1
|
Arzuk E, Birim D, Armağan G. Celecoxib inhibits NLRP1 inflammasome pathway in MDA-MB-231 Cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9191-9202. [PMID: 38990306 PMCID: PMC11522188 DOI: 10.1007/s00210-024-03286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
NLRP1 is predominantly overexpressed in breast cancer tissue, and the evaluated activation of NLRP1 inflammasome is associated with tumor growth, angiogenesis, and metastasis. Therefore, targeting NLRP1 activation could be a crucial strategy in anticancer therapy. In this study, we investigated the hypothesis that NLRP1 pathway may contribute to the cytotoxic effects of celecoxib and nimesulide in MDA-MB-231 cells. First of all, IC50 values and inhibitory effects on the colony-forming ability of drugs were evaluated in cells. Then, the alterations in the expression levels of NLRP1 inflammasome components induced by drugs were investigated. Subsequently, the release of inflammatory cytokine IL-1β and the activity of caspase-1 in drug-treated cells were measured. According to our results, celecoxib and nimesulide selectively inhibited the viability of MDA-MB-231 cells. These drugs remarkably inhibited the colony-forming ability of cells. The expression levels of NLRP1 inflammasome components decreased in celecoxib-treated cells, accompanied by decreased caspase-1 activity and IL-1β release. In contrast, nimesulide treatment led to the upregulation of the related protein expressions with unchanged caspase-1 activity and increased IL-1β secretion. Our results indicated that the NLRP1 inflammasome pathway might contribute to the antiproliferative effects of celecoxib in MDA-MB-231 cells but is not a crucial mechanism for nimesulide.
Collapse
Affiliation(s)
- Ege Arzuk
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, Bornova, 35040, Izmir, Turkey.
| | - Derviş Birim
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Güliz Armağan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
2
|
Akl MM, Ahmed A. Cytobiological Alterations Induced by Celecoxib as an Anticancer Agent for Breast and Metastatic Breast Cancer. Adv Pharm Bull 2024; 14:604-612. [PMID: 39494258 PMCID: PMC11530885 DOI: 10.34172/apb.2024.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 11/05/2024] Open
Abstract
Breast cancer remains a formidable public health challenge worldwide, characterized by its initiation within the breast's diverse tissues, particularly the ducts and lobules. This malignancy is predominantly categorized into three subtypes based on receptor status and genetic markers: hormone receptor-positive, HER2-positive, and triple-negative. Each subtype exhibits distinct biological behaviors and responses to treatment, which significantly influence the prognosis and management strategies. The development and metastatic spread of breast cancer are complex processes mediated by interactions between tumor cells and the host microenvironment, involving various cellular and molecular mechanisms. This review highlights the potential therapeutic role of celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, in addressing the multifaceted aspects of breast cancer progression. Specifically, celecoxib modulates angiogenesis by reducing the levels of vascular endothelial growth factor (VEGF) through decreased PGE2 production, enhances the immune response by alleviating PGE2-mediated immunosuppression, and inhibits metastasis by limiting the activity of matrix metalloproteinases (MMPs). These mechanisms collectively hinder tumor growth, immune evasion, and metastatic spread. By synthesizing recent findings and analyzing the impact of celecoxib on these pathways, this paper seeks to delineate the integrated approaches necessary for managing metastatic breast cancer effectively.
Collapse
Affiliation(s)
- Maher Monir. Akl
- Department of Chemistry, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Amr Ahmed
- The Public Health Department, Riyadh First Health Cluster, Ministry of Health, Saudi Arabia
| |
Collapse
|
3
|
Gu W, Zeng D, Zhang C. Discovering the effect of combination of celecoxib and sorafenib on hepatocellular carcinoma. Discov Oncol 2024; 15:321. [PMID: 39083127 PMCID: PMC11291820 DOI: 10.1007/s12672-024-01203-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024] Open
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a common and fatal cancer, and its molecular mechanisms are still not fully understood. This study aimed to explore the potential molecular mechanisms and immune infiltration characteristics of celecoxib combined with sorafenib in the treatment of HCC by analyzing the differentially expressed genes (DEGs) from the GSE45340 dataset in the GEO database and identifying key genes. METHODS The GSE45340 dataset was downloaded from the GEO database, and DEGs were screened using GEO2R, and visualization and statistical analysis were performed. Metascape was used to perform functional annotation and protein-protein interaction network analysis of DEGs. The immune infiltration was analyzed using the TIMER database, and the expression of key genes and their relationship with patient survival were analyzed and verified using the UALCAN database. RESULTS A total of 2181 DEGs were screened through GEO2R analysis, and heat maps were drawn for the 50 genes with the highest expression. Metascape was used for enrichment analysis, and the enrichment results of KEGG and GO and the PPI network were obtained, and 44 core genes were screened. Analysis of the TIMER database found that 12 genes were closely related to tumor immune infiltration. UALCAN analysis further verified the differential expression of these genes in HCC and was closely related to the overall survival of patients. CONCLUSIONS Through comprehensive bioinformatics analysis, this study identified a group of key genes related to the treatment of HCC with celecoxib combined with sorafenib. These genes play an important role in tumor immune infiltration and patient survival, providing important clues for further studying the molecular mechanism of HCC and developing potential therapeutic targets.
Collapse
Affiliation(s)
- Wang Gu
- Hepatological Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, 230032, Anhui Province, China
| | - Dongyun Zeng
- Clinicopathological Diagnosis and Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise, China
| | - Chao Zhang
- Hepatological Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, 230032, Anhui Province, China.
| |
Collapse
|
4
|
Akhmetova VR, Akhmadiev NS, Gubaidullin AT, Samigullina AI, Glazyrin AB, Sadykov RA, Ishmetova DV, Vakhitova YV. Novel binuclear copper(II) complexes with sulfanylpyrazole ligands: synthesis, crystal structure, fungicidal, cytostatic, and cytotoxic activity. Metallomics 2024; 16:mfae024. [PMID: 38802123 DOI: 10.1093/mtomcs/mfae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/10/2024] [Indexed: 05/29/2024]
Abstract
New binuclear copper(II) [Cu(II)] tetraligand complexes (six examples) with sulfanylpyrazole ligands were synthesized. Electron spin resonance (ESR) studies have shown that in solution the complexes are transformed to the mononuclear one. Fungicidal properties against Candida albicans were found for the Cu complexes with benzyl and phenyl substituents. An in vitro evaluation of the cytotoxic properties of Cu chelates against HEK293, Jurkat, MCF-7, and THP-1 cells identified the Cu complex with the cyclohexylsulfanyl substituent in the pyrazole core as the lead compound, whereas the Cu complex without a sulfur atom in the pyrazole ligand had virtually no cytotoxic or fungicidal activity. The lead Cu(II) complex was more active than cisplatin. Effect of the S-containing Cu complex on apoptosis and cell cycle distribution has been investigated as well.
Collapse
Affiliation(s)
- Vnira R Akhmetova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center of the Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa 450075, Russia
| | - Nail S Akhmadiev
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center of the Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa 450075, Russia
| | - Aidar T Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of the Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russia
| | - Aida I Samigullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of the Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russia
| | - Andrey B Glazyrin
- Ufa University of Science and Technology, Mingazheva str. 100, Ufa 450078, Russia
| | - Rais A Sadykov
- Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences, Prospekt Oktyabrya 71, Ufa 450054, Russia
| | - Diana V Ishmetova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, Prospekt Oktyabrya 71, Ufa 450054, Russia
| | - Yulia V Vakhitova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, Prospekt Oktyabrya 71, Ufa 450054, Russia
| |
Collapse
|
5
|
Banerjee J, Tiwari AK, Banerjee S. Drug repurposing for cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:123-150. [PMID: 38942535 DOI: 10.1016/bs.pmbts.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
In the dynamic landscape of cancer therapeutics, the innovative strategy of drug repurposing emerges as a transformative paradigm, heralding a new era in the fight against malignancies. This book chapter aims to embark on the comprehension of the strategic deployment of approved drugs for repurposing and the meticulous journey of drug repurposing from earlier times to the current era. Moreover, the chapter underscores the multifaceted and complex nature of cancer biology, and the evolving field of cancer drug therapeutics while emphasizing the mandate of drug repurposing to advance cancer therapeutics. Importantly, the narrative explores the latest tools, technologies, and cutting-edge methodologies including high-throughput screening, omics technologies, and artificial intelligence-driven approaches, for shaping and accelerating the pace of drug repurposing to uncover novel cancer therapeutic avenues. The chapter critically assesses the breakthroughs, expanding the repertoire of repurposing drug candidates in cancer, and their major categories. Another focal point of this book chapter is that it addresses the emergence of combination therapies involving repurposed drugs, reflecting a shift towards personalized and synergistic treatment approaches. The expert analysis delves into the intricacies of combinatorial regimens, elucidating their potential to target heterogeneous cancer populations and overcome resistance mechanisms, thereby enhancing treatment efficacy. Therefore, this chapter provides in-depth insights into the potential of repurposing towards bringing the much-needed big leap in the field of cancer therapeutics.
Collapse
Affiliation(s)
- Juni Banerjee
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Shuvomoy Banerjee
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India.
| |
Collapse
|
6
|
Razavirad A, Rismanchi S, Mortazavi P, Muhammadnejad A. Canine Mammary Tumors as a Potential Model for Human Breast Cancer in Comparative Oncology. Vet Med Int 2024; 2024:9319651. [PMID: 38766503 PMCID: PMC11101259 DOI: 10.1155/2024/9319651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
Clinical and molecular similarities between canine mammary tumors (CMTs) and human breast cancer (HBC) propel scientists to further study their application in comparative oncology as a model for human breast cancer. In total, 64 canine mammary tumors were selected to study the most common markers, which are applicable for human breast cancer treatment, including estrogen and progesterone receptors (ER and PR), human epidermal growth factor (HER2/neu), Ki67, and cyclooxygenase 2 (Cox2). Immunohistochemistry (IHC) was used to assess the protein expression. The Veterinary Nottingham Prognostic Index (Vet-NPI) was also computed. Moreover, univariate and multivariable Cox proportional hazard analyses were applied to estimate hazard ratios (HRs). The results demonstrated that Ki67 was strongly expressed in the triple-negative tumors, and Ki67 protein expression continuously increased over the increase of Cox2 protein expression (p < 0.001). Further analysis revealed a significant difference among canine mammary subtypes and Vet-NPI, in which triple-negative tumors displayed the highest mean score compared to other subtypes (p < 0.001). In addition, the multivariable analysis revealed that the regional mastectomy procedure (adjusted HR = 2.78 (1.14-6.8)), the triple-negative tumors (adjusted HR = 48.08 (7.74-298.8)), strong Ki67 protein expression group (adjusted HR = 7.88 (2.02-30.68)), and strong Cox2 protein expression group (adjusted HR = 29.35 (5.18-166.4)) demonstrated significantly lower disease-free survival rates compared to other corresponding groups. Overall, canine mammary tumors showed strong similarities to human breast cancer in terms of clinical and molecular aspects; therefore, they could be suggested as a model for human breast cancer in comparative oncology.
Collapse
Affiliation(s)
- Amirhossein Razavirad
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Rismanchi
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Pejman Mortazavi
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ahad Muhammadnejad
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Wu M, Zhang W, Zhou X, Wang Z, Li S, Guo C, Yang Y, Zhang R, Zhang Z, Sun X, Gong T. An in situ forming gel co-loaded with pirarubicin and celecoxib inhibits postoperative recurrence and metastasis of breast cancer. Int J Pharm 2024; 653:123897. [PMID: 38360289 DOI: 10.1016/j.ijpharm.2024.123897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Surgical removal combined with postoperative chemotherapy is still the mainstay of treatment for most solid tumors. Although chemotherapy reduces the risk of recurrence and metastasis after surgery, it may produce serious adverse effects and impair patient compliance. In situ drug delivery systems are promising tools for postoperative cancer treatment, improving drug delivery efficiency and reducing side effects. Herein, an injectable phospholipid-based in situ forming gel (IPG) was prepared for the co-delivery of antitumor agent pirarubicin (THP) and cyclooxygenase-2 (COX-2) inhibitor celecoxib (CXB) in the surgical incision, and the latter are used extensively in adjuvant chemotherapy for cancer. After injection, the IPG co-loaded with THP and CXB (THP-CXB-IPG) underwent spontaneous phase transition and formed a drug reservoir that fitted the irregular surgical incisions perfectly. In vitro drug release studies and in vivo pharmacokinetic analysis had demonstrated the sustained release behaviors of THP-CXB-IPG. The in vivo therapeutic efficacy was evaluated in mice that had undergone surgical resection of breast cancer, and the THP-CXB-IPG showed considerable inhibition of residual tumor growth after surgery and reduced the incidence of pulmonary metastasis. Moreover, it reduced the systemic toxicity of chemotherapeutic agents. Therefore, THP-CXB-IPG can be a promising candidate for preventing postoperative recurrence and metastasis.
Collapse
Affiliation(s)
- Mengying Wu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xueru Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zijun Wang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Sha Li
- NMPA Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, Bioanalytical Service Center of Sichuan Institute for Drug Control, Chengdu 611731, China
| | - Chenqi Guo
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuping Yang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rongping Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Sai Manogna K, Deva Prasad Raju B, Rajasekhara Reddy G, Kallem P, Shaik MI, John Sushma N. Investigations on anticancer activity of Eu 3+ doped hydroxyapatite nanocomposites against MCF7 and 4T1 breast cancer cell lines: A structural and luminescence Perspective. Heliyon 2024; 10:e25064. [PMID: 38352738 PMCID: PMC10862524 DOI: 10.1016/j.heliyon.2024.e25064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/31/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Breast cancer remains a significant global health concern, necessitating the development of novel therapeutic approaches. In this study, we investigate the role of Eu3+ doped hydroxyapatite nanocomposites (Han: Eu3+) in the treatment of MCF7 and 4T1 breast cancer cell lines. Furthermore, we explored the structural and luminescent properties of these nanocomposites. Han: Eu3+ were synthesized using a modified co-precipitation method, and their morphology and crystal structure were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD) in which the average crystalline size of Han: Eu3+ was found to be 25 nm, rendering them suitable for cellular uptake and targeted therapy. To gain insights into the luminescent properties of Han: Eu3+, their excitation and emission spectra were recorded using photoluminescence spectrometer. The characteristic red emission of Eu3+ ions was observed upon excitation, validating the successful doping of Eu3+ into the Han lattice, which was confirmed by the CIE chromaticity coordinate study. These luminescent properties of Han: Eu3+ hold promise for potential applications in bioimaging. To evaluate the efficacy of Han: Eu3+ in breast cancer treatment, MCF7 and 4T1 cell lines were exposed to varying concentrations of the nanocomposites. Cell viability assays revealed a concentration-dependent reduction in cell viability, indicating the potential anticancer activity of Han: Eu3+. The findings of this study contribute to the expanding field of nanomedicine, bringing targeted breast cancer treatments and us closer to more effective.
Collapse
Affiliation(s)
- K Sai Manogna
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, (Women's University) Tirupati-517 502, India
| | - B Deva Prasad Raju
- Department of Physics, Sri Venkateswara University, Tirupati - 517501, India
| | - G Rajasekhara Reddy
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Parashuram Kallem
- Environmental Health and Safety Program, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Mannur Ismail Shaik
- Faculty of Fisheries and Food Science, University Malaysia Terengganu, KulaNerus-21030, Terengganu, Malaysia
| | - N John Sushma
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, (Women's University) Tirupati-517 502, India
| |
Collapse
|
9
|
Said MF, George RF, Fayed W, F Soliman AA, Refaey RH. Investigations of new N1-substituted pyrazoles as anti-inflammatory and analgesic agents having COX inhibitory activity. Future Med Chem 2024; 16:349-368. [PMID: 38288554 DOI: 10.4155/fmc-2023-0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/20/2023] [Indexed: 02/07/2024] Open
Abstract
Background: The search is ongoing for ideal anti-inflammatory and analgesic agents with promising potency and reasonable selectivity. Methods: New N1-substituted pyrazoles with or without an acetamide linkage were synthesized and evaluated for their anti-inflammatory and analgesic activities. COX inhibitory testing, molecular docking, molecular dynamics simulation and antiproliferative activity assessments were performed. Results: All compounds exhibited anti-inflammatory activity up to 90.40% inhibition. They also exhibited good analgesic activity with up to 100% protection. N1-benzensulfonamides 3d, 6c and 6h were preferentially selective agents toward COX-2. Compound 3d showed good cytotoxicity against MCF-7 and HTC116 cancer cell lines. Molecular modeling studies predicted the binding pattern of the most active compounds. Molecular dynamics confirmed the docking results. All compounds showed remarkable pharmacokinetic properties.
Collapse
Affiliation(s)
- Mona F Said
- Pharmaceutical Chemistry Department, Cairo University, Cairo, 11562, Egypt
| | - Riham F George
- Pharmaceutical Chemistry Department, Cairo University, Cairo, 11562, Egypt
| | - Walid Fayed
- Pharmacognosy Department, Drug Bioassay-Cell Culture, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Ahmed A F Soliman
- Pharmacognosy Department, Drug Bioassay-Cell Culture, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Rana H Refaey
- Pharmaceutical Chemistry Department, October University for Modern Sciences & Arts
| |
Collapse
|
10
|
Mohamed WA, El-Nekhily NA, Mahmoud HE, Hussein AA, Sabra SA. Prodigiosin/celecoxib-loaded into zein/sodium caseinate nanoparticles as a potential therapy for triple negative breast cancer. Sci Rep 2024; 14:181. [PMID: 38168547 PMCID: PMC10761898 DOI: 10.1038/s41598-023-50531-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Nowadays, breast cancer is considered one of the most upsetting malignancies among females. Encapsulation of celecoxib (CXB) and prodigiosin (PDG) into zein/sodium caseinate nanoparticles (NPs) produce homogenous and spherical nanoparticles with good encapsulation efficiencies (EE %) and bioavailability. In vitro cytotoxicity study conducted on human breast cancer MDA-MB-231 cell lines revealed that there was a significant decline in the IC50 for encapsulated drugs when compared to each drug alone or their free combination. In addition, results demonstrated that there is a synergism between CXB and PDG as their combination indices were 0.62251 and 0.15493, respectively. Moreover, results of scratch wound healing assay revealed enhanced antimigratory effect of free drugs and fabricated NPs in comparison to untreated cells. Furthermore, In vitro results manifested that formulated nanoparticles exhibited induction of apoptosis associated with reduced angiogenesis, proliferation, and inflammation. In conclusion, nanoencapsulation of multiple drugs into nanoparticles might be a promising approach to develop new therapies for the managing of triple negative breast cancer.
Collapse
Affiliation(s)
- Wafaa A Mohamed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Nefertiti A El-Nekhily
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Hoda E Mahmoud
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Ahmed A Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Sally A Sabra
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt.
| |
Collapse
|
11
|
Kast RE. The OSR9 Regimen: A New Augmentation Strategy for Osteosarcoma Treatment Using Nine Older Drugs from General Medicine to Inhibit Growth Drive. Int J Mol Sci 2023; 24:15474. [PMID: 37895152 PMCID: PMC10607234 DOI: 10.3390/ijms242015474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
As things stand in 2023, metastatic osteosarcoma commonly results in death. There has been little treatment progress in recent decades. To redress the poor prognosis of metastatic osteosarcoma, the present regimen, OSR9, uses nine already marketed drugs as adjuncts to current treatments. The nine drugs in OSR9 are: (1) the antinausea drug aprepitant, (2) the analgesic drug celecoxib, (3) the anti-malaria drug chloroquine, (4) the antibiotic dapsone, (5) the alcoholism treatment drug disulfiram, (6) the antifungal drug itraconazole, (7) the diabetes treatment drug linagliptin, (8) the hypertension drug propranolol, and (9) the psychiatric drug quetiapine. Although none are traditionally used to treat cancer, all nine have attributes that have been shown to inhibit growth-promoting physiological systems active in osteosarcoma. In their general medicinal uses, all nine drugs in OSR9 have low side-effect risks. The current paper reviews the collected data supporting the role of OSR9.
Collapse
|
12
|
Xu H, Li P, Ma H, Tan Y, Wang X, Cai F, Xu J, Sun H, Zhuang H, Hua Z. ADT-OH synergistically enhanced the antitumor activity of celecoxib in human colorectal cancer cells. Cancer Med 2023; 12:17193-17211. [PMID: 37492969 PMCID: PMC10501245 DOI: 10.1002/cam4.6342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Colorectal cancer is one of the most prevalent cancers in the world, but the research on its prevention, early diagnosis and treatment is still a major challenge in clinical oncology. Thus, there is a pressing requirement to find effective strategies to improve the survival of colon cancer patients. METHODS Celecoxib has been accounted to be an effective antitumor drug, but may exhibit significant side effects. In recent studies, 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-OH), one of the most commonly used reagents for the synthesis of sustained-release H2 S donors, has also been reported to inhibit cancer progression by affecting processes such as cell cycle, angiogenesis, and apoptosis. Therefore, we evaluated the therapeutic effect of the combination of ADT-OH and celecoxib on colorectal cancer through in vitro and in vivo, hoping to achieve better therapeutic effect and reduce the effect of celecoxib on gastric injury through exogenous administration of H2 S. RESULTS Our results demonstrated that ADT-OH combined with celecoxib synergistically inhibited the proliferation and migration ability of human colorectal cancer HCT116 cells, altered cell cycle and cytoskeleton, increased intracellular reactive oxygen species (ROS), and promoted cell apoptosis. Noteworthy, in vivo studies also indicated the excellent antitumor therapeutic effect of the combination therapy without apparent toxicity. CONCLUSIONS In general, our results provide a reasonable combination strategy of low-dose ADT-OH and celecoxib in the preclinical application of colorectal cancer.
Collapse
Affiliation(s)
- Huangru Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life SciencesNanjing UniversityNanjingP.R. China
| | - Ping Li
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life SciencesNanjing UniversityNanjingP.R. China
| | - Hailin Ma
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life SciencesNanjing UniversityNanjingP.R. China
| | - Yuanhao Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life SciencesNanjing UniversityNanjingP.R. China
| | - Xiaoyang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life SciencesNanjing UniversityNanjingP.R. China
| | - Fangfang Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life SciencesNanjing UniversityNanjingP.R. China
- School of BiopharmacyChina Pharmaceutical UniversityNanjingChina
| | - Jiaqi Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life SciencesNanjing UniversityNanjingP.R. China
| | - Huisong Sun
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life SciencesNanjing UniversityNanjingP.R. China
| | - Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life SciencesNanjing UniversityNanjingP.R. China
| | - Zi‐Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life SciencesNanjing UniversityNanjingP.R. China
- School of BiopharmacyChina Pharmaceutical UniversityNanjingChina
- Changzhou High‐Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.ChangzhouP.R. China
| |
Collapse
|
13
|
Alkaabi D, Arafat K, Sulaiman S, Al-Azawi AM, Attoub S. PD-1 Independent Role of PD-L1 in Triple-Negative Breast Cancer Progression. Int J Mol Sci 2023; 24:ijms24076420. [PMID: 37047395 PMCID: PMC10094894 DOI: 10.3390/ijms24076420] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 04/01/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a type of breast malignancy characterized by a high proliferative rate and metastatic potential leading to treatment failure, relapse, and poor prognosis. Therefore, efforts are continuously being devoted to understanding its biology and identifying new potential targets. Programmed death-ligand 1 (PD-L1) is an immunosuppressive protein that inactivates T cells by binding to the inhibitory receptor programmed death-1 (PD-1). PD-L1 overexpression in cancer cells contributes to immune evasion and, subsequently, poor survival and prognosis in several cancers, including breast cancer. Apart from its inhibitory impact on T cells, this ligand is believed to have an intrinsic role in cancer cells. This study was performed to clarify the PD-1 independent role of PD-L1 in TNBC MDA-MB-231 cells by knocking out the PD-L1 using three designs of CRISPR-Cas9 lentiviral particles. Our study revealed that PD-L1 knockout significantly inhibited MDA-MB-231 cell proliferation and colony formation in vitro and tumor growth in the chick embryo chorioallantoic membrane (CAM) model in vivo. PD-L1 knockout also decreased the migration and invasion of MDA-MB-231 cells in vitro. We have shown that PD-L1 knockout MDA-MB-231 cells have low levels of p-Akt and p-ERK in addition to some of their downstream proteins, c-Fos, c-Myc, p21, survivin, and COX-2. Furthermore, PD-L1 knockout significantly decreased the expression of Snail and RhoA. This study shows the intrinsic role of PD-L1 in TNBC independently of its binding to PD-1 receptors on T cells. It may pave the way for developing novel therapeutic strategies using PD-L1 inhibitors alone and in combination to treat TNBC more effectively.
Collapse
Affiliation(s)
- Duaa Alkaabi
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Kholoud Arafat
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Shahrazad Sulaiman
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Aya Mudhafar Al-Azawi
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Samir Attoub
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Institut National de la Santé et de la Recherche Médicale (INSERM), 75013 Paris, France
- Correspondence:
| |
Collapse
|
14
|
Jahani V, Yazdani M, Badiee A, Jaafari MR, Arabi L. Liposomal celecoxib combined with dendritic cell therapy enhances antitumor efficacy in melanoma. J Control Release 2023; 354:453-464. [PMID: 36649743 DOI: 10.1016/j.jconrel.2023.01.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Cancer vaccine efficacy is limited by the immunosuppressive nature of the tumor microenvironment created by inflammation, immune inhibitory factors, and regulatory T cells (Tregs). Inspired by the role of cyclooxygenase-2 (COX-2) in inflammation in the tumor site, we proposed that normalization of the tumor microenvironment by celecoxib as a COX-2 inhibitor might improve the efficacy of Dendritic Cell (DC) therapy in a melanoma model. In the present study, liposomal celecoxib (Lip-CLX) was combined with ex vivo generated DC vaccines pulsed with gp100 peptide (in liposomal and non-liposomal forms) for prophylactic and therapeutic evaluation in the B16F10 melanoma model. Tumor site analysis by flow cytometry demonstrated that intravenous administration of Lip-CLX at a dose of 1 mg/kg in four doses effectively normalized the tumor microenvironment by reducing Tregs and IL-10 production. Furthermore, in combination with DC vaccination (DC + Lip-peptide+Lip-CLX), it significantly increased tumor-infiltrating CD4+ and CD8+ T cells and secretion of IFN-γ. This combinatorial strategy produced an effective prophylactic and therapeutic antitumor response, which reduced tumor growth and prolonged the overall survival. In conclusion, our findings suggest that the liposomal celecoxib targets the inhibitory mechanisms of the tumor microenvironment and broadens the impact of DC therapy to improve the outcome of immunotherapy in solid tumors.
Collapse
Affiliation(s)
- Vajiheh Jahani
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Yazdani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Rashid G, Khan NA, Elsori D, Rehman A, Tanzeelah, Ahmad H, Maryam H, Rais A, Usmani MS, Babker AM, Kamal MA, Hafez W. Non-steroidal anti-inflammatory drugs and biomarkers: A new paradigm in colorectal cancer. Front Med (Lausanne) 2023; 10:1130710. [PMID: 36950511 PMCID: PMC10025514 DOI: 10.3389/fmed.2023.1130710] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
Colorectal cancer is a sporadic, hereditary, or familial based disease in its origin, caused due to diverse set of mutations in large intestinal epithelial cells. Colorectal cancer (CRC) is a common and deadly disease that accounts for the 4th worldwide highly variable malignancy. For the early detection of CRC, the most common predictive biomarker found endogenously are KRAS and ctDNA/cfDNA along with SEPT9 methylated DNA. Early detection and screening for CRC are necessary and multiple methods can be employed to screen and perform early diagnosis of CRC. Colonoscopy, an invasive method is most prevalent for diagnosing CRC or confirming the positive result as compared to other screening methods whereas several non-invasive techniques such as molecular analysis of breath, urine, blood, and stool can also be performed for early detection. Interestingly, widely used medicines known as non-steroidal anti-inflammatory drugs (NSAIDs) to reduce pain and inflammation have reported chemopreventive impact on gastrointestinal malignancies, especially CRC in several epidemiological and preclinical types of research. NSAID acts by inhibiting two cyclooxygenase enzymes, thereby preventing the synthesis of prostaglandins (PGs) and causing NSAID-induced apoptosis and growth inhibition in CRC cells. This review paper majorly focuses on the diversity of natural and synthetic biomarkers and various techniques for the early detection of CRC. An approach toward current advancement in CRC detection techniques and the role of NSAIDs in CRC chemoprevention has been explored systematically. Several prominent governing mechanisms of the anti-cancer effects of NSAIDs and their synergistic effect with statins for an effective chemopreventive measure have also been discussed in this review paper.
Collapse
Affiliation(s)
- Gowhar Rashid
- Department of Amity Medical School, Amity University, Gurugram, India
- *Correspondence: Gowhar Rashid,
| | - Nihad Ashraf Khan
- Department of Biosciences, Jamia Millia Islamia, Central University, New Delhi, India
| | - Deena Elsori
- Faculty of Resillience, Deans Office Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Andleeb Rehman
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Tanzeelah
- Department of Biochemistry, University of Kashmir, Srinagar, India
| | - Haleema Ahmad
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, India
| | - Humaira Maryam
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, India
| | - Amaan Rais
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, India
| | - Mohd Salik Usmani
- The Department of Surgery, Faculty of Medicine, JNMCH, AMU, Uttar Pradesh, India
| | - Asaad Ma Babker
- Department of Medical Laboratory Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Wael Hafez
- Department of Internal Medicine, NMC Royal Hospital, Abu Dhabi, United Arab Emirates
- The Medical Research Division, Department of Internal Medicine, The National Research Center, Ad Doqi, Egypt
| |
Collapse
|
16
|
Boretti A. Natural Products as Cancer Chemo Preventive Agents: Where We Stand. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221144579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This work briefly reviews cancer chemoprevention. This is a very challenging field, as products with a high level of toxicity such as chemotherapeutic agents may be proposed and accepted only under life-threatening conditions. Cancer chemoprevention is otherwise limited to completely safe substances, preferably having neither toxic nor side effects, administered in relatively low amounts. Phases of clinical trials, therapeutic end-points, and biomarkers of chemoprevention are difficult to be defined. The clinical trials needed to prove the efficacy of chemopreventive agents must be very long and extremely widespread to achieve significance, with many variables difficult to control, and therefore subjected to many confounding factors. This makes them almost impossible. It is, therefore, no surprise, if the progress of chemoprevention has been so far very limited. There are only a few examples of direct use of chemopreventive agents, under investigation, but with anything but established protocols, in addition to indirect uses such as general supplementation with antioxidant, anti-inflammatory, and immune-supportive agents. Cancer chemoprevention remains a potentially very rewarding approach, certainly worth further study, but extremely difficult to pursue, in need of different methodological approaches to producing valuable chemopreventive compounds of clear dosages and benefits.
Collapse
|
17
|
Trang NTK, Yoo H. Antitumor effects of valdecoxib on hypopharyngeal squamous carcinoma cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:439-446. [PMID: 36302619 PMCID: PMC9614398 DOI: 10.4196/kjpp.2022.26.6.439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022]
Abstract
The antitumoral effects of valdecoxib (Val), an United States Food and Drug Administration-approved anti-inflammatory drug that was withdrawn due to the side effects of increased risk of cardiovascular adverse events, were investigated in hypopharyngeal squamous cell carcinoma cells by performing a cell viability assay, transwell assay, immunofluorescence imaging, and Western blotting. Val markedly inhibited cell viability with an IC50 of 67.3 μM after 48 h of treatment, and also downregulated cell cycle proteins such as Cdks and their regulatory cyclin units. Cell migration and invasion were severely suppressed by inhibiting integrin α4/FAK expression. In addition, Val activated the cell cycle checkpoint CHK2 in response to excessive DNA damage, which led to the activation of caspase-3/9 and induced caspase-dependent apoptosis. Furthermore, the signaling cascades of the PI3K/AKT/mTOR and mitogen-activated protein kinase pathways were significantly inhibited by Val treatment. Taken together, our results indicate that Val can be used for the treatment of hypopharyngeal squamous cell carcinoma.
Collapse
Affiliation(s)
- Nguyen Thi Kieu Trang
- Department of Pharmacology and Dental Therapeutics, College of Dentistry, Chosun University, Gwangju 61452, Korea,Department of Pharmacy, Thai Binh University of Medicine and Pharmacy, Thai Binh City 06000, Vietnam
| | - Hoon Yoo
- Department of Pharmacology and Dental Therapeutics, College of Dentistry, Chosun University, Gwangju 61452, Korea,Correspondence Hoon Yoo, E-mail:
| |
Collapse
|
18
|
EL-Ashmawy NE, EL-Zamarany EA, Khedr EG, Selim HM, Khedr NF. Blocking of The Prostaglandin E2 Receptor as a Therapeutic Strategy for Treatment of Breast Cancer: Promising Findings in a Mouse Model. Asian Pac J Cancer Prev 2022; 23:3763-3770. [PMID: 36444589 PMCID: PMC9930950 DOI: 10.31557/apjcp.2022.23.11.3763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE The study aimed to investigate the anticancer effect of E-prostanoid receptor 1 (EP1) antagonist, SC19220, alone or in combination with the COX-2 inhibitor Celecoxob(CXB)® in mice bearing solid Ehrlich carcinoma (SEC). METHODS The tumors were induced in 40 female mice, which were divided randomly into four equal groups (n= 10 in each group): Tumor control, CXB, EP1 antagonist, and co-treatment. CXB (10mg/kg) and EP1 antagonist (2mg/kg) were given intraperitoneally every three days, six times in total, then tissue was extracted and prepared for histopathology and measurement of weight, PGE2, and gene expression of EP1 and β 1 integrin. RESULTS Both inhibitors, alone or in combination, showed a significant (p<0.001) antitumorigenic effect by decreasing, significantly (p<0.001), each of the tumor weights, tumor volumes, PGE2 levels, EP1 and β1-integrin gene expression along with increasing, significantly (p<0.001), the P53 tumor suppressor protein. The survival rate was improved from 80% in the control group to reach 100% in the treated groups. The co-treatment by CXB and EP1 antagonist showed a marked decrease in tumor weights and volumes as compared with the single treatment. In parallel, the histopathological findings showed enhanced apoptosis and diminished necrosis in the co-treated group. CONCLUSION EP1 antagonist proved an antitumorigenic effect alone or combined with CXB and could play a new therapeutic strategy against breast cancer.
Collapse
Affiliation(s)
- Nahla E EL-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Egypt.
| | - Enas A EL-Zamarany
- Department of Clinical Pathology, Faculty of Medicine, Tanta University, Egypt.
| | - Eman G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Egypt.
| | - Hend M Selim
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Egypt. ,For Correspondence:
| | - Naglaa F Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Egypt.
| |
Collapse
|
19
|
Harris RE, Schwartzbaum JA. Celecoxib may be a viable treatment option for breast cancer patients not treated with chemotherapy. Front Oncol 2022; 12:958308. [PMID: 36267976 PMCID: PMC9578006 DOI: 10.3389/fonc.2022.958308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Randall E. Harris
- College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- College of Public Health, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- *Correspondence: Randall E. Harris,
| | - Judith A. Schwartzbaum
- College of Public Health, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
20
|
Gadi V, Shetty SR. Potential of Anti-inflammatory Molecules in the Chemoprevention of Breast Cancer. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2022; 16:60-76. [PMID: 36043708 DOI: 10.2174/2772270816666220829090716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 01/20/2023]
Abstract
Breast cancer is a global issue, affecting greater than 1 million women per annum. Over the past two decades, there have been numerous clinical trials involving the use of various pharmacological substances as chemopreventive agents for breast cancer. Various pre-clinical as well as clinical studies have established numerous anti-inflammatory molecules, including nonsteroidal anti-inflammatory drugs (NSAIDs) and dietary phytochemicals as promising agents for chemoprevention of several cancers, including breast cancer. The overexpression of COX-2 has been detected in approximately 40% of human breast cancer cases and pre-invasive ductal carcinoma in-situ lesions, associated with aggressive elements of breast cancer such as large size of the tumour, ER/PR negative and HER-2 overexpression, among others. Anti-inflammatory molecules inhibit COX, thereby inhibiting the formation of prostaglandins and inhibiting nuclear factor-κBmediated signals (NF-kB). Another probable explanation entails inflammation-induced degranulation, with the production of angiogenesis-regulating factors, such as vascular endothelial growth factor, which can be possibly regulated by anti-inflammatory molecules. Apart from NSAIDS, many dietary phytochemicals have the ability to decrease, delay, or stop the progression and/or incidence of breast cancer by their antioxidant action, regulating inflammatory and proliferative cell signalling pathways as well as inducing apoptosis. The rapid progress in chemoprevention research has also established innovative strategies that can be implemented to prevent breast cancer. This article gives a comprehensive overview of the recent advancements in using antiinflammatory molecules in the chemoprevention of breast cancer along with their mechanism of action, supported by latest preclinical and clinical data. The merits of anti-inflammatory chemopreventive agents in the prevention of cardiotoxicity have been described. We have also highlighted the ongoing research and advancements in improving the efficacy of using antiinflammatory molecules as chemopreventive agents.
Collapse
Affiliation(s)
- Vaishnavi Gadi
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMS Narsee Monjee Institute of Management Studies, Mumbai-56, Maharashtra, India
| | - Saritha Rakesh Shetty
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMS Narsee Monjee Institute of Management Studies, Mumbai-56, Maharashtra, India
| |
Collapse
|
21
|
Abdelhaleem EF, Kassab AE, El-Nassan HB, Khalil OM. Recent advances in the development of celecoxib analogs as anticancer agents: A review. Arch Pharm (Weinheim) 2022; 355:e2200326. [PMID: 35996360 DOI: 10.1002/ardp.202200326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/09/2022]
Abstract
Celecoxib is a nonsteroidal anti-inflammatory drug (NSAID) designed to be a selective cyclooxygenase-2 (COX-2) inhibitor. It was approved by the U.S. Food and Drug Administration for the treatment of inflammatory diseases such as osteoarthritis and rheumatoid arthritis. Additionally, celecoxib demonstrated potent antitumor and chemopreventive effects in vitro, in vivo, and in patients. The mechanism of celecoxib's chemopreventive effect is still not fully identified, but it is assumed to be multifactorial. Celecoxib's anticancer activity has been described both as independent of and dependent on its COX-2 inhibitory activity. The current review summarizes the recent advances published between 2000 and 2022 on the structure-based optimization of celecoxib to develop compounds with promising anticancer activity. The structure-activity relationships of celecoxib analogs are discussed, which may be beneficial in the design and development of novel analogs as potent antiproliferative agents in the future.
Collapse
Affiliation(s)
- Eman F Abdelhaleem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hala B El-Nassan
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Omneya M Khalil
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
22
|
Abdelhaleem EF, Kassab AE, El-Nassan HB, Khalil OM. Design, synthesis, and biological evaluation of new celecoxib analogs as apoptosis inducers and cyclooxygenase-2 inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200190. [PMID: 35976138 DOI: 10.1002/ardp.202200190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/06/2022]
Abstract
Series of new celecoxib analogs were synthesized to assess their anticancer activity against the MCF-7 cell line. Four compounds, 3a, 3c, 5b, and 5c, showed 1.4-9.2-fold more potent anticancer activity than celecoxib. The antiproliferative activity of the most potent compounds, 3c, 5b, and 5c, seems to be associated well with their ability to induce apoptosis in MCF-7 cells (18-24-fold). This evidence was supported by an increase in the expression of the tumor suppressor gene p53 (4-6-fold), the elevation in the Bax/BCL-2 ratio, and a significant increase in the level of active caspase-7 (4-7-fold). Moreover, compounds 3c and 5c showed significant cyclooxygenase-2 (COX-2) inhibitory activity. They were also docked into the crystal structure of the COX-2 enzyme (PDB ID: 3LN1) to understand their mode of binding.
Collapse
Affiliation(s)
- Eman F Abdelhaleem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hala B El-Nassan
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Omneya M Khalil
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
23
|
Siddiqui S, Deshmukh AJ, Mudaliar P, Nalawade AJ, Iyer D, Aich J. Drug repurposing: re-inventing therapies for cancer without re-entering the development pipeline—a review. J Egypt Natl Canc Inst 2022; 34:33. [PMID: 35934727 PMCID: PMC9358112 DOI: 10.1186/s43046-022-00137-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/10/2022] [Indexed: 11/25/2022] Open
Abstract
While majority of the current treatment approaches for cancer remain expensive and are associated with several side effects, development of new treatment modalities takes a significant period of research, time, and expenditure. An alternative novel approach is drug repurposing that focuses on finding new applications for the previously clinically approved drugs. The process of drug repurposing has also been facilitated by current advances in the field of proteomics, genomics, and information computational biology. This approach not only provides cheaper, effective, and potentially safer drugs with less side effects but also increases the processing pace of drug development. In this review, we wish to highlight some recent developments in the area of drug repurposing in cancer with a specific focus on the repurposing potential of anti-psychotic, anti-inflammatory and anti-viral drugs, anti-diabetic, antibacterial, and anti-fungal drugs.
Collapse
|
24
|
Cellular Carcinogenesis: Role of Polarized Macrophages in Cancer Initiation. Cancers (Basel) 2022; 14:cancers14112811. [PMID: 35681791 PMCID: PMC9179569 DOI: 10.3390/cancers14112811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Inflammation is a hallmark of many cancers. Macrophages are key participants in innate immunity and important drivers of inflammation. When chronically polarized beyond normal homeostatic responses to infection, injury, or aging, macrophages can express several pro-carcinogenic phenotypes. In this review, evidence supporting polarized macrophages as endogenous sources of carcinogenesis is discussed. In addition, the depletion or modulation of macrophages by small molecule inhibitors and probiotics are reviewed as emerging strategies in cancer prevention. Abstract Inflammation is an essential hallmark of cancer. Macrophages are key innate immune effector cells in chronic inflammation, parainflammation, and inflammaging. Parainflammation is a form of subclinical inflammation associated with a persistent DNA damage response. Inflammaging represents low-grade inflammation due to the dysregulation of innate and adaptive immune responses that occur with aging. Whether induced by infection, injury, or aging, immune dysregulation and chronic macrophage polarization contributes to cancer initiation through the production of proinflammatory chemokines/cytokines and genotoxins and by modulating immune surveillance. This review presents pre-clinical and clinical evidence for polarized macrophages as endogenous cellular carcinogens in the context of chronic inflammation, parainflammation, and inflammaging. Emerging strategies for cancer prevention, including small molecule inhibitors and probiotic approaches, that target macrophage function and phenotype are also discussed.
Collapse
|
25
|
Wang Y, Kong L, Sun B, Cui J, Shen W. Celecoxib induces adipogenic differentiation of hemangioma‑derived mesenchymal stem cells through the PPAR‑γ pathway in vitro and in vivo. Exp Ther Med 2022; 23:375. [PMID: 35495586 PMCID: PMC9047034 DOI: 10.3892/etm.2022.11303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/17/2022] [Indexed: 11/25/2022] Open
Abstract
Infantile hemangioma (IH) is a benign tumor that produces a permanent scar or a mass of fibro-fatty tissue after involution in 40-80% of cases. Celecoxib is an inhibitor of cyclooxygenase-2 (COX-2), and can inhibit angiogenesis and fibrosis. The present study aimed to clarify whether celecoxib is able to induce tumor regression with minimal side effects. For that purpose, the regulation of celecoxib in the involution of IH was investigated in an IH model. Hemangioma-derived mesenchymal stem cells (Hem-MSCs) were isolated from proliferating specimens, and an IH model was established by injecting these cells into nude mice. Celecoxib was administered in vitro and in vivo. Oil Red O staining and reverse transcription-quantitative-PCR were used to detect the adipogenic differentiation of Hem-MSCs. Histologic analysis and immunohistochemical staining of the tumor xenografts were performed to investigate the pathological evolution of the tumor. The results showed that celecoxib inhibited the proliferation and induced the adipogenic differentiation of Hem-MSCs in vitro. In vivo, adipocytes were only present in the celecoxib group at week 4, while a larger number of fibroblasts and collagenous fibers could be observed in the basic fibroblast growth factor group. Therefore, celecoxib may be a potential agent used for IH treatment by inducing adipogenesis and inhibiting fibroblast formation.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Liangliang Kong
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Buhao Sun
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Jie Cui
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Weimin Shen
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
26
|
Abdelhaleem EF, Kassab AE, El-Nassan HB, Khalil OM. Design and Synthesis of Novel Celecoxib Analogues with Potential Cytotoxic and Pro-apoptotic Activity Against Breast Cancer Cell Line MCF-7. Med Chem 2022; 18:903-914. [PMID: 35264093 DOI: 10.2174/1573406418666220309123648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/27/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Breast cancer is currently the leading cause of worldwide cancer incidence exceeding lung cancer. In addition, breast cancer accounts for 1 in 4 cancer cases and 1 in 6 cancer deaths among women. Cytotoxic chemotherapy is still the main therapeutic approach for patients with metastatic breast cancer. OBJECTIVE To synthesize a series of novel celecoxib analogues to evaluate their anticancer activity against MCF-7 cell line. METHOD Our design of target compounds was based on preserving the pyrazole moiety of celecoxib attached to two phenyl rings, one of them having polar hydrogen bonding group (sulfonamide or methoxy group). The methyl group of the second phenyl ring was replaced with chlorine or bromine atom. Finally, the trifluoromethyl group was replaced with arylidene hydrazine-1-carbonyl moiety, which is substituted either with fluoro or methoxy group, offering various electronic and lipophilic environments. These modifications were carried out to investigate their effects on the anti-proliferative activity of the newly synthesized celecoxib analogues and to provide a valuable structure activity relationship. RESULTS Four compounds namely (4e-h) exhibited significant antitumor activity. Compounds 4e, 4f and 4h showed 1.2-2 folds more potent anticancer activity than celecoxib. Celecoxib analogue 4f showed the most potent anti-proliferative activity. Its anti-proliferative activity seems to associate well with its ability to inhibit BCL-2. Moreover, activation of damage response pathway of the DNA leads to cell cycle arrest at G2/M phase, accumulation of cells in pre-G1 phase, indicating that cell death proceeds through an apoptotic mechanism. Compound 4f exhibited potent pro-apoptotic effect via induction of the intrinsic mitochondrial pathway of apoptosis. This mechanistic pathway was proved by a significant increase in the expression of the tumor suppressor gene p53, elevation in Bax/BCL-2 ratio and a significant increase in the level of active caspase-7. Furthermore, compound 4f showed moderate COX-2 inhibitory activity. CONCLUSION Celecoxib analogue 4f is a promising multi-targeted lead for the design and synthesis of potent anticancer agents.
Collapse
Affiliation(s)
- Eman F Abdelhaleem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Hala B El-Nassan
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Omneya M Khalil
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| |
Collapse
|
27
|
Malik JA, Ahmed S, Jan B, Bender O, Al Hagbani T, Alqarni A, Anwar S. Drugs repurposed: An advanced step towards the treatment of breast cancer and associated challenges. Biomed Pharmacother 2021; 145:112375. [PMID: 34863612 DOI: 10.1016/j.biopha.2021.112375] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 02/09/2023] Open
Abstract
Breast cancer (BC) is mostly observed in women and is responsible for huge mortality in women subjects globally. Due to the continued development of drug resistance and other contributing factors, the scientific community needs to look for new alternatives, and drug repurposing is one of the best opportunities. Here we light upon the drug repurposing with a major focus on breast cancer. BC is a division of cancer known as the leading cause of death of 2.3 million women globally, with 685,000 fatalities. This number is steadily rising, necessitating the development of a treatment that can extend survival time. All available treatments for BC are very costly as well as show side effects. This unfulfilled requirement of the anti-cancer drugs ignited an enthusiasm for drug repositioning, which means finding out the anti-cancer use of already marketed drugs for other complications. With the advancement in proteomics, genomics, and computational approaches, the drug repurposing process hastens. So many drugs are repurposed for the BC, including alkylating agents, antimetabolite, anthracyclines, an aromatase inhibitor, mTOR, and many more. The drug resistance in breast cancer is rising, so reviewing how the challenges in breast cancer can be combated with drug repurposing. This paper provides the updated information on all the repurposed drugs candidates for breast cancer with the molecular mechanism responsible for their anti-tumor activity. Additionally, all the challenges that occur during the repurposing of the drugs are discussed.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India; Department of Biomedical engineering, Indian Institute of Technology (IIT), Ropar, Punjab, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Bisma Jan
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
| | - Onur Bender
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Aali Alqarni
- Pharmaceutical Chemistry Department, Pharmacology unit, College of Clinical Pharmacy, Al Baha University, Saudi Arabia
| | - Sirajudheen Anwar
- Pharmacology and Toxicology Department, College of Pharmacy, University of Hail, Hail, Saudi Arabia.
| |
Collapse
|
28
|
Yamahana H, Komiya Y, Takino T, Endo Y, Yamada H, Asada C, Uto Y. Structure-Activity Relationships of UTX-121 Derivatives for the Development of Novel Matrix Metalloproteinase-2/9 Inhibitors. Chem Pharm Bull (Tokyo) 2021; 69:1017-1028. [PMID: 34602570 DOI: 10.1248/cpb.c21-00549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Celecoxib, a nonsteroidal anti-inflammatory drug, has been reported to have antitumor and antimetastatic activities, and it has potential for application in cancer treatments. The expression of matrix metalloproteinase (MMP)-2/9 is strongly correlated with cancer malignancy, and inhibition of these MMPs is believed to be effective in improving the antitumor and antimetastatic effects of drugs. We have previously revealed that UTX-121, which converted the sulfonamide of celecoxib to methyl ester, has more potent MMP-2/9 inhibitory activity than celecoxib. Based on these findings, we identified compounds with improved MMP inhibitory activity through a structure-activity relationship (SAR) study, using UTX-121 as a lead compound. Among them, compounds 9c and 10c, in which the methyl group of the p-tolyl group was substituted for Cl or F, showed significantly higher antitumor activity than UTX-121, and suppressed the expression of MMP-2/9 and activation of pro MMP-2. Our findings suggest that compounds 9c and 10c may be potent lead compounds for the development of more effective antitumor drugs targeting MMP.
Collapse
Affiliation(s)
- Hirari Yamahana
- Graduate School of Technology, Industrial and Social Science, Tokushima University
| | - Yuki Komiya
- Graduate School of Technology, Industrial and Social Science, Tokushima University
| | - Takahisa Takino
- Division of Education for Global Standard, Institute of Liberal Arts and Science, Kanazawa University
| | - Yoshio Endo
- Central Research Resource Branch, Cancer Research Institute, Kanazawa University
| | - Hisatsugu Yamada
- Graduate School of Technology, Industrial and Social Science, Tokushima University
| | - Chikako Asada
- Graduate School of Technology, Industrial and Social Science, Tokushima University
| | - Yoshihiro Uto
- Graduate School of Technology, Industrial and Social Science, Tokushima University
| |
Collapse
|
29
|
El-Ashmawy NE, El-Zamarany EA, Khedr NF, Selim HM, Khedr EG. Inhibition of PKC/MEK pathway suppresses β1-integrin and mitigates breast cancer cells proliferation. Toxicol Rep 2021; 8:1530-1537. [PMID: 34408972 PMCID: PMC8361284 DOI: 10.1016/j.toxrep.2021.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
PGE2 enhanced β1- integrin expression via EP1 receptor, PKC, MEK and NfҡB. FOXC2, E2F1 and survivin play a role in PGE2 mediated effect in MCF7 cells. PGE2 enhances breast cancer cell cycle through E2F1, FOXC2, survivin and β integrin. Biochemical mediators of PKC/MEK pathway could be considered as targets for breast cancer treatment.
Prostaglandin E2 (PGE2) and β1-integrin have been correlated with breast cancer, where both could enhance progression and metastasis. Protein kinase C (PKC) and MEK have played a vital role in breast cancer development. Our study was conducted to elucidate the effect of inhibition of E-prostanoid receptor 1 (EP1)/ PKC/ MEK/ β1-integrin pathway in mitigating breast cancer progression and to evaluate the role of the intermediate signals FOXC2, E2F1, NF-ҡB and survivin. MCF7 cells were treated with 17 -PT-PGE2, an EP1 agonist, for 24 h, and β1-integrin was measured. To MCF7 cells treated with 17-PT-PGE2, inhibitors of either EP1, MEK, PKC or NF-ҡB were added followed by measurement of β1-integrin gene expression and cell proliferation in each case. Addition of 17- PT-PGE2 to MCF7 cells showed enhancement of both cell proliferation, and cell cycle transition from G1 to S phase. In addition, activation of EP1 receptor increased β1-integrin expression. On the contrary, inhibition of EP1 receptor showed a decrease in the cell proliferation, β1-integrin expression and cells transition to S phase, but increased cell count in apoptotic phase. Selective inhibition of each of MEK, PKC, and NF-ҡB suppressed 17 -PT-PGE2-mediated β1-integrin expression as well as cell proliferation. Furthermore, FOXC2, phosphorylated NF-ҡB, E2F1, and survivin levels were upregulated with 17- PT-PGE2 and suppressed by MEK, PKC and NF-ҡB inhibitors. Targeting the biochemical mediators of PKC/MEK pathway may be of value in developing new chemical entities for cancer treatment.
Collapse
Affiliation(s)
| | - Enas A El-Zamarany
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Egypt
| | - Naglaa F Khedr
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Egypt
| | - Hend M Selim
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Egypt
| | - Eman G Khedr
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Egypt
| |
Collapse
|
30
|
Kisan Rasal N, Bhaskar Sonawane R, Vijay Jagtap S. Synthesis, Characterization, and Biological Study of 3-Trifluoromethylpyrazole Tethered Chalcone-Pyrrole and Pyrazoline-Pyrrole Derivatives. Chem Biodivers 2021; 18:e2100504. [PMID: 34409724 DOI: 10.1002/cbdv.202100504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/18/2021] [Indexed: 11/07/2022]
Abstract
The present study illustrates the design and synthesis of new series of 3-trifluoromethylpyrazole tethered chalcone-pyrrole and pyrazoline-pyrrole derivatives. All compounds were further screened for in vitro cytostatic activities on full NCI 60 cancer cell lines at National Cancer Institute, USA. Compounds (2E)-3-(1H-pyrrol-2-yl)-1-{4-[3-(trifluoromethyl)-1H-pyrazol-1-yl]phenyl}prop-2-en-1-one (5a) and (2E)-1-{3-methyl-4-[3-(trifluoromethyl)-1H-pyrazol-1-yl]phenyl}-3-(1H-pyrrol-2-yl)prop-2-en-1-one (5c) displayed significant antiproliferative activity (Growth Percentage: -77.10 and -92.13, respectively at 10 μM concentration) against the UO-31 cell lines from renal cancer and were further selected for assay at 10-fold dilutions of five different concentrations (10-4 to 10-8 M). Both compounds 5a and 5c exhibited promising antiproliferative activity (GI50 : 1.36 to 0.27 μM) against leukemia cancer cell lines HL-60 and RPMI-8226, colon cancer cell lines KM-12; breast cancer cell lines BT-549. Moreover, both compounds 5a and 5c were found to be non-cytotoxic (LC50 >100) against HL-60, RPMI-8226, and KM-12 cell lines. Remarkably, GI50 values of compounds 5a and 5c were identified as more promising than sunitinib against most cancer cell lines. In silico study of compounds 5a and 5c exemplified the desired ADME properties for drug-likeness as well as tighter interactions with VEGFR-2. Hence, compounds 5a and 5c would be good cytotoxic agents after further clinical study.
Collapse
Affiliation(s)
- Nishant Kisan Rasal
- Department of Chemistry, Baburaoji Gholap College, Sangvi, Pune, 411 027, India, (Affiliated to Savitribai Phule Pune University
| | - Rahul Bhaskar Sonawane
- Department of Chemistry, Baburaoji Gholap College, Sangvi, Pune, 411 027, India, (Affiliated to Savitribai Phule Pune University
| | - Sangeeta Vijay Jagtap
- Department of Chemistry, Baburaoji Gholap College, Sangvi, Pune, 411 027, India, (Affiliated to Savitribai Phule Pune University
| |
Collapse
|
31
|
Alonso-Diez Á, Cáceres S, Peña L, Crespo B, Illera JC. Anti-Angiogenic Treatments Interact with Steroid Secretion in Inflammatory Breast Cancer Triple Negative Cell Lines. Cancers (Basel) 2021; 13:3668. [PMID: 34359570 PMCID: PMC8345132 DOI: 10.3390/cancers13153668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/21/2022] Open
Abstract
Human inflammatory breast cancer (IBC) is a highly angiogenic disease for which antiangiogenic therapy has demonstrated only a modest response, and the reason for this remains unknown. Thus, the purpose of this study was to determine the influence of different antiangiogenic therapies on in vitro and in vivo steroid hormone and angiogenic growth factor production using canine and human inflammatory breast carcinoma cell lines as well as the possible involvement of sex steroid hormones in angiogenesis. IPC-366 and SUM149 cell lines and xenotransplanted mice were treated with different concentrations of VEGF, SU5416, bevacizumab and celecoxib. Steroid hormone (progesterone, dehydroepiandrostenedione, androstenedione, testosterone, dihydrotestosterone, estrone sulphate and 17β-oestradiol), angiogenic growth factors (VEGF-A, VEGF-C and VEGF-D) and IL-8 determinations in culture media, tumour homogenate and serum samples were assayed by EIA. In vitro, progesterone- and 17β-oestradiol-induced VEGF production promoting cell proliferation and androgens are involved in the formation of vascular-like structures. In vivo, intratumoural testosterone concentrations were augmented and possibly associated with decreased metastatic rates, whereas elevated E1SO4 concentrations could promote tumour progression after antiangiogenic therapies. In conclusion, sex steroid hormones could regulate the production of angiogenic factors. The intratumoural measurement of sex steroids and growth factors may be useful to develop preventive and individualized therapeutic strategies.
Collapse
Affiliation(s)
- Ángela Alonso-Diez
- Department Animal Medicine, Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Sara Cáceres
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Laura Peña
- Department Animal Medicine, Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Belén Crespo
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Juan Carlos Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| |
Collapse
|
32
|
Khafaga AF, Shamma RN, Abdeen A, Barakat AM, Noreldin AE, Elzoghby AO, Sallam MA. Celecoxib repurposing in cancer therapy: molecular mechanisms and nanomedicine-based delivery technologies. Nanomedicine (Lond) 2021; 16:1691-1712. [PMID: 34264123 DOI: 10.2217/nnm-2021-0086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
While cancer remains a significant global health problem, advances in cancer biology, deep understanding of its underlaying mechanism and identification of specific molecular targets allowed the development of new therapeutic options. Drug repurposing poses several advantages as reduced cost and better safety compared with new compounds development. COX-2 inhibitors are one of the most promising drug classes for repurposing in cancer therapy. In this review, we provide an overview of the detailed mechanism and rationale of COX-2 inhibitors as anticancer agents and we highlight the most promising research efforts on nanotechnological approaches to enhance COX-2 inhibitors delivery with special focus on celecoxib as the most widely studied agent for chemoprevention or combined with chemotherapeutic and herbal drugs for combating various cancers.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Rehab N Shamma
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine & Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| | | | - Ahmed E Noreldin
- Department of Histology & Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22516, Egypt
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.,Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Marwa A Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
33
|
In Silico Approach Using Free Software to Optimize the Antiproliferative Activity and Predict the Potential Mechanism of Action of Pyrrolizine-Based Schiff Bases. Molecules 2021; 26:molecules26134002. [PMID: 34209011 PMCID: PMC8271847 DOI: 10.3390/molecules26134002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 01/11/2023] Open
Abstract
In the current study, a simple in silico approach using free software was used with the experimental studies to optimize the antiproliferative activity and predict the potential mechanism of action of pyrrolizine-based Schiff bases. A compound library of 288 Schiff bases was designed based on compound 10, and a pharmacophore search was performed. Structural analysis of the top scoring hits and a docking study were used to select the best derivatives for the synthesis. Chemical synthesis and structural elucidation of compounds 16a–h were discussed. The antiproliferative activity of 16a–h was evaluated against three cancer (MCF7, A2780 and HT29, IC50 = 0.01–40.50 μM) and one normal MRC5 (IC50 = 1.27–24.06 μM) cell lines using the MTT assay. The results revealed the highest antiproliferative activity against MCF7 cells for 16g (IC50 = 0.01 μM) with an exceptionally high selectivity index of (SI = 578). Cell cycle analysis of MCF7 cells treated with compound 16g revealed a cell cycle arrest at the G2/M phase. In addition, compound 16g induced a dose-dependent increase in apoptotic events in MCF7 cells compared to the control. In silico target prediction of compound 16g showed six potential targets that could mediate these activities. Molecular docking analysis of compound 16g revealed high binding affinities toward COX-2, MAP P38α, EGFR, and CDK2. The results of the MD simulation revealed low RMSD values and high negative binding free energies for the two complexes formed between compound 16g with EGFR, and CDK2, while COX-2 was in the third order. These results highlighted a great potentiality for 16g to inhibit both CDK2 and EGFR. Taken together, the results mentioned above highlighted compound 16g as a potential anticancer agent.
Collapse
|
34
|
Larionova I, Kazakova E, Gerashchenko T, Kzhyshkowska J. New Angiogenic Regulators Produced by TAMs: Perspective for Targeting Tumor Angiogenesis. Cancers (Basel) 2021; 13:cancers13133253. [PMID: 34209679 PMCID: PMC8268686 DOI: 10.3390/cancers13133253] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Since the targeting of a single pro-angiogenic factor fails to improve oncological disease outcome, significant efforts have been made to identify new pro-angiogenic factors that could compensate for the deficiency of current therapy or act independently as single drugs. Our review aims to present the state-of-the art for well-known and recently described factors produced by macrophages that induce and regulate angiogenesis. A number of positive and negative regulators of angiogenesis in the tumor microenvironment are produced by tumor-associated macrophages (TAMs). Accumulating evidence has indicated that, apart from the well-known angiogenic factors, there are plenty of novel angiogenesis-regulating proteins that belong to different classes. We summarize the data regarding the direct or indirect mechanisms of the interaction of these factors with endothelial cells during angiogenesis. We highlight the recent findings that explain the limitations in the efficiency of current anti-angiogenic therapy approaches. Abstract Angiogenesis is crucial to the supply of a growing tumor with nutrition and oxygen. Inhibition of angiogenesis is one of the main treatment strategies for colorectal, lung, breast, renal, and other solid cancers. However, currently applied drugs that target VEGF or receptor tyrosine kinases have limited efficiency, which raises a question concerning the mechanism of patient resistance to the already developed drugs. Tumor-associated macrophages (TAMs) were identified in the animal tumor models as a key inducer of the angiogenic switch. TAMs represent a potent source not only for VEGF, but also for a number of other pro-angiogenic factors. Our review provides information about the activity of secreted regulators of angiogenesis produced by TAMs. They include members of SEMA and S100A families, chitinase-like proteins, osteopontin, and SPARC. The COX-2, Tie2, and other factors that control the pro-angiogenic activity of TAMs are also discussed. We highlight how these recent findings explain the limitations in the efficiency of current anti-angiogenic therapy. Additionally, we describe genetic and posttranscriptional mechanisms that control the expression of factors regulating angiogenesis. Finally, we present prospects for the complex targeting of the pro-angiogenic activity of TAMs.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
- Correspondence: (I.L.); (J.K.)
| | - Elena Kazakova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
| | - Tatiana Gerashchenko
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, 68167 Mannheim, Germany
- Correspondence: (I.L.); (J.K.)
| |
Collapse
|
35
|
Abou-El-Naga IF, El-Temsahy MM, Mogahed NMFH, Sheta E, Makled S, Ibrahim EI. Effect of celecoxib against different developmental stages of experimental Schistosoma mansoni infection. Acta Trop 2021; 218:105891. [PMID: 33773944 DOI: 10.1016/j.actatropica.2021.105891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 01/18/2023]
Abstract
Due to the high prevalence of schistosomiasis and the wide use of praziquantel solely for mass drug administration to control the disease, there is a great concern about the potential emergence of reduced susceptibility strains. This, together with the concern that praziquantel is ineffective against juvenile worms highlight the importance of developing an alternative anti-schistosomal drug. Using nonsteroidal anti-inflammatory drugs against schistosome infection is considerable. The present study evaluated the effect of oral administration of five days celecoxib regimen (20 mg/kg/day) against different developmental stages of Schistosoma mansoni infection. This regimen induced significant reduction in worm burden, tissue egg count, individual female fecundity and the mean percentage of immature and mature eggs with increased mean percentage of dead eggs. More importantly, celecoxib was more potent than praziquantel in all these parasitological parameters (except in the worm burden when given against the adult stage where the difference was statistically non-significant). Scanning and transmission electron microscopy of the adult worms revealed severe tegumental damage, laceration of the muscular layers and oedema of the syncytial layer. There was disruption of the testicular, ovarian and vitelline glandular tissues with signs of apoptosis and abnormalities of the spermatozoa and the oocytes. Additionally, celecoxib induced reduction in the number and the size of the hepatic granulomata and also amelioration of the hepatic tissue pathology.
Collapse
|
36
|
Combinatorial targeting of microRNA-26b and microRNA-101 exerts a synergistic inhibition on cyclooxygenase-2 in brain metastatic triple-negative breast cancer cells. Breast Cancer Res Treat 2021; 187:695-713. [PMID: 34041621 DOI: 10.1007/s10549-021-06255-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/04/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE Extravasation of triple-negative (TN) metastatic breast cancer (BC) cells through the brain endothelium (BE) is a critical step in brain metastasis (BM). During extravasation, metastatic cells induce alteration in the inter-endothelial junctions and transmigrate through the endothelial barrier. Transmigration of metastatic cells is mediated by the upregulation of cyclooxygenase-2 (COX-2) that induces matrix metalloproteinase-1 (MMP-1) capable of degrading inter-endothelial junctional proteins. Despite their important role in BM, the molecular mechanisms upregulating COX-2 and MMP-1 in TNBC cells remain poorly understood. In this study, we unraveled a synergistic effect of a pair of micro-RNAs (miR-26b-5p and miR-101-3p) on COX-2 expression and the brain transmigration ability of BC cells. METHODS Using a gain-and-loss of function approach, we modulated levels of miR-26b-5p and miR-101-3p in two TNBC cell lines (the parental MDA-MB-231 and its brain metastatic variant MDA-MB-231-BrM2), and examined the resultant effect on COX-2/MMP-1 expression and the transmigration of cancer cells through the BE. RESULTS We observed that the dual inhibition of miR-26b-5p and miR-101-3p in BC cells results in higher increase of COX-2/MMP-1 expression and a higher trans-endothelial migration compared to either micro-RNA alone. The dual restoration of both micro-RNAs exerted a synergistic inhibition on COX-2/MMP-1 by targeting COX-2 and potentiated the suppression of trans-endothelial migration compared to single micro-RNA. CONCLUSION These findings provide new insights on a synergism between miR-26-5p and miR-101-3p in regulating COX-2 in metastatic TNBC cells and shed light on miR-26-5p and miR-101-3p as prognostic and therapeutic targets that can be exploited to predict or prevent BM.
Collapse
|
37
|
Zheng C, Zhu Y, Liu Q, Luo T, Xu W. Maprotiline Suppresses Cholesterol Biosynthesis and Hepatocellular Carcinoma Progression Through Direct Targeting of CRABP1. Front Pharmacol 2021; 12:689767. [PMID: 34093212 PMCID: PMC8172778 DOI: 10.3389/fphar.2021.689767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the leading causes of cancer-related death and has a poor prognosis worldwide, thus, more effective drugs are urgently needed. In this article, a small molecule drug library composed of 1,056 approved medicines from the FDA was used to screen for anticancer drugs. The tetracyclic compound maprotiline, a highly selective noradrenergic reuptake blocker, has strong antidepressant efficacy. However, the anticancer effect of maprotiline remains unclear. Here, we investigated the anticancer potential of maprotiline in the HCC cell lines Huh7 and HepG2. We found that maprotiline not only significantly restrained cell proliferation, colony formation and metastasis in vitro but also exerted antitumor effects in vivo. In addition to the antitumor effect alone, maprotiline could also enhance the sensitivity of HCC cells to sorafenib. The depth studies revealed that maprotiline substantially decreased the phosphorylation of sterol regulatory element-binding protein 2 (SREBP2) through the ERK signaling pathway, which resulted in decreased cholesterol biosynthesis and eventually impeded HCC cell growth. Furthermore, we identified cellular retinoic acid binding protein 1 (CRABP1) as a direct target of maprotiline. In conclusion, our study provided the first evidence showing that maprotiline could attenuate cholesterol biosynthesis to inhibit the proliferation and metastasis of HCC cells through the ERK-SREBP2 signaling pathway by directly binding to CRABP1, which supports the strategy of repurposing maprotiline in the treatment of HCC.
Collapse
Affiliation(s)
- Cancan Zheng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Yidong Zhu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qinwen Liu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Tingting Luo
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wenwen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
38
|
Kast RE. Adding high-dose celecoxib to increase effectiveness of standard glioblastoma chemoirradiation. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 79:481-488. [PMID: 33689795 DOI: 10.1016/j.pharma.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
Over one hundred clinical trials since 2005 have failed to significantly improve the prognosis of glioblastoma. Since 2005, the standard of care has been maximal resection followed by 60Gy irradiation over six weeks with daily temozolomide. With this, a median survival of 2 years can be expected. This short paper reviewed how the pharmacodynamic attributes of an EMA/FDA approved, cheap, generic drug to treat pain, celecoxib, intersect with pathophysiological elements driving glioblastoma growth, such that growth drive inhibition can be expected from celecoxib. The two main attributes of celecoxib are carbonic anhydrase inhibition and cyclooxygenase-2 inhibition. Both attributes individually have been in active study as adjuncts during current cancer treatment, including that of glioblastoma. That research is briefly reviewed here. This paper concludes from the collected data, that starting celecoxib, 600 to 800mg twice daily before surgery and continuing it through the chemoirradiation phase of treatment would be a low-risk intervention with sound rationale.
Collapse
Affiliation(s)
- R E Kast
- IIAIGC study centre, 05401 Burlington, VT, USA.
| |
Collapse
|
39
|
Finetti F, Travelli C, Ercoli J, Colombo G, Buoso E, Trabalzini L. Prostaglandin E2 and Cancer: Insight into Tumor Progression and Immunity. BIOLOGY 2020; 9:E434. [PMID: 33271839 PMCID: PMC7760298 DOI: 10.3390/biology9120434] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022]
Abstract
The involvement of inflammation in cancer progression has been the subject of research for many years. Inflammatory milieu and immune response are associated with cancer progression and recurrence. In different types of tumors, growth and metastatic phenotype characterized by the epithelial mesenchymal transition (EMT) process, stemness, and angiogenesis, are increasingly associated with intrinsic or extrinsic inflammation. Among the inflammatory mediators, prostaglandin E2 (PGE2) supports epithelial tumor aggressiveness by several mechanisms, including growth promotion, escape from apoptosis, transactivation of tyrosine kinase growth factor receptors, and induction of angiogenesis. Moreover, PGE2 is an important player in the tumor microenvironment, where it suppresses antitumor immunity and regulates tumor immune evasion, leading to increased tumoral progression. In this review, we describe the current knowledge on the pro-tumoral activity of PGE2 focusing on its role in cancer progression and in the regulation of the tumor microenvironment.
Collapse
Affiliation(s)
- Federica Finetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Cristina Travelli
- Department of Pharmaceutical Sciences, University of Pavia, 27100 Pavia, Italy; (C.T.); (E.B.)
| | - Jasmine Ercoli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Giorgia Colombo
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Erica Buoso
- Department of Pharmaceutical Sciences, University of Pavia, 27100 Pavia, Italy; (C.T.); (E.B.)
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
40
|
Nasr AM, Elhady SS, Swidan SA, Badawi NM. Celecoxib Loaded In-Situ Provesicular Powder and Its In-Vitro Cytotoxic Effect for Cancer Therapy: Fabrication, Characterization, Optimization and Pharmacokinetic Evaluation. Pharmaceutics 2020; 12:pharmaceutics12121157. [PMID: 33260755 PMCID: PMC7760804 DOI: 10.3390/pharmaceutics12121157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Several recent studies have shown that the role of cyclooxygenase 2 (COX-2) in carcinogenesis has become more evident. It affects angiogenesis, apoptosis, and invasion, and plays a key role in the production of carcinogens. It has also been reported that COX-2 inhibitors such as celecoxib (CLX) might play an effective role in preventing cancer formation and progression. Formulation of CLX into nanovesicles is a promising technique to improve its bioavailability and anticancer efficacy. AIM The aim of this study is to optimize and evaluate the anticancer efficacy of CLX-loaded in-situ provesicular powder composed of surfactants and fatty alcohol-based novel nanovesicles in-vitro and determine its pharmacokinetic parameters in-vivo. METHODS The novel provesicular powders were prepared by the slurry method and optimized by 32 full factorial design using the desirability function. RESULTS Small mean particle size was achieved by the formed vesicles with value of 351.7 ± 1.76 nm and high entrapment efficacy of CLX in the formed vesicles of 97.53 ± 0.84%. Solid state characterization of the optimized formulation showed that the powder was free flowing, showed no incompatibilities between drug and excipients and showed smooth texture. The cytotoxic study of the optimized formula on HCT-116, HepG-2, A-549, PC-3 and MCF-7 cell lines showed significant increase in activity of CLX compared to its free form. The pharmacokinetic study on albino rabbits after oral administration showed significant increase in the area under the curve (AUC)0-24 h and significantly higher oral relative bioavailability of the optimized formulation compared to Celebrex® 100 mg market product (p < 0.05). CONCLUSION All findings of this study suggest the potential improvement of efficacy and bioavailability of CLX when formulated in the form of in-situ provesicular powder composed of surfactants and fatty alcohol-based novel nanovesicles for its repositioned use as an anticancer agent.
Collapse
Affiliation(s)
- Ali M. Nasr
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish, North Sinai 45511, Egypt
- Correspondence: (A.M.N.); (S.A.S.); (N.M.B.)
| | - Sameh S. Elhady
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Shady A. Swidan
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo 11837, Egypt
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
- Correspondence: (A.M.N.); (S.A.S.); (N.M.B.)
| | - Noha M. Badawi
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt, El-Sherouk city, Cairo 11837, Egypt
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
- Correspondence: (A.M.N.); (S.A.S.); (N.M.B.)
| |
Collapse
|
41
|
Rasal NK, Sonawane RB, Jagtap SV. Synthesis, biological evaluation, and in silico study of pyrazoline-conjugated 2,4-dimethyl-1H-pyrrole-3-carboxylic acid derivatives. Arch Pharm (Weinheim) 2020; 354:e2000267. [PMID: 33078449 DOI: 10.1002/ardp.202000267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 11/12/2022]
Abstract
A potential molecular hybridization strategy was used to develop 24 novel pyrazoline-conjugated 2,4-dimethyl-1H-pyrrole-3-carboxylic acid and amide derivatives. The preliminary in vitro antimicrobial assay delivered four potential derivatives with growth inhibition in the range of 50.87-56.60% at the concentration of 32 µg/ml. In the search of an anticancer candidate, all derivatives were screened by NCI-60 at 10 µM concentration, revealing that 12 derivatives were potential agents against the various types of cancer cell lines, with growth inhibition in the range of 50.21-108.37%. The in vitro cytotoxicity assay against the cell line HEK293 (human embryonic kidney cells) and the hemolysis assay of the representative potent compounds propose their potential for a good therapeutic index. In silico studies of the most potent derivatives qualified their significant pharmacokinetic properties with good predicted oral bioavailability and their adherence to Lipinski's rule of five for druglikeness. A molecular docking study against VEGFR-2 with the best-scored conformations reinforced their anticancer potency. The docking study of the most potent compound against VEGFR-2 with the best-scored conformations displayed a binding affinity (-9.5 kcal/mol) comparable with the drug sunitinib (-9.9 kcal/mol) and exhibited that tighter interactions at the active adenosine triphosphate site might be responsible for anticancer potency.
Collapse
Affiliation(s)
- Nishant K Rasal
- Department of Chemistry, Baburaoji Gholap College, Affiliated to Savitribai Phule Pune University, Pune, India
| | - Rahul B Sonawane
- Department of Chemistry, Baburaoji Gholap College, Affiliated to Savitribai Phule Pune University, Pune, India
| | - Sangeeta V Jagtap
- Department of Chemistry, Baburaoji Gholap College, Affiliated to Savitribai Phule Pune University, Pune, India
| |
Collapse
|
42
|
Gholamian Dehkordi N, Mirzaei SA, Elahian F. Pharmacodynamic mechanisms of anti-inflammatory drugs on the chemosensitization of multidrug-resistant cancers and the pharmacogenetics effectiveness. Inflammopharmacology 2020; 29:49-74. [PMID: 33070257 DOI: 10.1007/s10787-020-00765-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/27/2020] [Indexed: 01/07/2023]
Abstract
Drug resistance as a remarkable issue in cancer treatment is associated with inflammation which occurs through complex chemical reactions in the tumor microenvironment. Recent studies have implicated that glucocorticoids and NSAIDs are mainly useful combinations for inflammatory response modulation in chemotherapeutic protocols for cancer treatment. Immunosuppressive actions of glucocorticoids and NSAIDs are mainly mediated by the transrepression or activation regulation of inflammatory genes with different DNA-bound transcription factors including AP-1, NFAT, NF-κB, STAT and also, varying functions of COX enzymes in cancer cells. Interestingly, many investigations have proved the benefits of these anti-inflammatory agents in the quenching of multidrug resistance pathways. Numerous analyses on the ABC transporter promoters showed conserved nucleotide sequences with several DNA response elements that participate in transcriptional regulation. Furthermore, genetic variations in nucleotide sequences of membrane transporters were strongly associated with changes in these transporters' expression or function and a substantial impact on systemic drug exposure and toxicity. It appeared that several polymorphisms in MDR transporter genes especially MDR1 have influenced the regulatory mechanisms and explained differences in glucocorticoid responses.
Collapse
Affiliation(s)
- Neda Gholamian Dehkordi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Abbas Mirzaei
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
43
|
Avagliano A, Fiume G, Ruocco MR, Martucci N, Vecchio E, Insabato L, Russo D, Accurso A, Masone S, Montagnani S, Arcucci A. Influence of Fibroblasts on Mammary Gland Development, Breast Cancer Microenvironment Remodeling, and Cancer Cell Dissemination. Cancers (Basel) 2020; 12:E1697. [PMID: 32604738 PMCID: PMC7352995 DOI: 10.3390/cancers12061697] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
The stromal microenvironment regulates mammary gland development and tumorigenesis. In normal mammary glands, the stromal microenvironment encompasses the ducts and contains fibroblasts, the main regulators of branching morphogenesis. Understanding the way fibroblast signaling pathways regulate mammary gland development may offer insights into the mechanisms of breast cancer (BC) biology. In fact, the unregulated mammary fibroblast signaling pathways, associated with alterations in extracellular matrix (ECM) remodeling and branching morphogenesis, drive breast cancer microenvironment (BCM) remodeling and cancer growth. The BCM comprises a very heterogeneous tissue containing non-cancer stromal cells, namely, breast cancer-associated fibroblasts (BCAFs), which represent most of the tumor mass. Moreover, the different components of the BCM highly interact with cancer cells, thereby generating a tightly intertwined network. In particular, BC cells activate recruited normal fibroblasts in BCAFs, which, in turn, promote BCM remodeling and metastasis. Thus, comparing the roles of normal fibroblasts and BCAFs in the physiological and metastatic processes, could provide a deeper understanding of the signaling pathways regulating BC dissemination. Here, we review the latest literature describing the structure of the mammary gland and the BCM and summarize the influence of epithelial-mesenchymal transition (EpMT) and autophagy in BC dissemination. Finally, we discuss the roles of fibroblasts and BCAFs in mammary gland development and BCM remodeling, respectively.
Collapse
Affiliation(s)
- Angelica Avagliano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (E.V.)
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| | - Nunzia Martucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (E.V.)
| | - Luigi Insabato
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Daniela Russo
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Antonello Accurso
- Department of General, Oncological, Bariatric and Endocrine-Metabolic Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Stefania Montagnani
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| |
Collapse
|
44
|
Betzler AC, Theodoraki MN, Schuler PJ, Döscher J, Laban S, Hoffmann TK, Brunner C. NF-κB and Its Role in Checkpoint Control. Int J Mol Sci 2020; 21:ijms21113949. [PMID: 32486375 PMCID: PMC7312739 DOI: 10.3390/ijms21113949] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor-κB (NF-κB) has been described as one of the most important molecules linking inflammation to cancer. More recently, it has become clear that NF-κB is also involved in the regulation of immune checkpoint expression. Therapeutic approaches targeting immune checkpoint molecules, enabling the immune system to initiate immune responses against tumor cells, constitute a key breakthrough in cancer treatment. This review discusses recent evidence for an association of NF-κB and immune checkpoint expression and examines the therapeutic potential of inhibitors targeting either NF-κB directly or molecules involved in NF-κB regulation in combination with immune checkpoint blockade.
Collapse
|
45
|
Kirtonia A, Gala K, Fernandes SG, Pandya G, Pandey AK, Sethi G, Khattar E, Garg M. Repurposing of drugs: An attractive pharmacological strategy for cancer therapeutics. Semin Cancer Biol 2020; 68:258-278. [PMID: 32380233 DOI: 10.1016/j.semcancer.2020.04.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/20/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Human malignancies are one of the major health-related issues though out the world and anticipated to rise in the future. The development of novel drugs/agents requires a huge amount of cost and time that represents a major challenge for drug discovery. In the last three decades, the number of FDA approved drugs has dropped down and this led to increasing interest in drug reposition or repurposing. The present review focuses on recent concepts and therapeutic opportunities for the utilization of antidiabetics, antibiotics, antifungal, anti-inflammatory, antipsychotic, PDE inhibitors and estrogen receptor antagonist, Antabuse, antiparasitic and cardiovascular agents/drugs as an alternative approach against human malignancies. The repurposing of approved non-cancerous drugs is an effective strategy to develop new therapeutic options for the treatment of cancer patients at an affordable cost in clinics. In the current scenario, most of the countries throughout the globe are unable to meet the medical needs of cancer patients because of the high cost of the available cancerous drugs. Some of these drugs displayed potential anti-cancer activity in preclinic and clinical studies by regulating several key molecular mechanisms and oncogenic pathways in human malignancies. The emerging pieces of evidence indicate that repurposing of drugs is crucial to the faster and cheaper discovery of anti-cancerous drugs.
Collapse
Affiliation(s)
- Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India; Equal contribution
| | - Kavita Gala
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India; Equal contribution
| | - Stina George Fernandes
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India; Equal contribution
| | - Gouri Pandya
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India; Equal contribution
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Haryana, 122413, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
46
|
Celecoxib, a selective COX-2 inhibitor, markedly reduced the severity of tamoxifen-induced adenomyosis in a murine model. Exp Ther Med 2020; 19:3289-3299. [PMID: 32266025 PMCID: PMC7132242 DOI: 10.3892/etm.2020.8580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to evaluate the effects of the selective cyclooxygenase (COX)-2 inhibitor celecoxib on the development of uterine adenomyosis in mice. ICR neonatal mice were first exposed to tamoxifen to establish a mouse model of adenomyosis. Following 60 days of celecoxib treatment, pathological formation of adenomyosis lesions and the depth of myometrial infiltration were evaluated using hematoxylin and eosin staining. To examine thermal pain modulation in mice, a hotplate test was conducted every 15 days from postnatal day 30 onwards. Immunohistochemistry was performed to assess the expression of aromatase P450, N-cadherin, E-cadherin, COX-2 and cluster of differentiation 31, whereas the levels of estrogen were analyzed in uterine tissue homogenates using ELISA. Masson trichrome staining was performed to assess the extent of fibrosis in the uterus. Celecoxib treatment significantly inhibited the depth of infiltration into the myometrium, resulting in significantly reduced disease severity. Treatment with high doses of celecoxib significantly prolonged thermal response latency. Following celecoxib treatment, the expression of E-cadherin was significantly increased whereas the expression of N-cadherin was significantly decreased. Concomitantly, the extent of fibrosis was also reduced following celecoxib treatment. Uterine tissue homogenates isolated from mice treated with both high and low doses of celecoxib exhibited lower concentrations of estrogen and decreased expression of aromatase P450. These observations suggest that celecoxib reduces adenomyosis severity by suppressing estrogen production in the uterus, reversing epithelial-mesenchymal transition and relieving fibrosis. Taken together, the results of the present study support the potential use of celecoxib, a selective COX-2 inhibitor, for the treatment of adenomyosis.
Collapse
|
47
|
Tuning mPEG-PLA/vitamin E-TPGS-based mixed micelles for combined celecoxib/honokiol therapy for breast cancer. Eur J Pharm Sci 2020; 146:105277. [DOI: 10.1016/j.ejps.2020.105277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/13/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022]
|
48
|
Armando RG, Gómez DLM, Gomez DE. New drugs are not enough‑drug repositioning in oncology: An update. Int J Oncol 2020; 56:651-684. [PMID: 32124955 PMCID: PMC7010222 DOI: 10.3892/ijo.2020.4966] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/16/2019] [Indexed: 11/24/2022] Open
Abstract
Drug repositioning refers to the concept of discovering novel clinical benefits of drugs that are already known for use treating other diseases. The advantages of this are that several important drug characteristics are already established (including efficacy, pharmacokinetics, pharmacodynamics and toxicity), making the process of research for a putative drug quicker and less costly. Drug repositioning in oncology has received extensive focus. The present review summarizes the most prominent examples of drug repositioning for the treatment of cancer, taking into consideration their primary use, proposed anticancer mechanisms and current development status.
Collapse
Affiliation(s)
- Romina Gabriela Armando
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Diego Luis Mengual Gómez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Daniel Eduardo Gomez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| |
Collapse
|
49
|
Alday-Parejo B, Richard F, Wörthmüller J, Rau T, Galván JA, Desmedt C, Santamaria-Martinez A, Rüegg C. MAGI1, a New Potential Tumor Suppressor Gene in Estrogen Receptor Positive Breast Cancer. Cancers (Basel) 2020; 12:cancers12010223. [PMID: 31963297 PMCID: PMC7016640 DOI: 10.3390/cancers12010223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/20/2019] [Accepted: 01/04/2020] [Indexed: 12/14/2022] Open
Abstract
Membrane-associated guanylate kinase (MAGUK) with inverted domain structure-1 (MAGI1) is an intracellular adaptor protein that stabilizes epithelial junctions consistent with a tumor suppressive function in several cancers of epithelial origin. Here we report, based on experimental results and human breast cancer (BC) patients’ gene expression data, that MAGI1 is highly expressed and acts as tumor suppressor in estrogen receptor (ER)+/HER2− but not in HER2+ or triple negative breast cancer (TNBC). Within the ER+/HER2− subset, high MAGI1 expression associates with ESR1 and luminal genes GATA3 and FOXA1 expression and better prognosis, while low MAGI1 levels correlates with higher histological grade, more aggressive phenotype and worse prognosis. Experimentally, MAGI1 downregulation in the ER+ human BC cells MCF7 impairs ER expression and signaling, promotes cell proliferation, and reduces apoptosis and epithelial differentiation. MAGI1 downregulation in the ER+ murine BC cell line 67NR accelerates primary tumor growth and enhances experimental lung metastasis formation. MAGI1 expression is upregulated by estrogen/ER, downregulated by prostaglandin E2/COX-2axis, and negatively correlates with inflammation in ER+/HER2− BC patients. Taken together, we show that MAGI1 is a new potential tumor suppressor in ER+/HER2− breast cancer with possible prognostic value for the identification of patients at high-risk of relapse within this subset.
Collapse
Affiliation(s)
- Begoña Alday-Parejo
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (B.A.-P.); (J.W.)
| | - François Richard
- Laboratory for Translational Breast Cancer Research, KU Leuven, 3001 Leuven, Belgium;
| | - Janine Wörthmüller
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (B.A.-P.); (J.W.)
| | - Tilman Rau
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (T.R.); (J.A.G.)
| | - José A. Galván
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (T.R.); (J.A.G.)
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, KU Leuven, 3001 Leuven, Belgium;
- Correspondence: (C.D.); (C.R.)
| | - Albert Santamaria-Martinez
- Tumor Ecology Laboratory, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland;
| | - Curzio Rüegg
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (B.A.-P.); (J.W.)
- Correspondence: (C.D.); (C.R.)
| |
Collapse
|
50
|
Sayed KS, Mohammed FN, Abdel Hay RM, Amr KS, AlOrbani AM. Cyclooxygenase-2 Gene Polymorphisms -765G>C and -1195A>G and Mycosis Fungoides Risk. Dermatology 2019; 237:17-21. [PMID: 31846957 DOI: 10.1159/000504840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/18/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cyclooxygenase-2 (COX-2) is an inducible modulator of inflammation that acts through increasing prostaglandin levels and has been described as a major mediator linking inflammation to cancer. Previous studies supported that COX-2-765G>C and -1195A>G polymorphisms were associated with increased risk of several solid tissue cancers as well as some hematological malignancies. OBJECTIVE The aim of the study was to elucidate the association between functional COX-2 genotypes (-765G>C and -1195A>G) polymorphisms and the risk of developing mycosis fungoides (MF). METHODS This was a hospital-based, case-control study of 70 MF patients and 100 MF-free controls. We genotyped COX-2 -1195A>G, -765G>C, and -8473T>C polymorphisms by using the PCR-restriction fragment length polymorphism method. RESULTS The AA genotype in the COX-2 -1195A>G gene polymorphism and the GC genotype in the COX-2 -765G>C gene were significantly more frequent among MF patients compared to controls (p< 0.001 and p = 0.002, respectively). CONCLUSION The -results indicate a possible role of COX-2 genes in the pathogenesis of MF. These novel findings may allow for notable future advances, as it will enable the identification of the -individuals most susceptible to MF.
Collapse
Affiliation(s)
- Khadiga Sayed Sayed
- Department of Dermatology, Faculty of Medicine, Cairo University, Giza, Egypt
| | | | | | - Khalda Sayed Amr
- Medical Molecular Genetics Department, National Research Centre, Giza, Egypt
| | - Aya M AlOrbani
- Department of Dermatology, Faculty of Medicine, Cairo University, Giza, Egypt,
| |
Collapse
|