areas of controversy and identifying the connection between cytokine imbalance and disease manifestations. It also presents the approved targeted treatments for psoriasis and those currently under investigation.
Collapse
Affiliation(s)
- Manahel Mahmood Alsabbagh
- Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders and Department of Molecular Medicine, Arabian Gulf University, Manama, Bahrain.
| |
Collapse
|
3
|
Gene Profiling of a 3D Psoriatic Skin Model Enriched in T Cells: Downregulation of PTPRM Promotes Keratinocyte Proliferation through Excessive ERK1/2 Signaling. Cells 2022; 11:cells11182904. [PMID: 36139479 PMCID: PMC9497242 DOI: 10.3390/cells11182904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
Psoriasis is a complex, immune-mediated skin disease involving a wide range of epithelial and immune cells. The underlying mechanisms that govern the epidermal defects and immunological dysfunction observed in this condition remain largely unknown. In recent years, the emergence of new, more sophisticated models has allowed the evolution of our knowledge of the pathogenesis of psoriasis. The development of psoriatic skin biomaterials that more closely mimic native psoriatic skin provides advanced preclinical models that will prove relevant in predicting clinical outcomes. In this study, we used a tissue-engineered, two-layered (dermis and epidermis) human skin substitute enriched in T cells as a biomaterial to study both the cellular and molecular mechanisms involved in psoriasis’ pathogenesis. Gene profiling on microarrays revealed significant changes in the profile of genes expressed by the psoriatic skin substitutes compared with the healthy ones. Two genes, namely, PTPRM and NELL2, whose products influence the ERK1/2 signaling pathway have been identified as being deregulated in psoriatic substitutes. Deregulation of these genes supports excessive activation of the ERK1/2 pathway in psoriatic skin substitutes. Most importantly, electrophoresis mobility shift assays provided evidence that the DNA-binding properties of two downstream nuclear targets of ERK1/2, both the NF-κB and Sp1 transcription factors, are increased under psoriatic conditions. Moreover, the results obtained with the inhibition of RSK, a downstream effector of ERK1/2, supported the therapeutic potential of inhibiting this signaling pathway for psoriasis treatment. In conclusion, this two-layered human psoriatic skin substitute enriched in T cells may prove particularly useful in deciphering the mechanistic details of psoriatic pathogenesis and provide a relevant biomaterial for the study of potential therapeutic targets.
Collapse
|
4
|
Wolf SJ, Audu CO, Joshi A, denDekker A, Melvin WJ, Davis FM, Xing X, Wasikowski R, Tsoi LC, Kunkel SL, Gudjonsson JE, O’Riordan MX, Kahlenberg JM, Gallagher KA. IFN-κ is critical for normal wound repair and is decreased in diabetic wounds. JCI Insight 2022; 7:e152765. [PMID: 35358091 PMCID: PMC9090246 DOI: 10.1172/jci.insight.152765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Wound repair following acute injury requires a coordinated inflammatory response. Type I IFN signaling is important for regulating the inflammatory response after skin injury. IFN-κ, a type I IFN, has recently been found to drive skin inflammation in lupus and psoriasis; however, the role of IFN-κ in the context of normal or dysregulated wound healing is unclear. Here, we show that Ifnk expression is upregulated in keratinocytes early after injury and is essential for normal tissue repair. Under diabetic conditions, IFN-κ was decreased in wound keratinocytes, and early inflammation was impaired. Furthermore, we found that the histone methyltransferase mixed-lineage leukemia 1 (MLL1) is upregulated early following injury and regulates Ifnk expression in diabetic wound keratinocytes via an H3K4me3-mediated mechanism. Using a series of in vivo studies with a geneticall y engineered mouse model (Mll1fl/fl K14cre-) and human wound tissues from patients with T2D, we demonstrate that MLL1 controls wound keratinocyte-mediated Ifnk expression and that Mll1 expression is decreased in T2D keratinocytes. Importantly, we found the administration of IFN-κ early following injury improves diabetic tissue repair through increasing early inflammation, collagen deposition, and reepithelialization. These findings have significant implications for understanding the complex role type I IFNs play in keratinocytes in normal and diabetic wound healing. Additionally, they suggest that IFN may be a viable therapeutic target to improve diabetic wound repair.
Collapse
Affiliation(s)
| | | | - Amrita Joshi
- Section of Vascular Surgery, Department of Surgery
| | | | | | | | | | | | | | | | | | | | - J. Michelle Kahlenberg
- Department of Dermatology
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine A. Gallagher
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology, and
| |
Collapse
|
5
|
Gharaee-Kermani M, Estadt SN, Tsoi LC, Wolf-Fortune SJ, Liu J, Xing X, Theros J, Reed TJ, Lowe L, Gruszka D, Ward NL, Gudjonsson JE, Kahlenberg JM. IFN-κ Is a Rheostat for Development of Psoriasiform Inflammation. J Invest Dermatol 2022; 142:155-165.e3. [PMID: 34364883 PMCID: PMC8688309 DOI: 10.1016/j.jid.2021.05.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/07/2021] [Accepted: 05/24/2021] [Indexed: 01/03/2023]
Abstract
Psoriasis is a common, inflammatory autoimmune skin disease. Early detection of an IFN-1 signature occurs in many psoriasis lesions, but the source of IFN production remains debated. IFN-κ is an important source of IFN-1 production in the epidermis. We identified a correlation between IFN-regulated and psoriasis-associated genes in human lesional skin. We thus wanted to explore the effects of IFN-κ in psoriasis using the well-characterized imiquimod psoriasis model. Three mouse strains aged 10 weeks were used: wild-type C57Bl/6, C57Bl/6 that overexpress Ifnk in the epidermis (i.e., transgenic), and total body Ifnk-/- (i.e., knockout) strain. Psoriasis was induced by topical application of imiquimod on both ears for 8 consecutive days. Notably, the severity of skin lesions and inflammatory cell infiltration was more significantly increased in transgenic than in wild-type than in knockout mice. Gene expression analysis identified greater upregulation of Mxa, Il1b, Tnfa, Il6, Il12, Il23, Il17, and Ifng in transgenic compared to wild-type compared to knockout mice after imiquimod treatment. Furthermore, imiquimod increased CD8+ and CD4+ T-cell infiltration more in transgenic than in wild-type than in knockout mice. In summary, we identified IFN-κ as a rheostat for initiation of psoriasiform inflammation. This suggests that targeting IFN-1s early in the disease may be an effective way of controlling psoriatic inflammation.
Collapse
Affiliation(s)
- Mehrnaz Gharaee-Kermani
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA,Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA,These authors contributed equally to this work
| | - Shannon N. Estadt
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA,Graduate Program in Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA,These authors contributed equally to this work
| | - Lam C. Tsoi
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA,Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sonya J. Wolf-Fortune
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA,Graduate Program in Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jianhua Liu
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Xianying Xing
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathon Theros
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Tamra J. Reed
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Lori Lowe
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA,Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Dennis Gruszka
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA,Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nicole L. Ward
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA,Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Johann E. Gudjonsson
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - J. Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA,Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Gu H, Zhang Y, Zeng W, Xia Y. Participation of interferons in psoriatic inflammation. Cytokine Growth Factor Rev 2021; 64:12-20. [PMID: 34953718 DOI: 10.1016/j.cytogfr.2021.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022]
Abstract
Interferons are multifunctional cytokines not expressed in the skin under normal physiological conditions. However, they are overexpressed in serum and skin lesions of patients with psoriasis and play an important role in the pathogenesis of the disease. Interferons act directly on skin resident cells and recruit and modulate inflammatory cells, thereby exacerbating psoriatic inflammation. They upregulate the expression of relevant cytokines and chemokines, facilitate excessive proliferation of keratinocytes, and enhance the formation of poorly differentiated dermal microvessels. In this review, we summarized the pathogenic effect of interferons on psoriasis and also discussed the therapeutic strategies targeting interferons.
Collapse
Affiliation(s)
- Hanjiang Gu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yufei Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Weihui Zeng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
7
|
Chavoshy F, Zadeh BSM, Tamaddon AM, Anbardar MH. Delivery and Anti-Psoriatic Effect of Silibinin-Loaded Polymeric Micelles: An Experimental Study in the Psoriatic Skin Model. Curr Drug Deliv 2021; 17:787-798. [PMID: 32703129 DOI: 10.2174/1567201817666200722141807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/27/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Psoriasis is an inflamed skin disorder associated with the activation of phosphorylation signals in keratinocytes, which leads to proliferation. Phosphorylation signal inhibitors, such as silibinin can inhibit cell proliferation. Unlike current psoriasis treatment approaches that are associated with dangerous side effects; natural components can introduce new trends in psoriasis treatment. The major problem in the topical treatment of psoriasis is drug localization through the psoriasis lesions. METHODS In this study, silibinin-loaded polymeric micelles prepared and characterized for drug loading and release and ex vivo permeation through psoriatic and normal mice skin. The optimized batch was used for the treatment of psoriasis lesions in the mice model. RESULTS The optimized batch demonstrated mean particle size 18.3 ± 2.1 nm, entrapment efficiency 75.8 ± 5.8%, and prolonged silibinin release. % Silibinin permeated through psoriatic skin after 48 treated by polymeric micelle and aqueous control was 80.35, and 92.6, respectively. Polymeric micelles increased silibinin localization in the psoriatic skin in comparison with control. In psoriatic skin after 7- 10 days treatment by silibinin- loaded polymeric micelle, there was no evidence of psoriasis and the histological evaluation showed no sign of psoriasis. Silibinin-loaded polymeric micelles reduced Psoriasis area index by more than 78% after 14 days. CONCLUSION It seems that polymeric micelles increased the effectiveness of silibinin by drug localization into the psoriatic plaque. Topical STAT- 3inhibitors can be introduced as a new strategy in psoriasis treatment.
Collapse
Affiliation(s)
- Fateme Chavoshy
- Department of Pharmaceutics, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Center for
Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behzad Sharif Makhmal Zadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Center for
Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran,Department of Pharmaceutics, Nanotechnology Research Center, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, Center for Nanotechnology in Drug Delivery, Shiraz University
of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
8
|
De Pessemier B, Grine L, Debaere M, Maes A, Paetzold B, Callewaert C. Gut-Skin Axis: Current Knowledge of the Interrelationship between Microbial Dysbiosis and Skin Conditions. Microorganisms 2021; 9:353. [PMID: 33670115 PMCID: PMC7916842 DOI: 10.3390/microorganisms9020353] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023] Open
Abstract
The microbiome plays an important role in a wide variety of skin disorders. Not only is the skin microbiome altered, but also surprisingly many skin diseases are accompanied by an altered gut microbiome. The microbiome is a key regulator for the immune system, as it aims to maintain homeostasis by communicating with tissues and organs in a bidirectional manner. Hence, dysbiosis in the skin and/or gut microbiome is associated with an altered immune response, promoting the development of skin diseases, such as atopic dermatitis, psoriasis, acne vulgaris, dandruff, and even skin cancer. Here, we focus on the associations between the microbiome, diet, metabolites, and immune responses in skin pathologies. This review describes an exhaustive list of common skin conditions with associated dysbiosis in the skin microbiome as well as the current body of evidence on gut microbiome dysbiosis, dietary links, and their interplay with skin conditions. An enhanced understanding of the local skin and gut microbiome including the underlying mechanisms is necessary to shed light on the microbial involvement in human skin diseases and to develop new therapeutic approaches.
Collapse
Affiliation(s)
- Britta De Pessemier
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (B.D.P.); (M.D.); (A.M.)
| | - Lynda Grine
- Department of Head & Skin, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium;
| | - Melanie Debaere
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (B.D.P.); (M.D.); (A.M.)
| | - Aglaya Maes
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (B.D.P.); (M.D.); (A.M.)
| | | | - Chris Callewaert
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (B.D.P.); (M.D.); (A.M.)
| |
Collapse
|
9
|
Jiang Y, Tsoi LC, Billi AC, Ward NL, Harms PW, Zeng C, Maverakis E, Kahlenberg JM, Gudjonsson JE. Cytokinocytes: the diverse contribution of keratinocytes to immune responses in skin. JCI Insight 2020; 5:142067. [PMID: 33055429 PMCID: PMC7605526 DOI: 10.1172/jci.insight.142067] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The skin serves as the primary interface between our body and the external environment and acts as a barrier against entry of physical agents, chemicals, and microbes. Keratinocytes make up the main cellular constitute of the outermost layer of the skin, contributing to the formation of the epidermis, and they are crucial for maintaining the integrity of this barrier. Beyond serving as a physical barrier component, keratinocytes actively participate in maintaining tissue homeostasis, shaping, amplifying, and regulating immune responses in skin. Keratinocytes act as sentinels, continuously monitoring changes in the environment, and, through microbial sensing, stretch, or other physical stimuli, can initiate a broad range of inflammatory responses via secretion of various cytokines, chemokines, and growth factors. This diverse function of keratinocytes contributes to the highly variable clinical manifestation of skin immune responses. In this Review, we highlight the highly diverse functions of epidermal keratinocytes and their contribution to various immune-mediated skin diseases.
Collapse
Affiliation(s)
- Yanyun Jiang
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Computational Medicine and Bioinformatics and Department of Biostatistics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole L Ward
- Department of Nutrition and Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Paul W Harms
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Chang Zeng
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Michigan, USA.,A. Alfred Taubman Medical Research Institute, Michigan, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,A. Alfred Taubman Medical Research Institute, Michigan, USA
| |
Collapse
|