1
|
Nguyen MH, Nguyen TYN, Le THN, Le TNT, Chau NTN, Le TMH, Huy Nguyen BQ. Medicinal plants as a potential resource for the discovery of novel structures towards cancer drug resistance treatment. Heliyon 2024; 10:e39229. [PMID: 39492898 PMCID: PMC11530815 DOI: 10.1016/j.heliyon.2024.e39229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/23/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Despite extensive research in chemotherapy, global cancer concerns persist, exacerbated by the challenge of drug resistance, which imposes economic and medical burdens. Natural compounds, particularly secondary metabolites from medicinal plants, present promising avenues for overcoming cancer drug resistance due to their diverse structures and essential pharmacological effects. This review provides a comprehensive exploration of cancer cell resistance mechanisms and target actions for reversing resistance and highlights the in vitro and in vivo efficacy of noteworthy alkaloids, flavonoids, and other compounds, emphasizing their potential as therapeutic agents. The molecular properties supporting ligand interactions are thoroughly examined, providing a robust theoretical foundation. The review concludes by discussing methods including quantitative structure-activity relationships and molecular docking, offering insights into screening potential candidates. Current trends in clinical treatment, contributing to a holistic understanding of the multifaceted approaches to address cancer drug resistance are also outlined.
Collapse
Affiliation(s)
- Minh Hien Nguyen
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh city, Viet Nam
| | - Thi Yen Nhi Nguyen
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh city, Viet Nam
- Faculty of Applied Science, Ho Chi Minh City University of Technology, Vietnam National University Ho Chi Minh City, 268 Ly Thuong Kiet Street Ward 14, District 10, Ho Chi Minh City, Viet Nam
| | - Thien Han Nguyen Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Thi Ngoc Tam Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Ngoc Trong Nghia Chau
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Tu Manh Huy Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Bui Quoc Huy Nguyen
- The University of Danang - VN-UK Institute for Research and Executive Education, 41 Le Duan Street, Hai Chau 1 Ward, Hai Chau District, Danang City, Viet Nam
| |
Collapse
|
2
|
Zhu J, Han M, Yang Y, Feng R, Hu Y, Wang Y. Exploring the Mechanism of Brucea Javanica against Ovarian Cancer based on Network Pharmacology and the Influence of Luteolin on the PI3K/AKT Pathway. Comb Chem High Throughput Screen 2024; 27:157-167. [PMID: 37366364 DOI: 10.2174/1386207326666230627114111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Ovarian cancer (OC) is a commonly diagnosed female cancer around the world. The Chinese herbal medicine Brucea Javanica has an anti-cancer effect. However, there is no relevant report on whether Brucea Javanica is effective in treating OC, and the corresponding mechanism is also unknown. OBJECTIVE This study was projected to excavate the active components and underpinned molecular mechanisms of Brucea Javanica in treating ovarian cancer (OC) through network pharmacology combined with in vitro experiments. METHODS The essential active components of Brucea Javanica were selected using the TCMSP database. The OC-related targets were selected by GeneCards, intersecting targets were obtained by Venn Diagram. The core targets were obtained through the PPI network and Cytoscape, and the key pathway was gained through GO and KEGG enrichment analyses. Meanwhile, docking conformation was observed as reflected by molecular docking. MTT, colony formation assay and flow cytometer (FCM) analysis were performed to determine cell proliferation and apoptosis, respectively. Finally, Levels of various signaling proteins were evaluated by western blotting. RESULTS Luteolin, β-sitosterol and their corresponding targets were selected as the essential active components of Brucea Javanica. 76 intersecting targets were obtained by Venn Diagram. TP53, AKT1, and TNF were obtained through the PPI network and Cytoscape, and the key pathway PI3K/AKT was gained through GO and KEGG enrichment analyses. A good docking conformation was observed between luteolin and AKT1. Luteolin could hinder A2780 cell proliferation, induce cell apoptosis and enhance the inhibition of the PI3K/AKT pathway. CONCLUSION It was verified in vitro that luteolin could hinder OC cell proliferation and activate the PI3K/AKT pathway to lead to apoptosis.
Collapse
Affiliation(s)
- Jufan Zhu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Mengfei Han
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yiheng Yang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Renqian Feng
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yan Hu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yuli Wang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| |
Collapse
|
3
|
Sun L, Ji WX, Li Y, Li ZL, Duan CC, Xia BR, Xiao L. The PAPSS1 gene is a modulator of response to cisplatin by regulating estrogen receptor alpha signaling activity in ovarian cancer cells. J Ovarian Res 2023; 16:187. [PMID: 37684671 PMCID: PMC10486135 DOI: 10.1186/s13048-023-01262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Cancer cells may develop resistance to cisplatin by various mechanisms. Yet, the exact mechanism of cisplatin in ovarian cancer remains unclear. Recent studies have shown that 3'-phospoadenosine 5'-phosphosulfate synthase 1 (PAPSS1) inhibition combined with low-dose cisplatin increases DNA damage. The aim of this study was to determine the value of targeting PAPSS1 as a cisplatin modulator in epithelial ovarian cancer (EOC). RESULTS Increased expression of PAPSS1 was observed in both EOC cells and tissues. Also, its higher nuclear expression was distinctly associated with FIGO (The International Federation of Gynecology and Obstetrics) stage, histological subtype, metastasis, and recurrence. Down-regulation of the PAPSS1 gene increased the cisplatin sensitivity of EOC in vitro and in vivo. Expression of PAPSS1 was negatively correlated with estrogen receptor α (ERα) in EOC. Also, low nuclear PAPSS1 and high nuclear ERα expression in EOC were associated with longer overall survival and progression-free survival in all ovarian cancer and ovarian cancer patients who received platinum-based chemotherapy. PAPSS1 silencing increased the activity of ERα-signaling in EOC cells, thus sensitizing tumors to cisplatin. CONCLUSIONS These findings characterize a novel interplay between PAPSS1-mediated sulfation and ERα-signaling in EOC cisplatin resistance. PAPSS1 may be exploited as a cisplatin-sensitizing therapeutic target.
Collapse
Affiliation(s)
- Lei Sun
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Anhui Medical University, Hefei, 230020, Anhui, P. R. China
| | - Wei-Xue Ji
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Anhui Medical University, Hefei, 230020, Anhui, P. R. China
| | - Yan Li
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, Hubei, P. R. China
| | - Ze-Lian Li
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Anhui Medical University, Hefei, 230020, Anhui, P. R. China
| | - Can-Can Duan
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Anhui Medical University, Hefei, 230020, Anhui, P. R. China
| | - Bai-Rong Xia
- Department of Gynecology Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, P. R. China.
| | - Lan Xiao
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Anhui Medical University, Hefei, 230020, Anhui, P. R. China.
| |
Collapse
|
4
|
Zhu J, Wang L, Yang Y, Han M, Yang Y, Feng R, Hu Y. Bruceine D and afatinib combination inhibits ovarian cancer cells proliferation and migration through DNA damage repair and EGFR pathway. J Investig Med 2023; 71:511-525. [PMID: 36859802 DOI: 10.1177/10815589231158043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Owing to the high rates of relapse and migration, ovarian cancer (OC) has been recognized as the most lethal gynecological malignancy worldwide. The activity of the epidermal growth factor receptor (EGFR) signaling pathway is frequently associated with OC cell proliferation and migration. Despite this knowledge, inhibition of EGFR signaling in OC patients failed to achieve satisfactory therapeutic effects. In this study, we identified that bruceine D (BD) and EGFR inhibitor, afatinib, combination resulted in synergistic anti-OC effects. The results indicated that compared with one of both drugs alone, the combination of BD and afatinib slowed the DNA replication rate, inhibition of cell viability, and proliferation and clone formation. This resulted in cell cycle arrest and cell apoptosis. In addition, the combination of BD and afatinib possessed a stronger ability to inhibit the OC cell adhesion and migration than treatment with BD or afatinib alone. Mechanistically, the combined treatment triggered intense DNA damage, suppressed DNA damage repair, and enhanced the inhibition of the EGFR pathway. These results demonstrated that compared with each pathway inhibition, combined blocking of both DNA damage repair and the EGFR pathway appears to more effective against OC treatment. The results support the potential of BD and afatinib combination as a therapeutic strategy for OC patients.
Collapse
Affiliation(s)
- Jufan Zhu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Luo Wang
- Medical College of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuanjun Yang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengfei Han
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiheng Yang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Renqian Feng
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Hu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Jafari S, Bakhshaei A, Eskandani M, Molavi O. Silibinin-Loaded Nanostructured Lipid Carriers for Growth Inhibition of Cisplatin-Resistant Ovarian Cancer Cells. Assay Drug Dev Technol 2022; 20:339-348. [DOI: 10.1089/adt.2022.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Sevda Jafari
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atabak Bakhshaei
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
cyy260 suppresses the proliferation, migration and tumor growth of osteosarcoma by targeting PDGFR-β signaling pathway. Chem Biol Interact 2022; 367:110200. [PMID: 36170914 DOI: 10.1016/j.cbi.2022.110200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022]
Abstract
Osteosarcoma (OS) is a group of malignant tumors with high rates of malignancy and metastasis. OS most commonly affects adolescents and young individuals. However, owing to the lack of effective targeted treatments, the 5-year survival rate for OS is still around 20%. Thus, it is essential to develop effective drugs with low toxicity for OS treatment. In the present study, we investigated the antitumor effect and underlying mechanism of cyy260 in OS via suppressing PDGFR-β and its downstream pathway. We demonstrated that cyy260 inhibits OS cell proliferation and promotes apoptosis via inducing DNA damage and causing cell cycle arrest. More importantly, cyy260 also significantly inhibits tumor migration. Further analysis of molecular mechanisms confirmed that PDGFR-β and its downstream AKT, STAT3, and ERK were involved in the cyy260-mediated antitumor effect. Analysis of subcutaneously transplanted tumors in mice showed that cyy260 suppressed tumor cell growth and exhibited low toxicity in vivo. Collectively, these findings proved that cyy260 could serve as a promising PDGFR-β inhibitor for the treatment of OS.
Collapse
|
7
|
Liu Y, Cao Y, Kai H, Han Y, Huang M, Gao L, Qiao H. Polyphyllin E inhibits proliferation, migration and invasion of ovarian cancer cells by down-regulating the AKT/NF-κB pathway. Biol Pharm Bull 2022; 45:561-568. [DOI: 10.1248/bpb.b21-00691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yinglei Liu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Nantong University
| | - Yang Cao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Nantong University
| | - Haili Kai
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Nantong University
| | - Yuwen Han
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Nantong University
| | - Menghui Huang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Nantong University
| | - Liusijie Gao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Nantong University
| | - Haifeng Qiao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Nantong University
| |
Collapse
|
8
|
Rahimzadeh Torabi L, Doudi M, Naghavi NS, Monajemi R. Bacteriophages PɸEn-CL and PɸEn-HO can eliminate MDR Enterobacter cloacae and Enterobacter hormaechei isolated from burn wound infections without toxicity for human skin cells. FEMS Microbiol Lett 2021; 368:6438434. [PMID: 34849758 DOI: 10.1093/femsle/fnab143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/14/2021] [Indexed: 12/21/2022] Open
Abstract
The prevalence of multidrug-resistant (MDR) strains has caused serious problems in the treatment of burn infections. MDR Enterobactercloacae and Enterobacterhormaechei have been defined as the causative agents of nosocomial infections in burn patients. In this situation, examination of phages side effects on human cell lines before any investigation on human or animal that can provide beneficial information about the safety of isolated phages. The aim of this study was to isolate and identify the specific bacteriophages on MDR E. cloacae and E. hormaechei isolated from burn wounds and to analyze the efficacy, cell viability and cell cytotoxicity of phages on A-375 and HFSF-PI cell lines by MTT (3-(4, 5-dimethylthiazol-2-yl)2,5-diphenyl-tetrazolium bromide) colorimetric assay and lactate dehydrogenase (LDH) release assay. Phages were isolated from urban sewage Isfahan, Iran. Enterobactercloacae strain Iau-EC100 (GenBank accession number: MZ314381) and E. hormaechei strain Iau-EHO100 (GenBank accession number: MZ348826) were sensitive to the isolated phages. Transmission electron microscopy (TEM) results revealed that PɸEn-CL and PɸEn-HO that were described had the morphologies of Myovirus and Inovirus, respectively. Overall, MTT and LDH assays showed moderate to excellent correlation in the evaluation of cytotoxicity of isolated phages. The results of MTT and LDH assays showed that, phages PɸEn-CL and PɸEn-HO had no significant toxicity effect on A375 and HFSF-PI 3 cells. Phage PɸEn-HO had a better efficacy on the two tested cell lines than other phage. Our results indicated that, there were significant differences between the two cytotoxicity assays in phage treatment compared to control.
Collapse
Affiliation(s)
- Ladan Rahimzadeh Torabi
- Department of Microbiology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, University Boulevard, Falavarjan 84515/155, Isfahan, Iran
| | - Monir Doudi
- Department of Microbiology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, University Boulevard, Falavarjan 84515/155, Isfahan, Iran
| | - Nafiseh Sadat Naghavi
- Department of Microbiology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, University Boulevard, Falavarjan 84515/155, Isfahan, Iran
| | - Ramesh Monajemi
- Department of Biology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, University Boulevard, Falavarjan 84515/155, Isfahan, Iran
| |
Collapse
|
9
|
Qiu Y, Li A, Lee J, Lee JE, Lee EW, Cho, N, Yoo HM. Inhibition of Jurkat T Cell Proliferation by Active Components of Rumex japonicus Roots Via Induced Mitochondrial Damage and Apoptosis Promotion. J Microbiol Biotechnol 2020; 30:1885-1895. [PMID: 33144550 PMCID: PMC9728342 DOI: 10.4014/jmb.2007.07018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 12/15/2022]
Abstract
Rumex japonicus Houtt (RJH) is a valuable plant used in traditional medicine to treat several diseases, such as scabies and jaundice. In this study, Jurkat cell growth inhibitory extracts of R. japonicus roots were subjected to bioassay-guided fractionation, resulting in the isolation of three naphthalene derivatives (3-5) along with one anthraquinone (6) and two phenolic compounds (1 and 2). Among these compounds, 2-methoxystypandrone (5) exhibited potent anti-proliferative effects on Jurkat cells. Analysis by flow cytometry confirmed that 2-methoxystypandrone (5) could significantly reduce mitochondrial membrane potential and promote increased levels of mitochondrial reactive oxygen species (ROS), suggesting a strong mitochondrial depolarization effect. Real-time quantitative polymerase chain reaction (qPCR) analysis was also performed, and the results revealed that the accumulation of ROS was caused by reduced mRNA expression levels of heme oxygenase (HO-1), catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD). In addition, 2-methoxystypandrone (5) triggered strong apoptosis that was mediated by the arrest of the G0/G1 phase of the cell cycle. Furthermore, 2-methoxystypandrone (5) downregulated p-IκB-α, p-NF-κB p65, Bcl2, and Bcl-xl and upregulated BAX proteins. Taken together, these findings revealed that 2-methoxystypandrone (5) isolated from RJH could potentially serve as an early lead compound for leukemia treatment involving intracellular signaling by increasing mitochondrial ROS and exerting anti-proliferative effects.
Collapse
Affiliation(s)
- Yinda Qiu
- College of Pharmacy, Chonnam National University, Gwangju 686, Republic of Korea
| | - Aoding Li
- College of Pharmacy, Chonnam National University, Gwangju 686, Republic of Korea
| | - Jina Lee
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Jeong Eun Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 4141, Republic of Korea,Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 3113, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 4141, Republic of Korea
| | - Namki Cho,
- College of Pharmacy, Chonnam National University, Gwangju 686, Republic of Korea,Corresponding authors N.Cho Phone: +82-62-530-2926 E-mail:
| | - Hee Min Yoo
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea,H.M.Yoo Phone: 82-42-868-5362 E-mail:
| |
Collapse
|
10
|
Mashhadi Akbar Boojar M, Mashhadi Akbar Boojar M, Golmohammad S. Overview of Silibinin anti-tumor effects. J Herb Med 2020. [DOI: 10.1016/j.hermed.2020.100375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Wang C, He C, Lu S, Wang X, Wang L, Liang S, Wang X, Piao M, Cui J, Chi G, Ge P. Autophagy activated by silibinin contributes to glioma cell death via induction of oxidative stress-mediated BNIP3-dependent nuclear translocation of AIF. Cell Death Dis 2020; 11:630. [PMID: 32801360 PMCID: PMC7429844 DOI: 10.1038/s41419-020-02866-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Induction of lethal autophagy has become a strategy to eliminate glioma cells, but it remains elusive whether autophagy contributes to cell death via causing mitochondria damage and nuclear translocation of apoptosis inducing factor (AIF). In this study, we find that silibinin induces AIF translocation from mitochondria to nuclei in glioma cells in vitro and in vivo, which is accompanied with autophagy activation. In vitro studies reveal that blocking autophagy with 3MA, bafilomycin A1 or by knocking down ATG5 with SiRNA inhibits silibinin-induced mitochondrial accumulation of superoxide, AIF translocation from mitochondria to nuclei and glioma cell death. Mechanistically, silibinin activates autophagy through depleting ATP by suppressing glycolysis. Then, autophagy improves intracellular H2O2 via promoting p53-mediated depletion of GSH and cysteine and downregulation of xCT. The increased H2O2 promotes silibinin-induced BNIP3 upregulation and translocation to mitochondria. Knockdown of BNIP3 with SiRNA inhibits silibinin-induced mitochondrial depolarization, accumulation of mitochondrial superoxide, and AIF translocation from mitochondria to nuclei, as well as prevents glioma cell death. Furthermore, we find that the improved H2O2 reinforces silibinin-induced glycolysis dysfunction. Collectively, autophagy contributes to silibinin-induced glioma cell death via promotion of oxidative stress-mediated BNIP3-dependent nuclear translocation of AIF.
Collapse
Affiliation(s)
- Chongcheng Wang
- Department of Neurosurgery, First Hospital of Jilin University, 130021, Changchun, China
- Research Center of Neuroscience, First Hospital of Jilin University, 130021, Changchun, China
| | - Chuan He
- Department of Neurosurgery, First Hospital of Jilin University, 130021, Changchun, China
- Research Center of Neuroscience, First Hospital of Jilin University, 130021, Changchun, China
| | - Shan Lu
- Department of Neurosurgery, First Hospital of Jilin University, 130021, Changchun, China
- Research Center of Neuroscience, First Hospital of Jilin University, 130021, Changchun, China
| | - Xuanzhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, 130021, Changchun, China
- Research Center of Neuroscience, First Hospital of Jilin University, 130021, Changchun, China
| | - Lei Wang
- Department of Neurosurgery, First Hospital of Jilin University, 130021, Changchun, China
- Research Center of Neuroscience, First Hospital of Jilin University, 130021, Changchun, China
| | - Shipeng Liang
- Department of Neurosurgery, First Hospital of Jilin University, 130021, Changchun, China
- Research Center of Neuroscience, First Hospital of Jilin University, 130021, Changchun, China
| | - Xinyu Wang
- Department of Radiotherapy, Second Hospital of Jilin University, 130021, Changchun, China
| | - Meihua Piao
- Department of Anesthesiology, First Hospital of Jilin University, 130021, Changchun, China
| | - Jiayue Cui
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, 130021, Changchun, China
| | - Guangfan Chi
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 130021, Changchun, China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, 130021, Changchun, China.
- Research Center of Neuroscience, First Hospital of Jilin University, 130021, Changchun, China.
| |
Collapse
|
12
|
Lashgarian HE, Adamii V, Ghorbanzadeh V, Chodari L, Kamali F, Akbari S, Dariushnejad H. Silibinin Inhibit Cell Migration through Downregulation of RAC1 Gene Expression in Highly Metastatic Breast Cancer Cell Line. Drug Res (Stuttg) 2020; 70:478-483. [PMID: 32791535 DOI: 10.1055/a-1223-1734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Triple negative breast cancer is the most invasive breast cancer subtype and possesses poor prognosis and survival. Rho GTPase famil, especially Rac1 participates in a number of signaling events in cells with crucial roles in malignancy, migration and invasion of tumor cells. Silibinin, a flavonoid antioxidant from milk thistle has attracted attention in the recent decades for chemoprevention and chemotherapy of tumor cells. In this study, the effect of silibinin on the migration capacity of MDA-MB-231 cells, a highly metastatic human breast cancer cell line was investigated by evaluation of Rac1 expression. METHOD MTT wound healing and transwell assays were performed to evaluate the effects of silibinin on proliferation and migration of MDA-MB-231 cells. In addition, the influence of the silibinin on the expression of Rac1mRNAs was assessed by RT-PCR. RESULTS Results indicated significant dose-dependent inhibitory effect of silibinin on proliferation and migration of MDA-MB-231 cells. It significantly inhibited the expression of Rac1 mRNA. CONCLUSION In conclusion, the results demonstrate that the silibinin can be used as an experimental therapeutic for the management of TNBC metastatic cancer.
Collapse
Affiliation(s)
- Hamed Esmaeil Lashgarian
- Department of Medical Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Vahid Adamii
- Department of Medical Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Vajihe Ghorbanzadeh
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Leila Chodari
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Fayze Kamali
- Department of Medical Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Soheila Akbari
- Department of Obstetrics and Gynecology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hassan Dariushnejad
- Department of Medical Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.,Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
13
|
Dobiasová S, Řehořová K, Kučerová D, Biedermann D, Káňová K, Petrásková L, Koucká K, Václavíková R, Valentová K, Ruml T, Macek T, Křen V, Viktorová J. Multidrug Resistance Modulation Activity of Silybin Derivatives and Their Anti-inflammatory Potential. Antioxidants (Basel) 2020; 9:antiox9050455. [PMID: 32466263 PMCID: PMC7278776 DOI: 10.3390/antiox9050455] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/19/2022] Open
Abstract
Silybin is considered to be the main biologically active component of silymarin. Its oxidized derivative 2,3-dehydrosilybin typically occurs in silymarin in small, but non-negligible amounts (up to 3%). Here, we investigated in detail complex biological activities of silybin and 2,3-dehydrosilybin optical isomers. Antioxidant activities of pure stereomers A and B of silybin and 2,3-dehydrosilybin, as well as their racemic mixtures, were investigated by using oxygen radical absorption capacity (ORAC) and cellular antioxidant activity (CAA) assay. All substances efficiently reduced nitric oxide production and cytokines (TNF-α, IL-6) release in a dose-dependent manner. Multidrug resistance (MDR) modulating potential was evaluated as inhibition of P-glycoprotein (P-gp) ATPase activity and regulation of ATP-binding cassette (ABC) protein expression. All the tested compounds showed strong dose-dependent inhibition of P-gp pump. Moreover, 2,3-dehydrosilybin A (30 µM) displayed the strongest sensitization of doxorubicin-resistant ovarian carcinoma. Despite these significant effects, silybin B was the only compound acting directly upon P-gp in vitro and also downregulating the expression of respective MDR genes. This compound altered the expression of P-glycoprotein (P-gp, ABCB1), multidrug resistance-associated protein 1 (MRP1, ABCC1) and breast cancer resistance protein (BCRP, ABCG2). 2,3-Dehydrosilybin AB exhibited the most effective inhibition of acetylcholinesterase activity. We can clearly postulate that silybin derivatives could serve well as modulators of a cancer drug-resistant phenotype.
Collapse
Affiliation(s)
- Simona Dobiasová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, CZ 166 28 Prague, Czech Republic; (S.D.); (K.Ř.); (D.K.); (K.K.); (T.R.); (T.M.)
| | - Kateřina Řehořová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, CZ 166 28 Prague, Czech Republic; (S.D.); (K.Ř.); (D.K.); (K.K.); (T.R.); (T.M.)
| | - Denisa Kučerová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, CZ 166 28 Prague, Czech Republic; (S.D.); (K.Ř.); (D.K.); (K.K.); (T.R.); (T.M.)
| | - David Biedermann
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic; (D.B.); (L.P.); (K.V.); (V.K.)
| | - Kristýna Káňová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, CZ 166 28 Prague, Czech Republic; (S.D.); (K.Ř.); (D.K.); (K.K.); (T.R.); (T.M.)
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic; (D.B.); (L.P.); (K.V.); (V.K.)
| | - Lucie Petrásková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic; (D.B.); (L.P.); (K.V.); (V.K.)
| | - Kamila Koucká
- Toxicogenomics Unit, National Institute of Public Health, Šrobárova 49, CZ 100 00 Prague, Czech Republic; (K.K.); (R.V.)
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, CZ 323 00 Pilsen, Czech Republic
| | - Radka Václavíková
- Toxicogenomics Unit, National Institute of Public Health, Šrobárova 49, CZ 100 00 Prague, Czech Republic; (K.K.); (R.V.)
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, CZ 323 00 Pilsen, Czech Republic
| | - Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic; (D.B.); (L.P.); (K.V.); (V.K.)
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, CZ 166 28 Prague, Czech Republic; (S.D.); (K.Ř.); (D.K.); (K.K.); (T.R.); (T.M.)
| | - Tomáš Macek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, CZ 166 28 Prague, Czech Republic; (S.D.); (K.Ř.); (D.K.); (K.K.); (T.R.); (T.M.)
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic; (D.B.); (L.P.); (K.V.); (V.K.)
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, CZ 166 28 Prague, Czech Republic; (S.D.); (K.Ř.); (D.K.); (K.K.); (T.R.); (T.M.)
- Correspondence:
| |
Collapse
|