1
|
Du S, Wang J, Liu M, Liu R, Wang H, Zhang Y, Zhou F, Pei W. APOM Modulates the Glycolysis Process in Liver Cancer Cells by Controlling the Expression and Activity of HK2 via the Notch Pathway. Biochem Genet 2025:10.1007/s10528-024-11013-y. [PMID: 39754657 DOI: 10.1007/s10528-024-11013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025]
Abstract
The metabolic pathway of aerobic glycolysis in tumor cells has garnered significant attention in tumor research because of its high activation in cancer cells. Previous research conducted by our team has demonstrated that Apolipoprotein M (APOM) exhibits potential as a factor against liver cancer. However, further investigations are needed to elucidate the precise approach and mechanism that are involved in this process. The findings of this study demonstrated that the inhibition of APOM gene expression led to a notable increase in glucose uptake within liver cancer cells, along with increased levels of lactate dehydrogenase A (LDHA) mRNA and protein expression, as well as increased lactate and adenosine triphosphate (ATP) levels (P < 0.05). These alterations in the cellular microenvironment may be associated with a significant increase in the expression level and enzyme activity of the pivotal enzyme hexokinase 2 (HK2) (P < 0.05). Subsequent investigations revealed notable enrichment of the Notch pathway in liver cancer samples exhibiting low expression of the APOM gene. Western blot experiments demonstrated that the inhibition of APOM gene expression triggers the activation of the Notch pathway in liver cancer cells. Furthermore, the administration of a γ-secretase inhibitor (DAPT) successfully mitigated the increase in HK2 levels, glucose uptake, lactate production, and proliferation of liver cancer cells induced by the downregulation of the APOM gene (P < 0.05). In conclusion, diminished APOM expression may facilitate the progression of liver cancer by stimulating the aerobic glycolysis pathway, which is mediated by the Notch signaling pathway.
Collapse
Affiliation(s)
- Shuangqiu Du
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, P. R. China
| | - Jingtong Wang
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, P. R. China
- School of Clinical Medicine, Wannan Medical Collage, Wuhu, 241002, Anhui, P. R. China
| | - Miaomiao Liu
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, P. R. China
| | - Rong Liu
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, P. R. China
| | - Hui Wang
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, P. R. China
| | - Yao Zhang
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, P. R. China
| | - Fengcang Zhou
- Basic Teaching Department of Morphology Teaching and Research Section, Anhui College of Traditional Chinese Medicine, Wuhu, 241002, Anhui, P. R. China.
| | - Wenjun Pei
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, P. R. China.
| |
Collapse
|
2
|
Liu M, Hu M, Liu R, Wang L, Wang J, Wang Y, Zhang R, Wang H, Liu M, Zhang Y, Wang L, Pei W, Zhang Y. Unveiling the role of APOM gene in liver cancer: Investigating the impact of hsa-miR-4489/MUC1-mediated ferroptosis on the advancement of hepatocellular carcinoma cells. Gene 2024; 925:148591. [PMID: 38788818 DOI: 10.1016/j.gene.2024.148591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
Primary liver cancer has consistently exhibited a high prevalence and fatality rate, necessitating the investigation of associated diagnostic markers and inhibition mechanisms to effectively mitigate its impact. The significance of apolipoprotein M (ApoM) in impeding the progression of neoplastic ailments is progressively gaining recognition. However, a comprehensive understanding of its underlying mechanism in liver cancer advancement remains to be elucidated. Recent evidence indicates a potential association between ApoM and polyunsaturated fatty acids (PUFAs), with the peroxidation of phospholipids (PLs) containing PUFAs being recognized as a crucial element in the occurrence of ferroptosis. This prompts us to investigate the impact of the APOM gene on the progression of liver cancer through the ferroptosis pathway and elucidate its underlying mechanisms. The findings of this study indicate that the liver cancer cell model, which was genetically modified to overexpress the APOM gene, demonstrated a heightened ferroptosis effect. Moreover, the observed inhibition of the GSH (Glutathione) - GPX4 (Glutathione Peroxidase 4) regulatory axis suggests that the role of this axis in inhibiting ferroptosis is weakened. Through intersection screening and validation, we found that Mucin 1,cell surface associated (MUC1) can inhibit ferroptosis and is regulated by the APOM gene. Bioinformatics analysis and screening identified miR-4489 as a mediator between the two. Experimental results using the dual luciferase reporter gene confirmed that has-miR-4489 targets MUC1's 3'-UTR and inhibits its expression. In conclusion, this study provides evidence that the APOM gene induces a down-regulation in the expression of the ferroptosis-inhibiting gene MUC1, mediated by miR-4489, thereby impeding the advancement of liver cancer cells through the facilitation of ferroptosis.
Collapse
Affiliation(s)
- Miaomiao Liu
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, PR China; Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu 241002, PR China
| | - Mengyu Hu
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, PR China
| | - Rong Liu
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, PR China
| | - Ling Wang
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, PR China
| | - Jingtong Wang
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, PR China
| | - Yun Wang
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, PR China
| | - Ruixi Zhang
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, PR China; Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu 241002, PR China
| | - Hui Wang
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, PR China
| | - Mengru Liu
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, PR China
| | - Yi Zhang
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, PR China
| | - Lizhuo Wang
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, PR China; Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu 241002, PR China
| | - Wenjun Pei
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, PR China; Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu 241002, PR China.
| | - Yao Zhang
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu 241002, PR China; Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu 241002, PR China.
| |
Collapse
|
3
|
Mousa H, Al Saei A, Razali RM, Zughaier SM. Vitamin D status affects proteomic profile of HDL-associated proteins and inflammatory mediators in dyslipidemia. J Nutr Biochem 2024; 123:109472. [PMID: 37863441 DOI: 10.1016/j.jnutbio.2023.109472] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
Vitamin D deficiency and dyslipidemia have substantial implications for human health globally. Vitamin D is essential for bone metabolism and immune modulation, and its insufficiency is linked to various chronic inflammatory conditions. Dyslipidemia, characterized by low levels of high-density lipoprotein (HDL) and elevated levels of low-density lipoprotein (LDL) and triglycerides, is also prevalent. Previous research has shown a connection between vitamin D deficiency and low HDL, but the precise mechanism by which vitamin D influences HDL production and its anti-inflammatory properties remains unclear. This study aimed to investigate the proteomic profiles of individuals with and without vitamin D deficiency and dyslipidemia, specifically focusing on the effects of vitamin D on HDL production, its anti-inflammatory potential, and the molecular pathways associated with vitamin D deficiency and dyslipidemia, particularly inflammation and cancer pathways. By analyzing the proteomic profiles of 274 participants from the Qatar Biobank database, we identified 1301 proteins. Our findings indicated a decrease in HDL-associated apolipoproteins (ApoM and ApoD) in individuals with both dyslipidemia and vitamin D deficiency. Conversely, participants with these conditions exhibited increased expression of acute-phase proteins (SAA1 and SOD1), which are associated with inflammation. Pathway enrichment analysis revealed heightened inflammatory activity in individuals with vitamin D deficiency and dyslipidemia, with notable enrichments in pathways such as MAPK, JAK-STAT, Ras signaling, cytokine-cytokine receptor interaction, AGE-RAGE, ErbB signaling, and cancer pathways. Overall, cases of vitamin D deficiency showed enrichment in inflammation pathways, while individuals with both vitamin D deficiency and dyslipidemia demonstrated enhanced activation of cancer and inflammation pathways.
Collapse
Affiliation(s)
- Hanaa Mousa
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Aisha Al Saei
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Rozaimi Mohamad Razali
- Department of Biomedical Sciences College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Susu M Zughaier
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
4
|
Koh Y, Kim H, Joo SY, Song S, Choi YH, Kim HR, Moon B, Byun J, Hong J, Shin DY, Park S, Lee KH, Lee KT, Lee JK, Park D, Lee SH, Jang JY, Lee H, Kim JA, Yoon SS, Park JK. Genetic assessment of pathogenic germline alterations in lysosomal genes among Asian patients with pancreatic ductal adenocarcinoma. J Transl Med 2023; 21:730. [PMID: 37848935 PMCID: PMC10580633 DOI: 10.1186/s12967-023-04549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Lysosomes are closely linked to autophagic activity, which plays a vital role in pancreatic ductal adenocarcinoma (PDAC) biology. The survival of PDAC patients is still poor, and the identification of novel genetic factors for prognosis and treatment is highly required to prevent PDAC-related deaths. This study investigated the germline variants related to lysosomal dysfunction in patients with PDAC and to analyze whether they contribute to the development of PDAC. METHODS The germline putative pathogenic variants (PPV) in genes involved in lysosomal storage disease (LSD) was compared between patients with PDAC (n = 418) and healthy controls (n = 845) using targeted panel and whole-exome sequencing. Furthermore, pancreatic organoids from wild-type and KrasG12D mice were used to evaluate the effect of lysosomal dysfunction on PDAC development. RNA sequencing (RNA-seq) analysis was performed with established PDAC patient-derived organoids (PDOs) according to the PPV status. RESULTS The PPV in LSD-related genes was higher in patients with PDAC than in healthy controls (8.13 vs. 4.26%, Log2 OR = 1.65, P = 3.08 × 10-3). The PPV carriers of LSD-related genes with PDAC were significantly younger than the non-carriers (mean age 61.5 vs. 65.3 years, P = 0.031). We further studied a variant of the lysosomal enzyme, galactosylceramidase (GALC), which was the most frequently detected LSD variant in our cohort. Autophagolysosomal activity was hampered when GALC was downregulated, which was accompanied by paradoxically elevated autophagic flux. Furthermore, the number of proliferating Ki-67+ cells increased significantly in pancreatic organoids derived from Galc knockout KrasG12D mice. Moreover, GALC PPV carriers tended to show drug resistance in both PDAC cell line and PDAC PDO, and RNA-seq analysis revealed that various metabolism and gene repair pathways were upregulated in PDAC PDOs harboring a GALC variant. CONCLUSIONS Genetically defined lysosomal dysfunction is frequently observed in patients with young-onset PDAC. This might contribute to PDAC development by altering metabolism and impairing autophagolysosomal activity, which could be potentially implicated in therapeutic applications for PDAC.
Collapse
Affiliation(s)
- Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyemin Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - So Young Joo
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Seulki Song
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young Hoon Choi
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyung Rae Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Byul Moon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jamin Byun
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Junshik Hong
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong-Yeop Shin
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Solip Park
- Structural Biology Department, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Kwang Hyuck Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyu Taek Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong Kyun Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Daechan Park
- Department of Molecular Science and Technology, Department of Biological Sciences, Ajou University, Suwon, Republic of Korea
| | - Se-Hoon Lee
- Department of Hematology/Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin-Young Jang
- Departments of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Hyunsook Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea.
| | - Jung-Ae Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Republic of Korea.
| | - Sung-Soo Yoon
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University School of Medicine, Seoul, Republic of Korea.
| | - Joo Kyung Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Xu T, Wei D, Yang Z, Xie S, Yan Z, Chen C, Hu W, Shi Z, Zhao Y, Cui M, Xu Z, Wang J. ApoM suppresses kidney renal clear cell carcinoma growth and metastasis via the Hippo-YAP signaling pathway. Arch Biochem Biophys 2023; 743:109642. [PMID: 37211224 DOI: 10.1016/j.abb.2023.109642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Renal cell carcinoma is one of the most common malignancies worldwide, and kidney renal clear cell carcinoma (KIRC) is the most common histopathological type of renal cell carcinoma. However, the mechanism of KIRC progression remains poorly understood. Apolipoprotein M (ApoM) is a plasma apolipoprotein and a member of the lipid transport protein superfamily. Lipid metabolism is essential for tumor progression, and its related proteins can be used as therapeutic targets for tumors. ApoM influences the development of several cancers, but its relationship with KIRC remains unclear. In this study, we aimed to investigate the biological function of ApoM in KIRC and to reveal its potential molecular mechanisms. We found that ApoM expression was significantly reduced in KIRC and was strongly correlated with patient prognosis. ApoM overexpression significantly inhibited KIRC cell proliferation in vitro, suppressed the epithelial mesenchymal transition (EMT) of KIRC cells, and decreased their metastatic capacity. Additionally, the growth of KIRC cells was inhibited by ApoM overexpression in vivo. In addition, we found that overexpression of ApoM in KIRC attenuated Hippo-YAP protein expression and YAP stability and thus inhibited KIRC growth and progression. Therefore, ApoM may be a potential target for the treatment of KIRC.
Collapse
Affiliation(s)
- Ting Xu
- Clinical Medical College, Weifang Medical University, Weifang, Shandong, 261053, PR China; Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, 250014, PR China
| | - Dan Wei
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, Shandong, 250014, PR China
| | - Zhe Yang
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, 250014, PR China
| | - Shanghuan Xie
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, 250014, PR China; Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, PR China
| | - Zhangbin Yan
- Clinical Medical College, Weifang Medical University, Weifang, Shandong, 261053, PR China; Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, 250014, PR China
| | - Cong Chen
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, 250014, PR China
| | - Wenxin Hu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, 250014, PR China
| | - Zhida Shi
- Reproductive Center, Maternal and Child Health Hospital of Shandong Province, Jinan, Shandong, 250014, PR China
| | - Yihan Zhao
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, 250014, PR China
| | - Minghu Cui
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, 250014, PR China; Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, PR China
| | - Zhipeng Xu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, 250014, PR China.
| | - Jianning Wang
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, 250014, PR China.
| |
Collapse
|
6
|
He Y, Chen J, Ma Y, Chen H. Apolipoproteins: New players in cancers. Front Pharmacol 2022; 13:1051280. [PMID: 36506554 PMCID: PMC9732396 DOI: 10.3389/fphar.2022.1051280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022] Open
Abstract
Apolipoproteins (APOs), the primary protein moiety of lipoproteins, are known for their crucial role in lipid traffic and metabolism. Despite extensive exploration of APOs in cardiovascular diseases, their roles in cancers did not attract enough attention. Recently, research focusing on the roles of APOs in cancers has flourished. Multiple studies demonstrate the interaction of APOs with classical pathways of tumorigenesis. Besides, the dysregulation of APOs may indicate cancer occurrence and progression, thus serving as potential biomarkers for cancer patients. Herein, we summarize the mechanisms of APOs involved in the development of various cancers, their applications as cancer biomarkers and their genetic polymorphism associated with cancer risk. Additionally, we also discuss the potential anti-cancer therapies by virtue of APOs. The comprehensive review of APOs in cancers may advance the understanding of the roles of APOs in cancers and their potential mechanisms. We hope that it will provide novel clues and new therapeutic strategies for cancers.
Collapse
Affiliation(s)
- Yingcheng He
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Jianrui Chen
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Yanbing Ma
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Jiangxi Key Laboratory of Experimental Animals, Nanchang University, Nanchang, Jiangxi, China,*Correspondence: Hongping Chen,
| |
Collapse
|
7
|
Zanotti I. High-Density Lipoproteins in Non-Cardiovascular Diseases. Int J Mol Sci 2022; 23:ijms23169413. [PMID: 36012681 PMCID: PMC9408873 DOI: 10.3390/ijms23169413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ilaria Zanotti
- Dipartimento di Scienze Degli Alimenti e del Farmaco, Università di Parma, 42124 Parma, Italy
| |
Collapse
|
8
|
Zhang X, Bai Y, Zhu W, Lv X, Pei W. ApoM regulates PFKL through the transcription factor SREBF1 to inhibit the proliferation, migration and metastasis of liver cancer cells. Oncol Lett 2022; 24:210. [PMID: 35720503 PMCID: PMC9178675 DOI: 10.3892/ol.2022.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/25/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Xiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Yaping Bai
- Anhui Province Key Laboratory of Biological Macro‑Molecules Research, Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Wenhao Zhu
- Anhui Province Key Laboratory of Biological Macro‑Molecules Research, Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Xinyue Lv
- Anhui Province Key Laboratory of Biological Macro‑Molecules Research, Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Wenjun Pei
- Anhui Province Key Laboratory of Biological Macro‑Molecules Research, Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| |
Collapse
|
9
|
Shojaei Baghini S, Gardanova ZR, Zekiy AO, Shomali N, Tosan F, Jarahian M. Optimizing sgRNA to Improve CRISPR/Cas9 Knockout Efficiency: Special Focus on Human and Animal Cell. Front Bioeng Biotechnol 2021; 9:775309. [PMID: 34869290 PMCID: PMC8640246 DOI: 10.3389/fbioe.2021.775309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
During recent years, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) technologies have been noticed as a rapidly evolving tool to deliver a possibility for modifying target sequence expression and function. The CRISPR/Cas9 tool is currently being used to treat a myriad of human disorders, ranging from genetic diseases and infections to cancers. Preliminary reports have shown that CRISPR technology could result in valued consequences for the treatment of Duchenne muscular dystrophy (DMD), cystic fibrosis (CF), β-thalassemia, Huntington's diseases (HD), etc. Nonetheless, high rates of off-target effects may hinder its application in clinics. Thereby, recent studies have focused on the finding of the novel strategies to ameliorate these off-target effects and thereby lead to a high rate of fidelity and accuracy in human, animals, prokaryotes, and also plants. Meanwhile, there is clear evidence indicating that the design of the specific sgRNA with high efficiency is of paramount importance. Correspondingly, elucidation of the principal parameters that contributed to determining the sgRNA efficiencies is a prerequisite. Herein, we will deliver an overview regarding the therapeutic application of CRISPR technology to treat human disorders. More importantly, we will discuss the potent influential parameters (e.g., sgRNA structure and feature) implicated in affecting the sgRNA efficacy in CRISPR/Cas9 technology, with special concentration on human and animal studies.
Collapse
Affiliation(s)
- Sadegh Shojaei Baghini
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zhanna R. Gardanova
- Department of Psychotherapy, Pirogov Russian National Research Medical University, Moscow, Russia
- Medical Faculty, Russian State Social University, Moscow, Russia
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Foad Tosan
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| |
Collapse
|
10
|
Zhou Y, Yao S, Yu M, Wei J, Fang Q, Xu N, Luo G. The effects and possible mechanism of action of apolipoprotein M on the growth of breast cancer cells. Mol Biol Rep 2021; 49:1171-1179. [PMID: 34775573 DOI: 10.1007/s11033-021-06945-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND To investigate the effects and mechanism of action of apolipoprotein M (ApoM) on the growth of breast cancer (BC) cells. METHODS AND RESULTS Bioinformatics, cell experiments and animal experiments were used to verify the effect of ApoM on breast cancer cell lines and breast tumor growth in vivo. ApoM expression was significantly reduced in BC tissues, and patients with lower ApoM mRNA expression had a poorer prognosis (P < 0.0001). Besides, ApoM can partially inhibit the proliferative, migratory and invasive processes of BC cells. In vivo, the difference between ApoM-OE and NC groups was no significant. The level of vitamin D receptor (VDR) protein in MDA-MB-231 cells was increased by overexpression of ApoM (P < 0.05), while in MCF-7 cells, VDR levels decreased (P < 0.05). CONCLUSIONS ApoM can partially inhibit the growth of BC cells. VDR may play a role, but is not the main pathway.
Collapse
Affiliation(s)
- Ying Zhou
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, 185 Juqiang St, Changzhou, Jiangsu Province, China
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Shuang Yao
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, 185 Juqiang St, Changzhou, Jiangsu Province, China
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Miaomei Yu
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, 185 Juqiang St, Changzhou, Jiangsu Province, China
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Jiang Wei
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, 185 Juqiang St, Changzhou, Jiangsu Province, China
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Qi Fang
- Breast Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Ning Xu
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lunds University, 22185, Lund, Sweden
| | - Guanghua Luo
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, 185 Juqiang St, Changzhou, Jiangsu Province, China.
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
| |
Collapse
|
11
|
Cheng G, Zheng L. Regulation of the apolipoprotein M signaling pathway: a review. J Recept Signal Transduct Res 2021; 42:285-292. [PMID: 34006168 DOI: 10.1080/10799893.2021.1924203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Apolipoprotein M (apoM), an apolipoprotein predominantly associated with high-density lipoprotein (HDL), is considered a mediator of the numerous roles of HDL, including reverse cholesterol transport, anti-atherosclerotic, anti-inflammatory and anti-oxidant, and mediates pre-β-HDL formation. ApoM expression is known to be regulated by a variety of in vivo and in vitro factors. The transcription factors farnesoid X receptor, small heterodimer partner, liver receptor homolog-1, and liver X receptor comprise the signaling cascade network that regulates the expression and secretion of apoM. Moreover, hepatocyte nuclear factor-1α and c-Jun/JunB have been demonstrated to exert opposing regulatory effects on apoM through competitive binding to the same sites in the proximal region of the apoM gene. Furthermore, as a carrier and modulator of sphingosine 1-phosphate (S1P), apoM binds to S1P within its hydrophobic-binding pocket. The apoM/S1P axis has been discovered to play a crucial role in the apoM signaling pathway through its ability to regulate glucose and lipid metabolism, vascular barrier homeostasis, inflammatory response and other pathological and physiological processes. Using the findings of previous studies, the present review aimed to summarize the regulation of apoM expression by various factors and its role in different physiological and pathological conditions, and provide a new perspective for the further treatment of these diseases.
Collapse
Affiliation(s)
- Gangli Cheng
- Clinical Medical Research Center, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lu Zheng
- Clinical Medical Research Center, the Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
12
|
Revealing the Role of High-Density Lipoprotein in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22073352. [PMID: 33805921 PMCID: PMC8037642 DOI: 10.3390/ijms22073352] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a highly prevalent malignancy with multifactorial etiology, which includes metabolic alterations as contributors to disease development. Studies have shown that lipid status disorders are involved in colorectal carcinogenesis. In line with this, previous studies have also suggested that the serum high-density lipoprotein cholesterol (HDL-C) level decreases in patients with CRC, but more recently, the focus of investigations has shifted toward the exploration of qualitative properties of HDL in this malignancy. Herein, a comprehensive overview of available evidences regarding the putative role of HDL in CRC will be presented. We will analyze existing findings regarding alterations of HDL-C levels but also HDL particle structure and distribution in CRC. In addition, changes in HDL functionality in this malignancy will be discussed. Moreover, we will focus on the genetic regulation of HDL metabolism, as well as the involvement of HDL in disturbances of cholesterol trafficking in CRC. Finally, possible therapeutic implications related to HDL will be presented. Given the available evidence, future studies are needed to resolve all raised issues concerning the suggested protective role of HDL in CRC, its presumed function as a biomarker, and eventual therapeutic approaches based on HDL.
Collapse
|
13
|
Mu Q, Luo G, Wei J, Zheng L, Wang H, Yu M, Xu N. Apolipoprotein M promotes growth and inhibits apoptosis of colorectal cancer cells through upregulation of ribosomal protein S27a. EXCLI JOURNAL 2021; 20:145-159. [PMID: 33564284 PMCID: PMC7868641 DOI: 10.17179/excli2020-2867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/18/2021] [Indexed: 12/22/2022]
Abstract
Colorectal cancer (CRC) is one of the frequent malignant tumors and has a high mortality-to-incidence ratio. Apolipoprotein M (ApoM), a lipoprotein superfamily member, is primarily bound to high-density lipoprotein (HDL) particles. Our previous studies opined that ApoM crucially modulates CRC progression, but its role in CRC has not been elucidated. Here, lentivirus infection technology was used to overexpress ApoM in Caco-2 cells. Cell growth, apoptosis as well as clone formation assays were performed to explore the biological influences of ApoM in Caco-2 cells. Differentially expressed genes were analyzed via GeneChip microarrays and Quantitative real-time PCR (qPCR) along with Western blotting were applied to verify the results. Ribosomal protein S27a (RPS27A) expression in CRC and tumor-adjacent tissues was detected by qPCR, and its correlation with clinicopathologic characteristics was explored. Our results showed that ApoM overexpression could promote Caco-2 cell proliferation and inhibit apoptosis. The microarray evaluation uncovered 2671 genes, which were differentially expressed, including RPS27A. The qPCR as well as the Western blotting data showed that ApoM overexpression significantly increased the expression of RPS27A. Moreover, RPS27A expression was remarkably higher in CRC tissues in contrast with the tumor-adjacent tissues and was positively correlated with the ApoM level in tumor tissues, and higher RPS27A expression was associated with smaller tumors and lower T stage. Functional recovery experiments indicated that knockdown of RPS27A counteracted the apoptosis inhibition and clone formation promotion induced by ApoM overexpression in Caco-2 cells. In conclusion, ApoM promotes CRC cell growth and inhibits apoptosis through upregulation of RPS27A.
Collapse
Affiliation(s)
- Qinfeng Mu
- Clinical Medical Research Center, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Guanghua Luo
- Clinical Medical Research Center, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Jiang Wei
- Clinical Medical Research Center, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Lu Zheng
- Clinical Medical Research Center, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Haitao Wang
- Gastrointestinal surgery, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Miaomei Yu
- Clinical Medical Research Center, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Ning Xu
- Section of Clinical Chemistry and Pharmacology, Institute of Laboratory Medicine, Lunds University, Lund S-22185, Sweden
| |
Collapse
|
14
|
Apolipoprotein M inhibits proliferation and migration of larynx carcinoma cells. Sci Rep 2020; 10:19424. [PMID: 33173129 PMCID: PMC7655836 DOI: 10.1038/s41598-020-76480-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/26/2020] [Indexed: 11/14/2022] Open
Abstract
Prior studies have shown that apolipoprotein M (APOM) is involved in the development of some cancers. Here we investigated the effects of APOM on larynx cancer (LC). 20 patients with vocal cord polyps and 18 patients with LC were included in this study. The protein and mRNA levels of the samples were analysed using the Wes-ProteinSimple system (or traditional Western blot) and PCR technology, respectively. APOM protein level in cancer tissues was lower than that in paracarcinomatous (P = 0.0003) and polyp tissues (P < 0.0001). APOM overexpression significantly inhibited TU686 cell proliferation (P < 0.0001) and migration (P < 0.01), and increased expression of vitamin D receptor (VDR, P < 0.0001) as well as nuclear factor erythroid 2-like 3 (NFE2L3, P = 0.0215). In addition, matrix metalloproteinase-10 (MMP-10) mRNA level was significantly reduced in the APOM overexpression group (P = 0.0077). However, Western blot analysis showed that APOM overexpression did not change VDR, NFE2L3 and MMP-10 protein levels (P > 0.05). In summary, APOM inhibits the proliferation and migration of LC cells, but may not be related to VDR, NFE2L3 and MMP-10, which needs further study.
Collapse
|
15
|
Shi Y, Lam SM, Liu H, Luo G, Zhang J, Yao S, Li J, Zheng L, Xu N, Zhang X, Shui G. Comprehensive lipidomics in apoM -/- mice reveals an overall state of metabolic distress and attenuated hepatic lipid secretion into the circulation. J Genet Genomics 2020; 47:523-534. [PMID: 33309167 DOI: 10.1016/j.jgg.2020.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022]
Abstract
Apolipoprotein M (apoM) participates in both high-density lipoprotein and cholesterol metabolism. Little is known about how apoM affects lipid composition of the liver and serum. In this study, we systemically investigated the effects of apoM on liver and plasma lipidomes and how apoM participates in lipid cycling, via apoM knockout in mice and the human SMMC-7721 cell line. We used integrated mass spectrometry-based lipidomics approaches to semiquantify more than 600 lipid species from various lipid classes, which include free fatty acids, glycerolipids, phospholipids, sphingolipids, glycosphingolipids, cholesterol, and cholesteryl esters (CEs), in apoM-/- mouse. Hepatic accumulation of neutral lipids, including CEs, triacylglycerols, and diacylglycerols, was observed in apoM-/- mice; while serum lipidomic analyses showed that, in contrast to the liver, the overall levels of CEs and saturated/monounsaturated fatty acids were markedly diminished. Furthermore, the level of ApoB-100 was dramatically increased in the liver, whereas significant reductions in both ApoB-100 and low-density lipoprotein (LDL) cholesterol were observed in the serum of apoM-/- mice, which indicated attenuated hepatic LDL secretion into the circulation. Lipid profiles and proinflammatory cytokine levels indicated that apoM-/- leads to hepatic steatosis and an overall state of metabolic distress. Taken together, these results revealed that apoM knockout leads to hepatic steatosis, impaired lipid secretion, and an overall state of metabolic distress.
Collapse
Affiliation(s)
- Yuanping Shi
- Department of Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Sin Man Lam
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hong Liu
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Guanghua Luo
- Department of Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Jun Zhang
- Department of Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Shuang Yao
- Department of Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Jie Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lu Zheng
- Department of Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Ning Xu
- Section of Clinical Chemistry and Pharmacology, Institute of Laboratory Medicine, Lunds University, Klinikgatan 19, S-22185, Lund, Sweden
| | - Xiaoying Zhang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| | - Guanghou Shui
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
16
|
Zhang Y, Zheng L. Apolipoprotein: prospective biomarkers in digestive tract cancer. Transl Cancer Res 2020; 9:3712-3720. [PMID: 35117733 PMCID: PMC8799137 DOI: 10.21037/tcr-19-2106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/27/2020] [Indexed: 01/17/2023]
Abstract
Digestive tract cancer, which is characterized by high morbidity and mortality, seriously affects the quality of life of patients worldwide. The digestive tract has abundant blood supply and nutriment, providing a suitable environment for tumor cells. Under chemical, physical, and biological stimuli, the activated cancer-related genes promote tumorigenesis. The synthesis of apolipoprotein occurs in the liver, intestine, and other digestive organs. However, the functions of apolipoproteins are not limited to lipid metabolism. An increasing number of studies have revealed that apolipoproteins take part in the regulation of tumor behavior. Apolipoprotein A (apoA) has recently been acknowledged as a beneficial indicator of several cancers, including colon, hepatocellular, and pancreatic cancer. Apolipoprotein E (apoE) can affect tumor susceptibility on account of genetic polymorphism. Levels of apolipoprotein C (apoC), B (apoB), and D (apoD) also impact tumor progression and the prognosis of patients. However, because of individual, racial, and genetic differences, a consensus has not yet been reached. Based on clinical data and analysis, apolipoproteins could be a novel target and marker in tumor therapy and prevention.
Collapse
Affiliation(s)
- Yibo Zhang
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Lu Zheng
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| |
Collapse
|
17
|
Huang Z, Zhang Y, Li H, Zhou Y, Zhang Q, Chen R, Jin T, Hu K, Li S, Wang Y, Chen W, Huang Z. Vitamin D promotes the cisplatin sensitivity of oral squamous cell carcinoma by inhibiting LCN2-modulated NF-κB pathway activation through RPS3. Cell Death Dis 2019; 10:936. [PMID: 31819048 PMCID: PMC6901542 DOI: 10.1038/s41419-019-2177-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022]
Abstract
Chemoresistance is a major cause of cancer progression and the mortality of cancer patients. Developing a safe strategy for enhancing chemosensitivity is a challenge for biomedical science. Recent studies have suggested that vitamin D supplementation may decrease the risk of many cancers. However, the role of vitamin D in chemotherapy remains unknown. We found that vitamin D sensitised oral cancer cells to cisplatin and partially reversed cisplatin resistance. Using RNA-seq, we discovered that lipocalin 2 (LCN2) is an important mediator. Cisplatin enhanced the expression of LCN2 by decreasing methylation at the promoter, whereas vitamin D enhanced methylation and thereby inhibited the expression of LCN2. Overexpression of LCN2 increased cell survival and cisplatin resistance both in vitro and in vivo. High LCN2 expression was positively associated with differentiation, lymph node metastasis, and T staging and predicted a poor prognosis in oral squamous cell carcinoma (OSCC) patients. LCN2 was also associated with post-chemotherapy recurrence. Moreover, we found that LCN2 promoted the activation of NF-κB by binding to ribosomal protein S3 (RPS3) and enhanced the interaction between RPS3 and p65. Our study reveals that vitamin D can enhance cisplatin chemotherapy and suggests that vitamin D should be supplied during chemotherapy; however, more follow-up clinical studies are needed.
Collapse
Affiliation(s)
- Zixian Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Haigang Li
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yufeng Zhou
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qianyu Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tingting Jin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shihao Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Wang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weiliang Chen
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Zhiquan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|