1
|
Huang L, Guan Q, Lu R, Zhang Z, Liu C, Tian Y, Li J. Mechanism underlying the therapeutic effects of effective component compatibility of Bufei Yishen formula III combined with exercise rehabilitation on chronic obstructive pulmonary disease. Ann Med 2024; 56:2403729. [PMID: 39276358 PMCID: PMC11404378 DOI: 10.1080/07853890.2024.2403729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024] Open
Abstract
OBJECTIVE To explore the mechanism underlying the therapeutic effect of Bufei Yishen Formula III combined with exercise rehabilitation (ECC-BYF III + ER) on chronic obstructive pulmonary disease (COPD) and further identify hub genes. MATERIALS AND METHODS Gene Set Enrichment Analysis was used to identify the COPD-associated pathways and reversal pathways after ECC-BYF III + ER treatment. Protein-protein interaction network analysis and cytoHubba were used to identify the hub genes. These genes were verified using independent datasets, molecular docking and quantitative real-time polymerase chain reaction experiment. RESULTS Using the high-throughput sequencing data of COPD rats from our laboratory, 49 significantly disturbed pathways were identified in COPD model compared with control group via gene set enrichment analysis (false discovery rate < 0.05). The 34 pathways were reversed after ECC-BYF III + ER treatment. In the 2306 genes of these 34 pathways, 121 of them were differentially expressed in COPD rats compared with control samples. A protein-protein interaction network comprising 111 nodes and 274 edges was created, and 34 candidate genes were identified. Finally, seven COPD hub genes (Il1b, Ccl2, Cxcl1, Apoe, Ccl7, Ccl12, and Ccl4) were well identified and verified in independent COPD rat data from our laboratory and the public dataset GSE178513. The area under the receiver operating characteristic curve values ranged from 0.86 to 1 and from 0.67 to 1, respectively. The reliability of the mentioned genes, which can bind to the active ingredients of ECC-BYF III through molecular docking, were further verified through qRT-PCR experiments. CONCLUSION Thirty-four COPD-related pathways and seven hub genes that may be regulated by ECC-BYF III + ER were identified and well verified. The findings of this study may provide insights into the treatment and mechanism underlying COPD.
Collapse
Affiliation(s)
- Lidong Huang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qingzhou Guan
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruilong Lu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhenzhen Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Chunlei Liu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yange Tian
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
2
|
D'Amato A, Altomare A, Gilardoni E, Baron G, Carini M, Melloni E, Padoani G, Vailati S, Caponetti G, Aldini G. A quantitative proteomic approach to evaluate the efficacy of carnosine in a murine model of chronic obstructive pulmonary disease (COPD). Redox Biol 2024; 77:103374. [PMID: 39393288 DOI: 10.1016/j.redox.2024.103374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/13/2024] Open
Abstract
The aim of the work was to study a dose-dependent effect of inhaled carnosine (10, 50 or 100 mg/kg/day) in mice exposed to cigarette smoke as a model of chronic obstructive pulmonary disease (COPD). A dose-dependent loading of the dipeptide in lung tissue and bronchoalveolar lavage (BAL) was firstly demonstrated by LC-ESI-MS analysis. Cigarette smoke exposure induced a significant lung inflammation and oxidative stress in mice which was dose-dependently reduced by carnosine. Inflammation was firstly evaluated by measuring the cytokines content in the BAL. All the measured cytokines were found significantly higher in the smoke group in respect to control, although the data are affected by a significant variability. Carnosine was found effective only at the highest dose tested and significantly only for keratinocyte-derived cytokine (KC). Due to the high variability of cytokines, a quantitative proteomic approach to better understand the functional effect of carnosine and its molecular mechanisms was used. Proteomic data clearly indicate that smoke exposure had a great impact on lung tissue with 692 proteins differentially expressed above a threshold of 1.5-fold. Protein network analysis identified the activation of some pathways characteristic of COPD, including inflammatory response, fibrosis, induction of immune system by infiltration and migration of leukocyte pathways, altered pathway of calcium metabolism and oxidative stress. Carnosine at the tested dose of 100 mg/kg was found effective in reverting all the pathways evoked by smoke. Only a partial reverse of the dysregulated proteins was evident at low- and mid-tested doses, although, for some specific proteins, indicating an overall dose-dependent effect. Regarding the molecular mechanisms involved, we found that carnosine upregulated some key enzymes related to Nrf2 activation and in particular glutathione peroxidase, reductase, transferase, SOD, thioredoxins, and carbonyl reductase. Such mechanism would explain the antioxidant and anti-inflammatory effects of the dipeptide.
Collapse
Affiliation(s)
- Alfonsina D'Amato
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Ettore Gilardoni
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Giovanna Baron
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Elsa Melloni
- Zambon S.p.A., Via Lillo del Duca 11, 20091, Bresso, Italy
| | - Gloria Padoani
- Zambon S.p.A., Via Lillo del Duca 11, 20091, Bresso, Italy
| | - Silvia Vailati
- Zambon S.p.A., Via Lillo del Duca 11, 20091, Bresso, Italy
| | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy.
| |
Collapse
|
3
|
Chen J, Qiao W, Xue X, Li D, Zhang Y, Xie D, Wang J, Sun Y, Yang S, Yang Z. Amelioration of Oxidative Stress in Rats with Chronic Obstructive Pulmonary Disease through Shenqi Huatan Decoction Activation of Peroxisome Proliferator-Activated Receptor Gamma-Mediated Activated Protein Kinase/Forkhead Transcription Factor O3a Signaling Pathway. Can Respir J 2024; 2024:5647813. [PMID: 38983965 PMCID: PMC11233184 DOI: 10.1155/2024/5647813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 07/11/2024] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a common respiratory disease. Currently, no specific treatment strategy has been established; therefore, finding new treatment methods is essential. Clinically, Shenqi Huatan Decoction (SQHT) is a traditional Chinese medicinal formula for COPD treatment; however, its mechanism of action in treatment needs to be clarified. Methods The COPD rat model was replicated by cigarette smoking and tracheal injection using the LPS method. The control group and the SQHT groups were treated with dexamethasone and SQHT by gavage, respectively. After treatment, superoxide dismutase (SOD) serum levels, total antioxidant capacity (TAOC), lipid peroxidation, and malondialdehyde (MDA) were detected by enzyme-linked immunosorbent assay (ELISA). Activated protein kinase alpha (AMPK-α), forkhead transcription factor O3a (FOXO3a), manganese SOD (MnSOD), and peroxisome proliferator-activated receptor gamma (PPARγ) were detected using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and Western blot. Microribonucleic acid and protein expression levels were measured, and pathological changes in lung tissue were observed using hematoxylin and eosin staining. Results The pathological findings suggested that SQHT substantially affects COPD treatment by enhancing alveolar fusion and reducing emphysema. ELISA results showed that SQHT could lower the blood levels of MDA and lipid peroxide and raise SOD and TAOC levels, suggesting that it could lessen oxidative stress. In the lung tissue of rats with COPD, large doses of SQHT intervention dramatically increased AMPK protein expression, AMPK-α, FOXO3a, MnSOD, and PPARγ, indicating that SQHT may reduce oxidative stress by activating the PPARγ-mediated AMPK/FOXO3a signaling pathway. Similar results were obtained using RT-qPCR. Conclusion SQHT is effective for COPD treatment. The mechanism of action may be related to the activation of the PPARγ-mediated AMPK/FOXO3a signaling pathway to improve oxidative stress in lung tissue.
Collapse
Affiliation(s)
- Jingjing Chen
- Department of Respiration Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan 030012, China
| | - Wenxiao Qiao
- Department of Respiration Institute of Shanxi Traditional Chinese Medicine, Taiyuan 030012, China
| | - Xiaoming Xue
- Department of Respiration Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan 030012, China
| | - Dian Li
- Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| | - Ye Zhang
- Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| | - Di Xie
- Department of Respiration Institute of Shanxi Traditional Chinese Medicine, Taiyuan 030012, China
| | - Jinyun Wang
- Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| | - Yaoqin Sun
- Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| | - Shuo Yang
- Department of Respiration Institute of Shanxi Traditional Chinese Medicine, Taiyuan 030012, China
| | - Zhuomin Yang
- Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| |
Collapse
|
4
|
Meng T, Li FS, Xu D, Jing J, Li Z, Maimaitiaili M, Bao YJ. Yiqigubiao pill treatment regulates Sirtuin 5 expression and mitochondrial function in chronic obstructive pulmonary disease. J Thorac Dis 2024; 16:2326-2340. [PMID: 38738261 PMCID: PMC11087629 DOI: 10.21037/jtd-23-1115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/23/2024] [Indexed: 05/14/2024]
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a heterogeneous group of pathophysiological bases of airway inflammation and its anti-inflammatory response. Aberrant mitochondrial signaling and mitochondrial dysfunction underlie the pathomechanisms leading to COPD. This study aims to investigate the effects of the Yiqigubiao (YQGB) pill, a traditional Chinese medicine (TCM), on Sirtuin 5 (SIRT5) and mitochondrial function in patients with COPD. Methods Thirty-four patients with COPD were randomized into oral YQGB or placebo groups concurrent with a 24-week routine treatment. The pulmonary function was assessed by examining the levels of forced expiratory volume in one second (FEV1)/forced vital capacity (FVC), FEV1, and FVC. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were used to detect SIRT5 expression in mitochondria isolated from peripheral blood. Flow cytometry was used to detect changes in mitochondrial membrane potential and reactive oxygen species (ROS) in peripheral blood lymphocytes. Human bronchial epithelial (HBE) cells stimulated by cigarette smoke extract (CSE) were treated with YQGB. After SIRT5 was knocked down in cells, the changes in mitochondrial membrane potential, levels of adenosine triphosphate (ATP), and ROS were detected. Results YQGB treatment significantly improved lung function in patients with COPD. The expression of SIRT5 and the mitochondrial membrane potential significantly increased and ROS decreased in patients with COPD after YQGB treatment. The CSE decreased cell proliferation and SIRT5 expression, which was alleviated after YQGB treatment. Furthermore, SIRT5 was knocked down in CSE-stimulated HBE cells, and its expression was elevated upon YQGB treatment. The knockdown of SIRT5 significantly altered the CSE-stimulation-induced dysregulation of mitochondrial membrane potential, ATP levels, and ROS. This was also restored after YQGB treatment. Conclusions YQGB treatment can elevate SIRT5 expression, restore mitochondrial function in COPD, and exert protective effects.
Collapse
Affiliation(s)
- Ting Meng
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China
- Department of General Medicine, The Eighth People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Feng-Sen Li
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China
- Department of Respiratory, The Fourth Affiliated Hospital of Xinjiang Medical University, National Clinical Research Base of Traditional Chinese Medicine, Urumqi, China
| | - Dan Xu
- Department of Respiratory, The Fourth Affiliated Hospital of Xinjiang Medical University, National Clinical Research Base of Traditional Chinese Medicine, Urumqi, China
| | - Jing Jing
- Department of Respiratory, The Fourth Affiliated Hospital of Xinjiang Medical University, National Clinical Research Base of Traditional Chinese Medicine, Urumqi, China
| | - Zheng Li
- Department of Respiratory, The Fourth Affiliated Hospital of Xinjiang Medical University, National Clinical Research Base of Traditional Chinese Medicine, Urumqi, China
| | - Miyesier Maimaitiaili
- Department of General Medicine, The Eighth People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Yong-Jiang Bao
- Department of General Medicine, The Eighth People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
5
|
An N, An J, Zeng T, Wang S, Li P, Hu X, Shen Y, Liu L, Wen F. Research progress of mitochondria in chronic obstructive pulmonary disease: a bibliometric analysis based on the Web of Science Core Collection. J Thorac Dis 2024; 16:215-230. [PMID: 38410585 PMCID: PMC10894413 DOI: 10.21037/jtd-23-777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/10/2023] [Indexed: 02/28/2024]
Abstract
Background Due to its high morbidity and mortality, chronic obstructive pulmonary disease (COPD) has become a major global healthcare issue. Although there is abundant research regarding COPD, a bibliometric analysis of the literature related to mitochondria and COPD is lacking. Thus this study aimed to summarize the research status, research direction, and research hotspots of the published articles concerning COPD and mitochondria. Methods A literature search for included publications related to COPD and mitochondria was carried out on the Web of Science Core Collection from the date of database establishment to December 15, 2022. A subsequent bibliometric and visual analysis of the included publications was conducted via Microsoft Excel, R software, CiteSpace, and VOSviewer. Results A total of 227 published articles on COPD and mitochondria from 139 journals were included. Over the study period, the annual publication number and citation frequency in this field both showed a trend of continuous growth. The United States had the highest centrality and was the most productive country. The frequently occurring keywords were "oxidative stress", "obstructive pulmonary disease", "dysfunction", "mitochondria", "inflammation", and "cigarette smoke", among others. Recent research hotspots included autophagy, model, mitochondria, health, and extracellular vesicles (EVs). Despite an abundance and variety of research, there is still relatively little academic communications between scholars and institutions. Conclusions This bibliometric study can help researchers gain a quick overview of the research into mitochondria and COPD and thus inform novel ideas and directions for future research in this field.
Collapse
Affiliation(s)
- Naer An
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Jing An
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Tingting Zeng
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Shuyan Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Ping Li
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Xueru Hu
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Yongchun Shen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Lian Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Fuqiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| |
Collapse
|
6
|
Lee Y, Song J, Jeong Y, Choi E, Ahn C, Jang W. Meta-analysis of single-cell RNA-sequencing data for depicting the transcriptomic landscape of chronic obstructive pulmonary disease. Comput Biol Med 2023; 167:107685. [PMID: 37976829 DOI: 10.1016/j.compbiomed.2023.107685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a respiratory disease characterized by airflow limitation and chronic inflammation of the lungs that is a leading cause of death worldwide. Since the complete pathological mechanisms at the single-cell level are not fully understood yet, an integrative approach to characterizing the single-cell-resolution landscape of COPD is required. To identify the cell types and mechanisms associated with the development of COPD, we conducted a meta-analysis using three single-cell RNA-sequencing datasets of COPD. Among the 154,011 cells from 16 COPD patients and 18 healthy subjects, 17 distinct cell types were observed. Of the 17 cell types, monocytes, mast cells, and alveolar type 2 cells (AT2 cells) were found to be etiologically implicated in COPD based on genetic and transcriptomic features. The most transcriptomically diversified states of the three etiological cell types showed significant enrichment in immune/inflammatory responses (monocytes and mast cells) and/or mitochondrial dysfunction (monocytes and AT2 cells). We then identified three chemical candidates that may potentially induce COPD by modulating gene expression patterns in the three etiological cell types. Overall, our study suggests the single-cell level mechanisms underlying the pathogenesis of COPD and may provide information on toxic compounds that could be potential risk factors for COPD.
Collapse
Affiliation(s)
- Yubin Lee
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea.
| | - Jaeseung Song
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea.
| | - Yeonbin Jeong
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea.
| | - Eunyoung Choi
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea.
| | - Chulwoo Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Wonhee Jang
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
7
|
Odimba U, Senthilselvan A, Farrell J, Gao Z. Sex-Specific Genetic Determinants of Asthma-COPD Phenotype and COPD in Middle-Aged and Older Canadian Adults: An Analysis of CLSA Data. COPD 2023; 20:233-247. [PMID: 37466093 DOI: 10.1080/15412555.2023.2229906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/22/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023]
Abstract
The etiology of sex differences in the risk of asthma-COPD phenotype and COPD is still not completely understood. Genetic and environmental risk factors are commonly believed to play an important role. This study aims to identify sex-specific genetic markers associated with asthma-COPD phenotype and COPD using the Canadian Longitudinal Study on Aging (CLSA) Baseline Comprehensive and Genomic data. There were a total of 1,415 COPD cases. Out of them, 504 asthma-COPD phenotype cases were identified. 20,524 participants without a diagnosis of asthma and COPD served as controls. We performed genome-wide SNP-by-sex interaction analysis. SNPs with an interaction p-value < 10-5 were included in a sex-stratified multivariable logistic regression for asthma-COPD phenotype and COPD outcomes. 18 and 28 SNPs had a significant interaction term p-value < 10-5 with sex in the regression analyses of asthma-COPD phenotype and COPD outcomes, respectively. Sex-stratified multivariable analysis of asthma-COPD phenotype showed that 7 SNPs in/near SMYD3, FHIT, ZNF608, RIMBP2, ZNF133, BPIFB1, and S100B loci were significant in males. Sex-stratified multivariable analysis of COPD showed that 8 SNPs in/near MAGI1, COX18, OSTC, ELOVL5, C7orf72 FGF14, and NKAIN4 were significant in males, and 4 SNPs in/near genes CAMTA1, SATB2, PDE10A, and LINC00908 were significant in females. An SNP in the ZPBP gene was associated with COPD in both males and females. Identification of sex-specific loci associated with asthma-COPD phenotype and COPD may offer valuable evidence toward a better understanding of the sex-specific differences in the pathophysiology of the diseases.
Collapse
Affiliation(s)
- Ugochukwu Odimba
- Clinical Epidemiology Unit, Division of Community Health and Humanities, Faculty of Medicine, Memorial University, St. John's, Canada
| | | | - Jamie Farrell
- Clinical Epidemiology Unit, Division of Community Health and Humanities, Faculty of Medicine, Memorial University, St. John's, Canada
- Faculty of Medicine, Health Sciences Centre (Respirology Department), Memorial University, St John's, Newfoundland and Labrador, Canada
| | - Zhiwei Gao
- Clinical Epidemiology Unit, Division of Community Health and Humanities, Faculty of Medicine, Memorial University, St. John's, Canada
| |
Collapse
|
8
|
Song MA, Kim JY, Gorr MW, Miller RA, Karpurapu M, Nguyen J, Patel D, Archer KJ, Pabla N, Shields PG, Wold LE, Christman JW, Chung S. Sex-specific lung inflammation and mitochondrial damage in a model of electronic cigarette exposure in asthma. Am J Physiol Lung Cell Mol Physiol 2023; 325:L568-L579. [PMID: 37697923 PMCID: PMC11068405 DOI: 10.1152/ajplung.00033.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/14/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
The prevalence of electronic cigarette (EC) use among adult with asthma has continued to increase over time, in part due to the belief of being less harmful than smoking. However, the extent of their toxicity and the involved mechanisms contributing to the deleterious impact of EC exposure on patients with preexisting asthma have not been delineated. In the present project, we tested the hypothesis that EC use contributes to respiratory damage and worsening inflammation in the lungs of patients with asthma. To define the consequences of EC exposure in established asthma, we used a mouse model with/without preexisting asthma for short-term exposure to EC aerosols. C57/BL6J mice were sensitized and challenged with a DRA (dust mite, ragweed, Aspergillus fumigates, 200 µg/mL) mixture and exposed daily to EC with nicotine (2% nicotine in 30:70 propylene glycol: vegetable glycerin) or filtered air for 2 wk. The mice were evaluated at 24 h after the final EC exposure. After EC exposure in asthmatic mice, lung inflammatory cell infiltration and goblet cell hyperplasia were increased, whereas EC alone did not cause airway inflammation. Our data also show that mitochondrial DNA (mtDNA) content and a key mtDNA regulator, mitochondrial transcription factor A (TFAM), are reduced in asthmatic EC-exposed mice in a sex-dependent manner. Together, these results indicate that TFAM loss in lung epithelium following EC contributes to male-predominant sex pathological differences, including mitochondrial damage, inflammation, and remodeling in asthmatic airways.NEW & NOTEWORTHY Respiratory immunity is dysregulated in preexisting asthma, and further perturbations by EC use could exacerbate asthma severity. However, the extent of their toxicity and the involved mechanisms contributing to the deleterious impact of EC exposure on patients with preexisting asthma have not been delineated. We found that EC has unique biological impacts in lungs and potential sex differences with loss of TFAM, a key mtDNA regulator, in lung epithelial region from our animal EC study.
Collapse
Affiliation(s)
- Min-Ae Song
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio, United States
| | - Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
| | - Matthew W Gorr
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Roy A Miller
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Manjula Karpurapu
- Division of Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Jackie Nguyen
- Division of Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Devki Patel
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio, United States
| | - Kellie J Archer
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, Ohio, United States
| | - Navjot Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
| | - Peter G Shields
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, Ohio, United States
| | - Loren E Wold
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - John W Christman
- Division of Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Sangwoon Chung
- Division of Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
9
|
Barbier E, Carpentier J, Simonin O, Gosset P, Platel A, Happillon M, Alleman LY, Perdrix E, Riffault V, Chassat T, Lo Guidice JM, Anthérieu S, Garçon G. Oxidative stress and inflammation induced by air pollution-derived PM 2.5 persist in the lungs of mice after cessation of their sub-chronic exposure. ENVIRONMENT INTERNATIONAL 2023; 181:108248. [PMID: 37857188 DOI: 10.1016/j.envint.2023.108248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
More than 7 million early deaths/year are attributable to air pollution. Current health concerns are especially focused on air pollution-derived particulate matter (PM). Although oxidative stress-induced airway inflammation is one of the main adverse outcome pathways triggered by air pollution-derived PM, the persistence of both these underlying mechanisms, even after exposure cessation, remained poorly studied. In this study, A/JOlaHsd mice were also exposed acutely (24 h) or sub-chronically (4 weeks), with or without a recovery period (12 weeks), to two urban PM2.5 samples collected during contrasting seasons (i.e., autumn/winter, AW or spring/summer, SS). The distinct intrinsic oxidative potentials (OPs) of AW and SS PM2.5, as evaluated in acellular conditions, were closely related to their respective physicochemical characteristics and their respective ability to really generate ROS over-production in the mouse lungs. Despite the early activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) cell signaling pathway by AW and, in a lesser degree, SS PM2.5, in the murine lungs after acute and sub-chronic exposures, the critical redox homeostasis was not restored, even after the exposure cessation. Accordingly, an inflammatory response was reported through the activation of the nuclear factor-kappa B (NF-κB) cell signaling pathway activation, the secretion of cytokines, and the recruitment of inflammatory cells, in the murine lungs after the acute and sub-chronic exposures to AW and, in a lesser extent, to SS PM2.5, which persisted after the recovery period. Taken together, these original results provided, for the first time, new relevant insights that air pollution-derived PM2.5, with relatively high intrinsic OPs, induced oxidative stress and inflammation, which persisted admittedly at a lower level in the lungs after the exposure cessation, thereby contributing to the occurrence of molecular and cellular adverse events leading to the development and/or exacerbation of future chronic inflammatory lung diseases and even cancers.
Collapse
Affiliation(s)
- Emeline Barbier
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR4483-IMPECS, France
| | - Jessica Carpentier
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR4483-IMPECS, France
| | - Ophélie Simonin
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR4483-IMPECS, France
| | - Pierre Gosset
- Service d'Anatomo-pathologie, Hôpital Saint Vincent de Paul, Lille, France
| | - Anne Platel
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR4483-IMPECS, France
| | - Mélanie Happillon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR4483-IMPECS, France
| | - Laurent Y Alleman
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, Lille, France
| | - Esperanza Perdrix
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, Lille, France
| | - Véronique Riffault
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, Lille, France
| | - Thierry Chassat
- Institut Pasteur de Lille, Plateforme d'Expérimentation et de Haute Technologie Animale, Lille, France
| | | | | | - Guillaume Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR4483-IMPECS, France.
| |
Collapse
|
10
|
Gu P, Wang Z, Yu X, Wu N, Wu L, Li Y, Hu X. Mechanism of KLF9 in airway inflammation in chronic obstructive pulmonary. Immun Inflamm Dis 2023; 11:e1043. [PMID: 37904708 PMCID: PMC10568256 DOI: 10.1002/iid3.1043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is an airway-associated lung disorder, resulting in airway inflammation. This article aimed to explore the role of the krüppel-like factor 9 (KLF9)/microRNA (miR)-494-3p/phosphatase and tensin homolog (PTEN) axis in airway inflammation and pave a theoretical foundation for the treatment of COPD. METHODS The COPD mouse model was established by exposure to cigarette smoke, followed by measurements of total cells, neutrophils, macrophages, and hematoxylin and eosin staining. The COPD cell model was established on human lung epithelial cells BEAS-2B using cigarette smoke extract. Cell viability was assessed by cell counting kit-8 assay. miR-494-3p, KLF9, PTEN, and NLR family, pyrin domain containing 3 (NLRP3) levels in tissues and cells were measured by quantitative real-time polymerase chain reaction or Western blot assay. Inflammatory factors (TNF-α/IL-6/IL-8/IFN-γ) were measured by enzyme-linked immunosorbent assay. Interactions among KLF9, miR-494-3p, and PTEN 3'UTR were verified by chromatin immunoprecipitation and dual-luciferase assays. RESULTS KLF9 was upregulated in lung tissues of COPD mice. Inhibition of KLF9 alleviated airway inflammation, reduced intrapulmonary inflammatory cell infiltration, and repressed NLRP3 expression. KLF9 bound to the miR-494-3p promoter and increased miR-494-3p expression, and miR-494-3p negatively regulated PTEN expression. miR-494-3p overexpression or Nigericin treatment reversed KLF9 knockdown-driven repression of NLRP3 inflammasome and inflammation. CONCLUSION KLF9 bound to the miR-494-3p promoter and repressed PTEN expression, thereby facilitating NLRP3 inflammasome-mediated inflammation.
Collapse
Affiliation(s)
- Peijie Gu
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Zhen Wang
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Xin Yu
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Nan Wu
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Liang Wu
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Yihang Li
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| | - Xiaodong Hu
- Department of Pulmonary and Critical Care MedicineJiangyin Hospital of Traditional Chinese MedicineJiangyin CityChina
| |
Collapse
|
11
|
Albano GD, Montalbano AM, Gagliardo R, Profita M. Autophagy/Mitophagy in Airway Diseases: Impact of Oxidative Stress on Epithelial Cells. Biomolecules 2023; 13:1217. [PMID: 37627282 PMCID: PMC10452925 DOI: 10.3390/biom13081217] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Autophagy is the key process by which the cell degrades parts of itself within the lysosomes. It maintains cell survival and homeostasis by removing molecules (particularly proteins), subcellular organelles, damaged cytoplasmic macromolecules, and by recycling the degradation products. The selective removal or degradation of mitochondria is a particular type of autophagy called mitophagy. Various forms of cellular stress (oxidative stress (OS), hypoxia, pathogen infections) affect autophagy by inducing free radicals and reactive oxygen species (ROS) formation to promote the antioxidant response. Dysfunctional mechanisms of autophagy have been found in different respiratory diseases such as chronic obstructive lung disease (COPD) and asthma, involving epithelial cells. Several existing clinically approved drugs may modulate autophagy to varying extents. However, these drugs are nonspecific and not currently utilized to manipulate autophagy in airway diseases. In this review, we provide an overview of different autophagic pathways with particular attention on the dysfunctional mechanisms of autophagy in the epithelial cells during asthma and COPD. Our aim is to further deepen and disclose the research in this direction to stimulate the develop of new and selective drugs to regulate autophagy for asthma and COPD treatment.
Collapse
Affiliation(s)
- Giusy Daniela Albano
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Section of Palermo, Via Ugo La Malfa 153, 90146 Palermo, Italy; (A.M.M.); (R.G.); (M.P.)
| | | | | | | |
Collapse
|
12
|
Zhang R, Shan H, Li Y, Ma Y, Liu S, Liu X, Yang X, Zhang J, Zhang M. Cyclophilin D Contributes to Airway Epithelial Mitochondrial Damage in Chronic Obstructive Pulmonary Disease. Lung 2023:10.1007/s00408-023-00619-5. [PMID: 37261529 DOI: 10.1007/s00408-023-00619-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/12/2023] [Indexed: 06/02/2023]
Abstract
INTRODUCTION Airway epithelial mitochondrial injury is an important pathogenesis of chronic obstructive pulmonary disease (COPD). Cyclophilin D (CypD) is a component of mitochondrial permeability transition pore and related to mitochondrial damage. However, the role of CypD in airway epithelial mitochondrial injury and COPD pathogenesis remains unclear. METHODS CypD expression in human airway epithelium was determined by immunohistochemistry, and mitochondrial structure of airway epithelial cell was observed under the transmission electron microscopy. The expression of CypD signaling pathway in cigarette smoke extract (CSE)-treated airway epithelial cells was measured by real-time PCR and Western-blot. CSE-induced damage of airway epithelial cell and mitochondria was further studied. RESULTS Immunohistochemistry and transmission electron microscopy analysis revealed that CypD expression in airway epithelium was significantly increased associated with notable airway epithelial mitochondrial structure damage in the patients with COPD. The mRNA and protein expression of CypD was significantly increased in concentration- and time-dependent manners when airway epithelial cells were treated with CSE. CypD siRNA pretreatment significantly suppressed the increases of CypD and Bax expression, and reduced the decline of Bcl-2 expression in 7.5% CSE-treated airway epithelial cells. Furthermore, CypD silencing significantly attenuated mitochondrial damage and cell apoptosis, and increased cell viability when airway epithelial cells were stimulated with 7.5% CSE. CONCLUSION These data suggest that CypD signaling pathway is involved in the pathogenesis of COPD and provide a potential therapeutic target for COPD.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Fifth Road, Xi'an, 710004, Shaanxi, China
| | - Hu Shan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Fifth Road, Xi'an, 710004, Shaanxi, China
| | - Yuer Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Fifth Road, Xi'an, 710004, Shaanxi, China
| | - Yuefeng Ma
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shiyuan Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaohuan Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Fifth Road, Xi'an, 710004, Shaanxi, China
| | - Xia Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Fifth Road, Xi'an, 710004, Shaanxi, China
| | - Jie Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Fifth Road, Xi'an, 710004, Shaanxi, China
| | - Ming Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Fifth Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
13
|
Li S, Huang Q, He B. SIRT1 as a Potential Therapeutic Target for Chronic Obstructive Pulmonary Disease. Lung 2023; 201:201-215. [PMID: 36790647 DOI: 10.1007/s00408-023-00607-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/04/2023] [Indexed: 02/16/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common, preventable, and treatable disease characterized by irreversible airflow obstruction and lung function decline. It is well established that COPD represents a major cause of morbidity and mortality globally. Due to the substantial economic and social burdens associated with COPD, it is necessary to discover new targets and develop novel beneficial therapies. Although the pathogenesis of COPD is complex and remains to be robustly elucidated, numerous studies have shown that oxidative stress, inflammatory responses, cell apoptosis, autophagy, and aging are involved in the pathogenesis of COPD. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase belonging to the silent information regulator 2 (Sir2) family. Multiple studies have indicated that SIRT1 plays an important role in oxidative stress, apoptosis, inflammation, autophagy, and cellular senescence, which contributes to the pathogenesis and development of COPD. This review aimed to discuss the functions and mechanisms of SIRT1 in the progression of COPD and concluded that SIRT1 activation might be a potential therapeutic strategy for COPD.
Collapse
Affiliation(s)
- Siqi Li
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Huang
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Baimei He
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China. .,Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
14
|
Zhang Y, Zhang J, Fu Z. Role of autophagy in lung diseases and ageing. Eur Respir Rev 2022; 31:31/166/220134. [PMID: 36543345 PMCID: PMC9879344 DOI: 10.1183/16000617.0134-2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2022] Open
Abstract
The lungs face ongoing chemical, mechanical, biological, immunological and xenobiotic stresses over a lifetime. Advancing age progressively impairs lung function. Autophagy is a "housekeeping" survival strategy involved in numerous physiological and pathological processes in all eukaryotic cells. Autophagic activity decreases with age in several species, whereas its basic activity extends throughout the lifespan of most animals. Dysregulation of autophagy has been proven to be closely related to the pathogenesis of several ageing-related pulmonary diseases. This review summarises the role of autophagy in the pathogenesis of pulmonary diseases associated with or occurring in the context of ageing, including acute lung injury, chronic obstructive pulmonary disease, asthma and pulmonary fibrosis, and describes its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China,Corresponding author: Zhiling Fu ()
| |
Collapse
|
15
|
Li CX, Gao J, Sköld CM, Wheelock ÅM. miRNA-mRNA-protein dysregulated network in COPD in women. Front Genet 2022; 13:1010048. [PMID: 36468026 PMCID: PMC9712209 DOI: 10.3389/fgene.2022.1010048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/10/2022] [Indexed: 10/14/2023] Open
Abstract
Rationale: Chronic obstructive pulmonary disease (COPD) is a complex disease caused by a multitude of underlying mechanisms, and molecular mechanistic modeling of COPD, especially at a multi-molecular level, is needed to facilitate the development of molecular diagnostic and prognostic tools and efficacious treatments. Objectives: To investigate the miRNA-mRNA-protein dysregulated network to facilitate prediction of biomarkers and disease subnetwork in COPD in women. Measurements and Results: Three omics data blocks (mRNA, miRNA, and protein) collected from BAL cells from female current-smoker COPD patients, smokers with normal lung function, and healthy never-smokers were integrated with miRNA-mRNA-protein regulatory networks to construct a COPD-specific dysregulated network. Furthermore, downstream network topology, literature annotation, and functional enrichment analysis identified both known and novel disease-related biomarkers and pathways. Both abnormal regulations in miRNA-induced mRNA transcription and protein translation repression play roles in COPD. Finally, the let-7-AIFM1-FKBP1A pathway is highlighted in COPD pathology. Conclusion: For the first time, a comprehensive miRNA-mRNA-protein dysregulated network of primary immune cells from the lung related to COPD in females was constructed to elucidate specific biomarkers and disease pathways. The multi-omics network provides a new molecular insight from a multi-molecular aspect and highlights dysregulated interactions. The highlighted let-7-AIFM1-FKBP1A pathway also indicates new hypotheses of COPD pathology.
Collapse
Affiliation(s)
- Chuan Xing Li
- Respiratory Medicine Unit, Department of Medicine, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jing Gao
- Respiratory Medicine Unit, Department of Medicine, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Heart and Lung Centre, Department of Pulmonary Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - C. Magnus Sköld
- Respiratory Medicine Unit, Department of Medicine, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Åsa M. Wheelock
- Respiratory Medicine Unit, Department of Medicine, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
16
|
Mori KM, McElroy JP, Weng DY, Chung S, Fadda P, Reisinger SA, Ying KL, Brasky TM, Wewers MD, Freudenheim JL, Shields PG, Song MA. Lung mitochondrial DNA copy number, inflammatory biomarkers, gene transcription and gene methylation in vapers and smokers. EBioMedicine 2022; 85:104301. [PMID: 36215783 PMCID: PMC9561685 DOI: 10.1016/j.ebiom.2022.104301] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/31/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Mitochondrial DNA copy number (mtCN) maintains cellular function and homeostasis, and is linked to nuclear DNA methylation and gene expression. Increased mtCN in the blood is associated with smoking and respiratory disease, but has received little attention for target organ effects for smoking or electronic cigarette (EC) use. METHODS Bronchoscopy biospecimens from healthy EC users, smokers (SM), and never-smokers (NS) were assessed for associations of mtCN with mtDNA point mutations, immune responses, nuclear DNA methylation and gene expression using linear regression. Ingenuity pathway analysis was used for enriched pathways. GEO and TCGA respiratory disease datasets were used to explore the involvement of mtCN-associated signatures. FINDINGS mtCN was higher in SM than NS, but EC was not statistically different from either. Overall there was a negative association of mtCN with a point mutation in the D-loop but no difference within groups. Positive associations of mtCN with IL-2 and IL-4 were found in EC only. mtCN was significantly associated with 71,487 CpGs and 321 transcripts. 263 CpGs were correlated with nearby transcripts for genes enriched in the immune system. EC-specific mtCN-associated-CpGs and genes were differentially expressed in respiratory diseases compared to controls, including genes involved in cellular movement, inflammation, metabolism, and airway hyperresponsiveness. INTERPRETATION Smoking may elicit a lung toxic effect through mtCN. While the impact of EC is less clear, EC-specific associations of mtCN with nuclear biomarkers suggest exposure may not be harmless. Further research is needed to understand the role of smoking and EC-related mtCN on lung disease risks. FUNDING The National Cancer Institute, the National Heart, Lung, and Blood Institute, the Food and Drug Administration Center for Tobacco Products, the National Center For Advancing Translational Sciences, and Pelotonia Intramural Research Funds.
Collapse
Affiliation(s)
- Kellie M Mori
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, United States
| | - Joseph P McElroy
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Daniel Y Weng
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Sangwoon Chung
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Paolo Fadda
- Genomics Shared Resource, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Sarah A Reisinger
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Kevin L Ying
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Theodore M Brasky
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Mark D Wewers
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Jo L Freudenheim
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Peter G Shields
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States.
| | - Min-Ae Song
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
17
|
Chellappan DK, Paudel KR, Tan NW, Cheong KS, Khoo SSQ, Seow SM, Chellian J, Candasamy M, Patel VK, Arora P, Singh PK, Singh SK, Gupta G, Oliver BG, Hansbro PM, Dua K. Targeting the mitochondria in chronic respiratory diseases. Mitochondrion 2022; 67:15-37. [PMID: 36176212 DOI: 10.1016/j.mito.2022.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/28/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022]
Abstract
Mitochondria are one of the basic essential components for eukaryotic life survival. It is also the source of respiratory ATP. Recently published studies have demonstrated that mitochondria may have more roles to play aside from energy production. There is an increasing body of evidence which suggest that mitochondrial activities involved in normal and pathological states contribute to significant impact to the lung airway morphology and epithelial function in respiratory diseases such as asthma, COPD, and lung cancer. This review summarizes the pathophysiological pathways involved in asthma, COPD, lung cancer and highlights potential treatment strategies that target the malfunctioning mitochondria in such ailments. Mitochondria are responsive to environmental stimuli such as infection, tobacco smoke, and inflammation, which are essential in the pathogenesis of respiratory diseases. They may affect mitochondrial shape, protein production and ultimately cause dysfunction. The impairment of mitochondrial function has downstream impact on the cytosolic components, calcium control, response towards oxidative stress, regulation of genes and proteins and metabolic activities. Several novel compounds and alternative medicines that target mitochondria in asthma and chronic lung diseases have been discussed here. Moreover, mitochondrial enzymes or proteins that may serve as excellent therapeutic targets in COPD are also covered. The role of mitochondria in respiratory diseases is gaining much attention and mitochondria-based treatment strategies and personalized medicine targeting the mitochondria may materialize in the near future. Nevertheless, more in-depth studies are urgently needed to validate the advantages and efficacy of drugs that affect mitochondria in pathological states.
Collapse
Affiliation(s)
- Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia.
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Nian Wan Tan
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Ka Seng Cheong
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Samantha Sert Qi Khoo
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Su Min Seow
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Vyoma K Patel
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Poonam Arora
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India; Department of Pharmacognosy and Phytochemistry, SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
18
|
Kumar H, Aggarwal N, Marwaha MG, Deep A, Chopra H, Matin MM, Roy A, Emran TB, Mohanta YK, Ahmed R, Mohanta TK, Saravanan M, Marwaha RK, Al-Harrasi A. Thiazolidin-2,4-Dione Scaffold: An Insight into Recent Advances as Antimicrobial, Antioxidant, and Hypoglycemic Agents. Molecules 2022; 27:6763. [PMID: 36235304 PMCID: PMC9572748 DOI: 10.3390/molecules27196763] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 12/04/2022] Open
Abstract
Heterocyclic compounds containing nitrogen and sulfur, especially those in the thiazole family, have generated special interest in terms of their synthetic chemistry, which is attributable to their ubiquitous existence in pharmacologically dynamic natural products and also as overwhelmingly powerful agrochemicals and pharmaceuticals. The thiazolidin-2,4-dione (TZD) moiety plays a central role in the biological functioning of several essential molecules. The availability of substitutions at the third and fifth positions of the Thiazolidin-2,4-dione (TZD) scaffold makes it a highly utilized and versatile moiety that exhibits a wide range of biological activities. TZD analogues exhibit their hypoglycemic activity by improving insulin resistance through PPAR-γ receptor activation, their antimicrobial action by inhibiting cytoplasmic Mur ligases, and their antioxidant action by scavenging reactive oxygen species (ROS). In this manuscript, an effort has been made to review the research on TZD derivatives as potential antimicrobial, antioxidant, and antihyperglycemic agents from the period from 2010 to the present date, along with their molecular mechanisms and the information on patents granted to TZD analogues.
Collapse
Affiliation(s)
- Harsh Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
| | - Minakshi Gupta Marwaha
- Department of Pharmaceutical Sciences, Sat Priya College of Pharmacy, Rohtak 124001, India
| | - Aakash Deep
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani 127021, India
| | - Hitesh Chopra
- College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Mohammed M. Matin
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Ri-Bhoi 793101, India
| | - Ramzan Ahmed
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Ri-Bhoi 793101, India
| | - Tapan Kumar Mohanta
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman
| | - Muthupandian Saravanan
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India
| | - Rakesh Kumar Marwaha
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
19
|
Zhao X, Zhang Q, Zheng R. The interplay between oxidative stress and autophagy in chronic obstructive pulmonary disease. Front Physiol 2022; 13:1004275. [PMID: 36225291 PMCID: PMC9548529 DOI: 10.3389/fphys.2022.1004275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is a highly conserved process that is indispensable for cell survival, embryonic development, and tissue homeostasis. Activation of autophagy protects cells against oxidative stress and is a major adaptive response to injury. When autophagy is dysregulated by factors such as smoking, environmental insults and aging, it can lead to enhanced formation of aggressors and production of reactive oxygen species (ROS), resulting in oxidative stress and oxidative damage to cells. ROS activates autophagy, which in turn promotes cell adaptation and reduces oxidative damage by degrading and circulating damaged macromolecules and dysfunctional cell organelles. The cellular response triggered by oxidative stress includes changes in signaling pathways that ultimately regulate autophagy. Chronic obstructive pulmonary disease (COPD) is the most common lung disease among the elderly worldwide, with a high mortality rate. As an induced response to oxidative stress, autophagy plays an important role in the pathogenesis of COPD. This review discusses the regulation of oxidative stress and autophagy in COPD, and aims to provide new avenues for future research on target-specific treatments for COPD.
Collapse
Affiliation(s)
| | | | - Rui Zheng
- *Correspondence: Qiang Zhang, ; Rui Zheng,
| |
Collapse
|
20
|
Emma R, Caruso M, Campagna D, Pulvirenti R, Li Volti G. The Impact of Tobacco Cigarettes, Vaping Products and Tobacco Heating Products on Oxidative Stress. Antioxidants (Basel) 2022; 11:1829. [PMID: 36139904 PMCID: PMC9495690 DOI: 10.3390/antiox11091829] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Cells constantly produce oxidizing species because of their metabolic activity, which is counteracted by the continuous production of antioxidant species to maintain the homeostasis of the redox balance. A deviation from the metabolic steady state leads to a condition of oxidative stress. The source of oxidative species can be endogenous or exogenous. A major exogenous source of these species is tobacco smoking. Oxidative damage can be induced in cells by chemical species contained in smoke through the generation of pro-inflammatory compounds and the modulation of intracellular pro-inflammatory pathways, resulting in a pathological condition. Cessation of smoking reduces the morbidity and mortality associated with cigarette use. Next-generation products (NGPs), as alternatives to combustible cigarettes, such as electronic cigarettes (e-cig) and tobacco heating products (THPs), have been proposed as a harm reduction strategy to reduce the deleterious impacts of cigarette smoking. In this review, we examine the impact of tobacco smoke and MRPs on oxidative stress in different pathologies, including respiratory and cardiovascular diseases and tumors. The impact of tobacco cigarette smoke on oxidative stress signaling in human health is well established, whereas the safety profile of MRPs seems to be higher than tobacco cigarettes, but further, well-conceived, studies are needed to better understand the oxidative effects of these products with long-term exposure.
Collapse
Affiliation(s)
- Rosalia Emma
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| | - Davide Campagna
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
| | - Roberta Pulvirenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| |
Collapse
|
21
|
Protective role of zinc in the pathogenesis of respiratory diseases. Eur J Clin Nutr 2022; 77:427-435. [PMID: 35982216 PMCID: PMC9387421 DOI: 10.1038/s41430-022-01191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Respiratory diseases remain a major cause of morbidity and mortality worldwide. An imbalance of zinc, an essential trace element, is associated with a variety of lung diseases. We reviewed and summarized recent research (human subjects, animal studies, in vitro studies) on zinc in respiratory diseases to explore the protective mechanism of zinc from the perspective of regulation of oxidative stress, inflammation, lipid metabolism, and apoptosis. In the lungs, zinc has anti-inflammatory, antioxidant, and antiviral effects; can inhibit cancer cell migration; can regulate lipid metabolism and immune cells; and exerts other protective effects. Our comprehensive evaluation highlights the clinical and experimental effects of zinc in the pathogenesis of respiratory diseases. Our analysis also provides insight into the clinical application of zinc-targeted therapy for respiratory diseases.
Collapse
|
22
|
Zhang Y, Shi X, Sheng H, Hu Y, Pang B, Ma Y, Jin J. Changes in diaphragm contractility in cigarette smoking-exposed and smoking cessation rats are associated with alterations in mitochondrial morphology and homeostasis. Basic Clin Pharmacol Toxicol 2022; 131:392-405. [PMID: 35972955 DOI: 10.1111/bcpt.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/16/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
The effects of cigarette smoking (CS) cessation on the diaphragm are unknown, as are the CS-induced diaphragmatic mitochondrial changes. We examined the changes in diaphragm contractility, as well as alterations in mitochondrial morphology, function and homoeostasis during CS exposure and after cessation. Rats were randomly divided into CS exposure and CS cessation groups: 3-month CS (S3), 6-month CS (S6), 6-month CS followed by 3-month cessation (S6N3). The changes in the diaphragm were investigated, including contractile properties, the ultrastructure, mitochondrial function and the expression of markers of mitochondrial homoeostasis. CS caused irreversible histological disruption and functional depression in the lungs, along with significantly declines in diaphragmatic contractility and more severely in extensor digitorum longus muscular contractility. Such declines were recovered after 3-month CS cessation. CS exposure disrupted the diaphragmatic mitochondrial morphology and function (S6), which was significantly alleviated in the S6N3 group. The mitochondrial homoeostasis was depressed (S6), as indicated by the downregulation of Pink1 and Mfn1. Interestingly, the Mfn1 level was recovered after smoking cessation (S6N3). In conclusion, smoking cessation eased CS-induced diaphragmatic dysfunction and mitochondrial deregulation, which are likely associated with deregulated mitochondrial homoeostasis.
Collapse
Affiliation(s)
- Yijie Zhang
- Department of Emergency Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaoqian Shi
- The Clinical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Haiyan Sheng
- Department of Respiratory and Critical Care Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuhan Hu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Baosen Pang
- The Clinical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yingmin Ma
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jiawei Jin
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,The Clinical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Hassane M, Rahal Z, Karaoghlanian N, Zhang J, Sinjab A, Wong JW, Lu W, Scheet P, Lee JJ, Raso MG, Solis LM, Fujimoto J, Chami H, Shihadeh AL, Kadara H. Chronic Exposure to Waterpipe Smoke Elicits Immunomodulatory and Carcinogenic Effects in the Lung. Cancer Prev Res (Phila) 2022; 15:423-434. [PMID: 35468191 PMCID: PMC9256796 DOI: 10.1158/1940-6207.capr-21-0610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 01/07/2023]
Abstract
Effects of waterpipe smoking on lung pathobiology and carcinogenesis remain sparse despite the worldwide emergence of this tobacco vector. To address this gap, we investigated the effects of chronic waterpipe smoke (WPS) exposure on lung pathobiology, host immunity, and tumorigenesis using an experimental animal model that is prone to tobacco carcinogens and an exploratory observational analysis of human waterpipe smokers and nonsmokers. Mice exhibited elevated incidence of lung tumors following heavy WPS exposure (5 days/week for 20 weeks) compared to littermates with light WPS (once/week for 20 weeks) or control air. Lungs of mice exposed to heavy WPS showed augmented CD8+ and CD4+ T cell counts along with elevated protumor immune phenotypes including increased IL17A in T/B cells, PD-L1 on tumor and immune cells, and the proinflammatory cytokine IL1β in myeloid cells. RNA-sequencing (RNA-seq) analysis showed reduced antitumor immune gene signatures in animals exposed to heavy WPS relative to control air. We also performed RNA-seq analysis of airway epithelia from bronchial brushings of cancer-free waterpipe smokers and nonsmokers undergoing diagnostic bronchoscopy. Transcriptomes of normal airway cells in waterpipe smokers, relative to waterpipe nonsmokers, harbored gene programs that were associated with poor clinical outcomes in patients with lung adenocarcinoma, alluding to a WPS-associated molecular injury, like that established in response to cigarette smoking. Our findings support the notion that WPS exhibits carcinogenic effects and constitutes a possible risk factor for lung cancer as well as warrant future studies that can guide evidence-based policies for mitigating waterpipe smoking. PREVENTION RELEVANCE Potential carcinogenic effects of waterpipe smoking are very poorly understood despite its emergence as a socially acceptable form of smoking. Our work highlights carcinogenic effects of waterpipe smoking in the lung and, thus, accentuate the need for inclusion of individuals with exclusive waterpipe smoking in prevention and smoking cessation studies.
Collapse
Affiliation(s)
- Maya Hassane
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Zahraa Rahal
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Jiexin Zhang
- Department of Biostatistics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Justin W. Wong
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei Lu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paul Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - J. Jack Lee
- Department of Biostatistics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Luisa M Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hassan Chami
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,School of Medicine, John Hopkins University, Baltimore, Maryland, USA
| | - Alan L. Shihadeh
- Faculty of Engineering, American University of Beirut, Beirut, Lebanon
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Correspondence to Humam Kadara, PhD, Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA, Telephone: 713-745-9396,
| |
Collapse
|
24
|
Targeting the alternative oxidase (AOX) for human health and food security, a pharmaceutical and agrochemical target or a rescue mechanism? Biochem J 2022; 479:1337-1359. [PMID: 35748702 PMCID: PMC9246349 DOI: 10.1042/bcj20180192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Some of the most threatening human diseases are due to a blockage of the mitochondrial electron transport chain (ETC). In a variety of plants, fungi, and prokaryotes, there is a naturally evolved mechanism for such threats to viability, namely a bypassing of the blocked portion of the ETC by alternative enzymes of the respiratory chain. One such enzyme is the alternative oxidase (AOX). When AOX is expressed, it enables its host to survive life-threatening conditions or, as in parasites, to evade host defenses. In vertebrates, this mechanism has been lost during evolution. However, we and others have shown that transfer of AOX into the genome of the fruit fly and mouse results in a catalytically engaged AOX. This implies that not only is the AOX a promising target for combating human or agricultural pathogens but also a novel approach to elucidate disease mechanisms or, in several cases, potentially a therapeutic cure for human diseases. In this review, we highlight the varying functions of AOX in their natural hosts and upon xenotopic expression, and discuss the resulting need to develop species-specific AOX inhibitors.
Collapse
|
25
|
Porto GD, Haupenthal DPDS, Souza PS, Silveira GDB, Nesi RT, Feuser PE, Possato JC, de Andrade VM, Pinho RA, Silveira PCL. Effects of the intranasal application of gold nanoparticles on the pulmonary tissue after acute exposure to industrial cigarette smoke. J Biomed Mater Res B Appl Biomater 2022; 110:1234-1244. [PMID: 34894049 DOI: 10.1002/jbm.b.34994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 11/15/2021] [Accepted: 12/05/2021] [Indexed: 11/09/2022]
Abstract
Inhalation of harmful particles appears as a primary factor for the onset and establishment of chronic obstructive pulmonary disease (COPD). Cigarette smoke acutely promotes an exacerbated inflammatory response with oxidative stress induction with DNA damage. Administration of Gold Nanoparticles (GNPs) with 20 nm in different concentrations can revert damages caused by external aggravations. The effects of GNPs in a COPD process have not been observed until now. The objective of this work was to evaluate the therapeutic effects of intranasal administration of different doses of GNPs after acute exposure to industrial cigarette smoke. Thirty male Swiss mice were randomly divided into five groups: Sham; cigarette smoke (CS); CS + GNPs 2.5 mg/L; CS + GNPs 7.5 mg/L and CS + GNPs 22.5 mg/L. The animals were exposed to the commercial cigarette with filter in an acrylic inhalation chamber and treated with intranasal GNPs for five consecutive days. The results demonstrate that exposure to CS causes an increase in inflammatory cytokines, histological changes, oxidative and nitrosive damage in the lung, as well as increased damage to the DNA of liver cells, blood plasma and lung. Among the three doses of GNPs (2.5, 7.5, and 22.5 mg/L) used, the highest dose had better anti-inflammatory effects. However, GNPs at a dose of 7.5 mg/L showed better efficacies in reducing ROS formation, alveolar diameter, and the number of inflammatory cells in histology, in addition to significantly reduced rate of DNA damage in lung cells without additional systemic genotoxicity already caused by cigarette smoke.
Collapse
Affiliation(s)
- Germano Duarte Porto
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | | | - Priscila Soares Souza
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Gustavo de Bem Silveira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Renata Tiscoski Nesi
- Biochemistry in Health, Graduate Program in Health Sciences, Medicine School, Pontifícia Universidade Católica do Paraná, Puerto Rico, Brazil
| | - Paulo Emilio Feuser
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Jonathann Corrêa Possato
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Vanessa Moraes de Andrade
- Translational Biomedicine Laboratory, Graduate Program of Health Sciences, Department of Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Ricardo Aurino Pinho
- Biochemistry in Health, Graduate Program in Health Sciences, Medicine School, Pontifícia Universidade Católica do Paraná, Puerto Rico, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| |
Collapse
|
26
|
Wang Q, Unwalla H, Rahman I. Dysregulation of mitochondrial complexes and dynamics by chronic cigarette smoke exposure Utilizing MitoQC reporter mice. Mitochondrion 2022; 63:43-50. [PMID: 35032706 PMCID: PMC8885972 DOI: 10.1016/j.mito.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023]
Abstract
Cigarette smoke (CS) is known to cause impaired mitophagy and mitochondrial dysregulation in the pathogenesis of chronic obstructive pulmonary disease (COPD)/emphysema. Mitochondrial complexes and dynamics are affected by acute CS exposure in lung epithelium and mouse lung. We hypothesize that chronic CS exposure (4 months) will induce lung mitochondrial dysregulation and abnormal mitophagy. In this study, we employed the mitoQC reporter mice, a mitochondrial reporter strain, which can reflect the mitophagy based on the fluorescence-tagged mitochondria. Chronic CS exposure induced lung inflammatory cell infiltration, airspace enlargement, and lung cellular senescence. We showed the higher occurrence of mitophagy (GFP/mCherry) in the lung cells by CS exposure, associated with more mitochondrial fluorescence signals (GFP+/mCherry+). After chronic CS exposure, the mitochondrial complexes and function related genes were inhibited, while protein levels of complexes I and III slightly changed. Additionally, chronic CS exposure down-regulated most of the mitochondrial dynamic markers at gene expression level, included mitochondrial fusion/fission and mitochondrial translocate/transfer markers. For the markers related to mitophagy, Pink1 and Parkin, decreased gene and protein levels of Parkin, and decreased gene expression of Pink1, were identified in the CS exposure group. Hence, CS-induced mitophagy is mediated by Pink1-Parkin independent mechanism. Thus, we have shown that the chronic CS epxosure dysregulated mitochondrial complexes and dynamics and induced mitophagy, using the state-of-the art mitoQC reporter mouse model. Our results suggested that dysregulated mitochondrial function and dynamics are associated with CS-induced lung injury and phenotypic development of chronic lung diseases, such as COPD/ emphysema.
Collapse
Affiliation(s)
- Qixin Wang
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, USA
| | - Hoshang Unwalla
- Department of Immunology and Nanomedicine, Herbert Wertheim College of medicine, Florida International University, Miami, FL, USA
| | - Irfan Rahman
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
27
|
Cano-Granda DV, Ramírez-Ramírez M, M. Gómez D, Hernandez JC. Effects of particulate matter on endothelial, epithelial and immune system cells. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.01.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Particulate Matter (PM) is an air pollutant that is classified according to its aerodynamic diameter into particles with a diameter of less than 10 µm (PM10), a diameter of less than 2.5 µm (PM2.5), and particles ultra-fine with a diameter less than 0.1 µm (PM0.1). PM10 is housed in the respiratory system, while PM2.5 and 0.1 can pass into the circulation to generate systemic alterations. Although several diseases associated with PM exposure, such as respiratory, cardiovascular, and central nervous system, have been documented to cause 4.2 million premature deaths per year worldwide. Few reviews address cellular and molecular mechanisms in the epithelial and endothelial cells of the tissues exposed to PM, which can cause these diseases, this being the objective of the present review. For this, a search was carried out in the NCBI and Google Scholar databases focused on scientific publications that addressed the expression of pro-inflammatory molecules, adhesion molecules, and oxidative radicals, among others, and their relationship with the effects caused by the PM. The main findings include the increase in pro-inflammatory cytokines and dysfunction in the components of the immune response; the formation of reactive oxygen species; changes in epithelial and endothelial function, evidenced by altered expression of adhesion molecules; and the increase in molecules involved in coagulation. Complementary studies are required to understand the molecular effects of harmful health effects and the future approach to strategies to mitigate this response.
Collapse
Affiliation(s)
- Danna V. Cano-Granda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia 2 Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia. Medellín, Colombia
| | - Mariana Ramírez-Ramírez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia 2 Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia. Medellín, Colombia
| | - Diana M. Gómez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia. Medellín, Colombia
| | - Juan C. Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia. Medellín, Colombia
| |
Collapse
|
28
|
Wang L, Jiang W, Wang J, Xie Y, Wang W. Puerarin inhibits FUNDC1-mediated mitochondrial autophagy and CSE-induced apoptosis of human bronchial epithelial cells by activating the PI3K/AKT/mTOR signaling pathway. Aging (Albany NY) 2022; 14:1253-1264. [PMID: 35134750 PMCID: PMC8876910 DOI: 10.18632/aging.203317] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/27/2021] [Indexed: 12/30/2022]
Abstract
Increasing evidence suggests that the pathogenesis of chronic obstructive pulmonary disease (COPD) is associated with FUN14 domain protein 1 (FUNDC1)-mediated mitophagy. Recently, studies have reported that puerarin has protective effects against excessive oxidative damage in cells. Therefore, we hypothesized that puerarin may be involved in COPD progression via regulating FUNDC1 mediated mitophagy. We found that the viability of cigarette smoke extract (CSE)-stimulated human bronchial epithelial cells (HBECs) was enhanced and apoptosis was reduced after treatment with different concentrations of puerarin. Puerarin reversed mitochondrial membrane potential (MMP) levels and ATP content, and decreased reactive oxygen species (ROS) content in CSE stimulated HBECs. Moreover, puerarin significantly inhibited apoptosis related proteins, as well as the expression of mitophagy related proteins. After inhibition of FUNDC1 phosphorylation by protein phosphatase inhibitor (PH0321), puerarin restored MMP level, decreased ROS content, promoted ATP synthesis, and downregulated autophagy related protein expression in HBECs. In addition, mitochondrial division inhibitor (Mdivi) inhibited the expression of autophagy related proteins and reduced apoptosis after blocking cell autophagy, which was the same as the inhibition of puerarin. Finally, puerarin activated the PI3K/Akt/mTOR signaling pathway to participate in COPD progression by up regulating the phosphorylation levels of PI3K, Akt and mTOR.
Collapse
Affiliation(s)
- Li Wang
- Department of Respiratory Medicine, Yan’an University Affiliated Hospital, Yan’an 716000, China
| | - Weizhou Jiang
- Department of Pulmonology, Weifang Traditional Chinese Hospital, Weifang 261041, China
| | - Jing Wang
- Endoscopy Room, Tai’an Maternal and Child Health Hospital, Tai’an 271000, China
| | - Yuanyuan Xie
- Department of Geriatrics, Yan’an University Affiliated Hospital, Yan’an 716000, China
| | - Weisi Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| |
Collapse
|
29
|
Jiang H, Jiang Y, Xu Y, Yuan D, Li Y. Bronchial epithelial SIRT1 deficiency exacerbates cigarette smoke induced emphysema in mice through the FOXO3/PINK1 pathway. Exp Lung Res 2022:1-16. [PMID: 35132913 DOI: 10.1080/01902148.2022.2037169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2022] [Accepted: 01/29/2022] [Indexed: 11/04/2022]
Abstract
Purpose: Cellular senescence and mitochondrial fragmentation are thought to be crucial components of the cigarette smoke(CS)-induced responses that contribute to the chronic obstructive pulmonary disease (COPD) development as a result of accelerated premature aging of the lung. Although there have been a few reports on the role of sirtuin 1(SIRT1) in mitochondrial homeostasis, senescence and inflammation, whether SIRT1/FOXO3/PINK1 signaling mediated mitophagy ameliorates cellular senescence in COPD is still unclear. This study aimed to ascertain whether SIRT1 regulates cellular senescence via FOXO3/PINK1-mediated mitophagy in COPD. Methods: To investigate the effect of CS exposure and SIRT1 deficiency on mitophagy and senescence in the lung, a SIRT1 knockout(KO) mouse model was used. Airway resistance, cellular senescence mitochondrial injury, mitophagy, cellular architecture and protein expression levels in lung tissues, from SIRT1 KO and wild-type(WT) COPD model mice exposed to CS for 6 months were examined by western blotting, histochemistry, immunofluorescence and transmission electron microscopy(TEM). Results: In CS exposed mice, SIRT1 deficiency exacerbated airway resistance and cellular senescence, increased FOXO3 acetylation and decreased PINK1 protein levels and attenuated mitophagy. Mechanistically, the damaging effect of SIRT1 deficiency on lung tissue was attributed to increased FOXO3 acetylation and decreased PINK1 levels, and attenuated mitophagy. In vitro, mitochondrial damage and cellular sensitivity in response to CS exposure were more severe in control cells than in cells treated with aSIRT1 activator. SIRT1 activation SIRT1 activation decreased FOXO3 acetylation and increased the protein levels of PINK1 and enhanced mitophagy. Conclusion: These results demonstrated that the detrimental effects of SIRT1 deficiency on cell senescence associated with insufficient mitophagy, and involved the FOXO3/PINK1 signaling pathway.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Clinical Medicine, Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Internal Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yaona Jiang
- Department of Internal Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
- Graduate Department, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuanri Xu
- Department of Internal Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
- Graduate Department, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Dong Yuan
- Department of Internal Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yaqing Li
- Department of Internal Medicine, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Alfahad AJ, Alzaydi MM, Aldossary AM, Alshehri AA, Almughem FA, Zaidan NM, Tawfik EA. Current views in chronic obstructive pulmonary disease pathogenesis and management. Saudi Pharm J 2022; 29:1361-1373. [PMID: 35002373 PMCID: PMC8720819 DOI: 10.1016/j.jsps.2021.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/22/2021] [Indexed: 01/11/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung dysfunction caused mainly by inhaling toxic particles and cigarette smoking (CS). The continuous exposure to ruinous molecules can lead to abnormal inflammatory responses, permanent damages to the respiratory system, and irreversible pathological changes. Other factors, such as genetics and aging, influence the development of COPD. In the last decade, accumulating evidence suggested that mitochondrial alteration, including mitochondrial DNA damage, increased mitochondrial reactive oxygen species (ROS), abnormal autophagy, and apoptosis, have been implicated in the pathogenesis of COPD. The alteration can also extend to epigenetics, namely DNA methylation, histone modification, and non-coding RNA. This review will discuss the recent progressions in COPD pathology, pathophysiology, and molecular pathways. More focus will be shed on mitochondrial and epigenetic variations related to COPD development and the role of nanomedicine as a potential tool for the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Ahmed J Alfahad
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Mai M Alzaydi
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Ahmad M Aldossary
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Abdullah A Alshehri
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Fahad A Almughem
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Nada M Zaidan
- Center of Excellence in Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Essam A Tawfik
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia.,Center of Excellence in Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| |
Collapse
|
31
|
Cellular senescence-an aging hallmark in chronic obstructive pulmonary disease pathogenesis. Respir Investig 2021; 60:33-44. [PMID: 34649812 DOI: 10.1016/j.resinv.2021.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/12/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Chronic obstructive pulmonary disease (COPD),1 a representative aging-related pulmonary disorder, is mainly caused by cigarette smoke (CS) exposure. Age is one of the most important risk factors for COPD development, and increased cellular senescence in tissues and organs is a component of aging. CS exposure can induce cellular senescence, as characterized by irreversible growth arrest and aberrant cytokine secretion of the senescence-associated secretory phenotype; thus, accumulation of senescent cells is widely implicated in COPD pathogenesis. CS-induced oxidative modifications to cellular components may be causally linked to accelerated cellular senescence, especially during accumulation of damaged macromolecules. Autophagy is a conserved mechanism whereby cytoplasmic components are sent for lysosomal degradation to maintain proteostasis. Autophagy diminishes with age, and loss of proteostasis is one of the hallmarks of aging. We have reported the involvement of insufficient autophagy in regulating CS-induced cellular senescence with respect to COPD pathogenesis. However, the role of autophagy in COPD pathogenesis can vary based on levels of cell stress and type of selective autophagy because excessive activation of autophagy can be responsible for inducing regulated cell death. Senotherapies targeting cellular senescence may be effective COPD treatments. Autophagy activation could be a promising sonotherapeutic approach, but the optimal modality of autophagy activation should be examined in future studies.
Collapse
|
32
|
Zhang M, Fang L, Zhou L, Molino A, Valentino MR, Yang S, Zhang J, Li Y, Roth M. MAPK15-ULK1 signaling regulates mitophagy of airway epithelial cell in chronic obstructive pulmonary disease. Free Radic Biol Med 2021; 172:541-549. [PMID: 34224814 DOI: 10.1016/j.freeradbiomed.2021.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Airway epithelial mitochondrial oxidative stress and damage is an important pathology in chronic obstructive pulmonary disease (COPD). Mitophagy involves MAPK15-ULK1 signaling, the role of which is unknown in COPD. This study investigated MAPK15-ULK1 signaling in airway epithelial cells of COPD patients and its activation by cigarette smoke extract (CSE) in isolated human airway epithelial cells. Significant increased phosphorylation of MAPK15 and ULK1 (Ser555) was detected in the airway epithelium of COPD patients. This pathology was maintained in isolated primary COPD-epithelial cells. Compared to control cells, the protein expression of Beclin1 and the ratio of LC3II to LC3I were both significantly increased in COPD-epithelial cells. In human airway epithelial cells, CSE significantly increased the phosphorylation of MAPK15, ULK1 (Ser555), the expression of Beclin1, and the LC3II/LC3I ratio in a concentration- and time-dependent manner. Transfection with MAPK15 siRNA significantly inhibited the CSE-induced ULK1 (Ser555) phosphorylation in airway epithelial cells. Silencing of MAPK15 or ULK1 significantly reduced CSE-induced mitophagy and mitochondrial oxidative stress, thereby improving cell viability. In summary, cigarette smoke activated MAPK15-ULK1 signaling, thereby promoting mitophagy and mitochondrial oxidative stress in airway epithelial cells. This signaling pathway is activated in COPD-epithelial cells and therefore might present a novel therapeutic target for COPD.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Pulmonary Cell Research & Clinic of Respiratory Medicine, Dept. Biomedicine University of Basel & University Hospital of Basel, CH-4031, Basel, Switzerland
| | - Lei Fang
- Pulmonary Cell Research & Clinic of Respiratory Medicine, Dept. Biomedicine University of Basel & University Hospital of Basel, CH-4031, Basel, Switzerland
| | - Liang Zhou
- Pulmonary Cell Research & Clinic of Respiratory Medicine, Dept. Biomedicine University of Basel & University Hospital of Basel, CH-4031, Basel, Switzerland
| | - Antonio Molino
- Department of Respiratory Diseases, University of Naples, Federico II, Naples, Italy
| | | | - Shuanying Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jie Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yali Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Michael Roth
- Pulmonary Cell Research & Clinic of Respiratory Medicine, Dept. Biomedicine University of Basel & University Hospital of Basel, CH-4031, Basel, Switzerland.
| |
Collapse
|
33
|
Wang L, Pelgrim CE, Swart DH, Krenning G, van der Graaf AC, Kraneveld AD, Leusink-Muis T, van Ark I, Garssen J, Folkerts G, Braber S. SUL-151 Decreases Airway Neutrophilia as a Prophylactic and Therapeutic Treatment in Mice after Cigarette Smoke Exposure. Int J Mol Sci 2021; 22:4991. [PMID: 34066693 PMCID: PMC8125869 DOI: 10.3390/ijms22094991] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) caused by cigarette smoke (CS) is featured by oxidative stress and chronic inflammation. Due to the poor efficacy of standard glucocorticoid therapy, new treatments are required. Here, we investigated whether the novel compound SUL-151 with mitoprotective properties can be used as a prophylactic and therapeutic treatment in a murine CS-induced inflammation model. SUL-151 (4 mg/kg), budesonide (500 μg/kg), or vehicle were administered via oropharyngeal instillation in this prophylactic and therapeutic treatment setting. The number of immune cells was determined in the bronchoalveolar lavage fluid (BALF). Oxidative stress response, mitochondrial adenosine triphosphate (ATP) production, and mitophagy-related proteins were measured in lung homogenates. SUL-151 significantly decreased more than 70% and 50% of CS-induced neutrophils in BALF after prophylactic and therapeutic administration, while budesonide showed no significant reduction in neutrophils. Moreover, SUL-151 prevented the CS-induced decrease in ATP and mitochondrial mtDNA and an increase in putative protein kinase 1 expression in the lung homogenates. The concentration of SUL-151 was significantly correlated with malondialdehyde level and radical scavenging activity in the lungs. SUL-151 inhibited the increased pulmonary inflammation and mitochondrial dysfunction in this CS-induced inflammation model, which implied that SUL-151 might be a promising candidate for COPD treatment.
Collapse
Affiliation(s)
- Lei Wang
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (C.E.P.); (A.D.K.); (T.L.-M.); (I.v.A.); (J.G.); (G.F.)
| | - Charlotte E. Pelgrim
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (C.E.P.); (A.D.K.); (T.L.-M.); (I.v.A.); (J.G.); (G.F.)
| | - Daniël H. Swart
- Sulfateq B.V., Admiraal de Ruyterlaan 5, 9726 GN Groningen, The Netherlands; (D.H.S.); (G.K.); (A.C.v.d.G.)
| | - Guido Krenning
- Sulfateq B.V., Admiraal de Ruyterlaan 5, 9726 GN Groningen, The Netherlands; (D.H.S.); (G.K.); (A.C.v.d.G.)
- Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Adrianus C. van der Graaf
- Sulfateq B.V., Admiraal de Ruyterlaan 5, 9726 GN Groningen, The Netherlands; (D.H.S.); (G.K.); (A.C.v.d.G.)
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (C.E.P.); (A.D.K.); (T.L.-M.); (I.v.A.); (J.G.); (G.F.)
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Thea Leusink-Muis
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (C.E.P.); (A.D.K.); (T.L.-M.); (I.v.A.); (J.G.); (G.F.)
| | - Ingrid van Ark
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (C.E.P.); (A.D.K.); (T.L.-M.); (I.v.A.); (J.G.); (G.F.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (C.E.P.); (A.D.K.); (T.L.-M.); (I.v.A.); (J.G.); (G.F.)
- Nutricia Research, Department of Immunology, 3584 CT Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (C.E.P.); (A.D.K.); (T.L.-M.); (I.v.A.); (J.G.); (G.F.)
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (C.E.P.); (A.D.K.); (T.L.-M.); (I.v.A.); (J.G.); (G.F.)
| |
Collapse
|
34
|
Zhao CC, Xu J, Xie QM, Zhang HY, Fei GH, Wu HM. Abscisic acid suppresses the activation of NLRP3 inflammasome and oxidative stress in murine allergic airway inflammation. Phytother Res 2021; 35:3298-3309. [PMID: 33570219 DOI: 10.1002/ptr.7051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 12/20/2022]
Abstract
Abscisic acid (ABA), a well-known natural phytohormone reportedly exerts anti-inflammatory and anti-oxidative properties in diabetes and colitis. However, the efficacy of ABA against allergic airway inflammation and the underlying mechanism remain unknown. Herein, an OVA-induced murine allergic airway inflammation model was established and treated with ABA in the presence or absence of PPAR-γ antagonist GW9662. The results showed that ABA effectively stunted the development of airway inflammation, and concordantly downregulated OVA-induced activation of NLRP3 inflammasome, suppressed oxidative stress and decreased the expression of mitochondrial fusion/fission markers including Optic Atrophy 1 (OPA1), Mitofusion 2 (Mfn2), dynamin-related protein 1 (DRP1) and Fission 1 (Fis1). Moreover, ABA treatment further increased OVA-induced expression of PPAR-γ, while GW9662 abrogated the inhibitory effect of ABA on allergic airway inflammation as well as on the activation of NLRP3 inflammasome and oxidative stress. Consistently, ABA inhibited the activation of NLRP3 inflammasome, suppressed oxidative stress and mitochondrial fusion/fission in LPS-stimulated Raw264.7 cells via PPAR-γ. Collectively, ABA ameliorates OVA-induced allergic airway inflammation in a PPAR-γ dependent manner, and such effect of ABA may be associated with its inhibitory effect on NLRP3 inflammasome and oxidative stress. Our results suggest the potential of ABA or ABA-rich food in protecting against asthma.
Collapse
Affiliation(s)
- Cui-Cui Zhao
- Department of Geriatric Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, China
| | - Juan Xu
- Department of Geriatric Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, China
| | - Qiu-Meng Xie
- Department of Geriatric Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, China
| | - Hai-Yun Zhang
- Department of Geriatric Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, China
| | - Guang-He Fei
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, China.,Department of Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui-Mei Wu
- Department of Geriatric Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Hefei, China
| |
Collapse
|
35
|
Yang D, Xu D, Wang T, Yuan Z, Liu L, Shen Y, Wen F. Mitoquinone ameliorates cigarette smoke-induced airway inflammation and mucus hypersecretion in mice. Int Immunopharmacol 2021; 90:107149. [PMID: 33191175 DOI: 10.1016/j.intimp.2020.107149] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cigarette smoking, which induces airway inflammation and mucus hypersecretion, is a major risk factor for the development of cigarette smoke (CS)-induced airway disorders. In this study, we investigated the effects and mechanisms of mitoquinone (MitoQ), a mitochondria-targeted antioxidant, on CS-induced airway inflammation and mucus hypersecretion in mice. METHODS C57BL/6J mice were exposed to CS for 75 min twice daily, 5 days per week for 4 weeks. MitoQ (2.5, 5 mg/kg/day) was administered intraperitoneally 1 h before CS exposure. Bronchoalveolar lavage fluid (BALF) was obtained for cell counting and determination of pro-inflammatory cytokine levels. Lung tissue was collected for histological examination; Western blotting was used to measure levels of Mfn2, Drp1, cytochrome c, NF-κB p65, and IκBα. RESULTS Pretreatment with MitoQ significantly attenuated CS-induced thickening of the airway epithelium, peribronchial inflammatory cell infiltration, goblet cell hyperplasia and Muc5ac staining. The numbers of total cells, neutrophils and macrophages, as well as levels of TNF-α and IL-6 in BALF were remarkably decreased by MitoQ in a dose-dependent manner. MitoQ attenuated oxidative stress by preventing the CS-induced increase in malondialdehyde level and decrease in superoxide dismutase activity and GSH/GSSG ratio. MitoQ decreased the expression of mitochondrial fission protein Drp1 and increased that of mitochondrial fusion protein Mfn2, as well as reduced cytochrome c release into the cytosol. Furthermore, MitoQ suppressed IκBα degradation and NF-κB p65 nuclear translocation. CONCLUSIONS MitoQ attenuates inflammation, mucus hypersecretion, and oxidative stress induced by CS. It may exert these effects in part by modulating mitochondrial function and the NF-κB signal pathway.
Collapse
Affiliation(s)
- Deqing Yang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Dan Xu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Zhicheng Yuan
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Lian Liu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yongchun Shen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China.
| | - Fuqiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
36
|
Cloonan SM, Kim K, Esteves P, Trian T, Barnes PJ. Mitochondrial dysfunction in lung ageing and disease. Eur Respir Rev 2020; 29:29/157/200165. [PMID: 33060165 DOI: 10.1183/16000617.0165-2020] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial biology has seen a surge in popularity in the past 5 years, with the emergence of numerous new avenues of exciting mitochondria-related research including immunometabolism, mitochondrial transplantation and mitochondria-microbe biology. Since the early 1960s mitochondrial dysfunction has been observed in cells of the lung in individuals and in experimental models of chronic and acute respiratory diseases. However, it is only in the past decade with the emergence of more sophisticated tools and methodologies that we are beginning to understand how this enigmatic organelle regulates cellular homeostasis and contributes to disease processes in the lung. In this review, we highlight the diverse role of mitochondria in individual lung cell populations and what happens when these essential organelles become dysfunctional with ageing and in acute and chronic lung disease. Although much remains to be uncovered, we also discuss potential targeted therapeutics for mitochondrial dysfunction in the ageing and diseased lung.
Collapse
Affiliation(s)
- Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Dept of Medicine, New York, NY, USA.,School of Medicine, Trinity College Dublin and Tallaght University Hospital, Dublin, Ireland
| | - Kihwan Kim
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Dept of Medicine, New York, NY, USA
| | - Pauline Esteves
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Dépt de Pharmacologie, CIC 1401, Bordeaux, France.,INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France
| | - Thomas Trian
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Dépt de Pharmacologie, CIC 1401, Bordeaux, France.,INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
37
|
Jian T, Chen J, Ding X, Lv H, Li J, Wu Y, Ren B, Tong B, Zuo Y, Su K, Li W. Flavonoids isolated from loquat (Eriobotrya japonica) leaves inhibit oxidative stress and inflammation induced by cigarette smoke in COPD mice: the role of TRPV1 signaling pathways. Food Funct 2020; 11:3516-3526. [PMID: 32253400 DOI: 10.1039/c9fo02921d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic, progressive lung disease with few successful treatments, and is strongly associated with cigarette smoking (CS). Since the novel coronavirus has spread worldwide seriously, there is growing concern that patients who have chronic respiratory conditions like COPD can easily be infected and are more prone to having severe illness and even mortality because of lung dysfunction. Loquat leaves have long been used as an important material for both pharmaceutical and functional applications in the treatment of lung disease in Asia, especially in China and Japan. Total flavonoids (TF), the main active components derived from loquat leaves, showed remarkable anti-inflammatory and antioxidant activities. However, their protective activity against CS-induced COPD airway inflammation and oxidative stress and its underlying mechanism still remain not well-understood. The present study uses a CS-induced mouse model to estimate the morphological changes in lung tissue. The results demonstrated that TF suppressed the histological changes in the lungs of CS-challenged mice, as evidenced by reduced generation of pro-inflammatory cytokines including interleukin 6 (IL-6), IL-1β, tumor necrosis factor α (TNF-α), nitric oxide (NO), and inducible nitric oxide synthase (iNOS) and diminished the protein expression of transient receptor potential vanilloid 1 (TRPV1). Moreover, TF also inhibited phosphorylation of IKK, IκB and NFκB and increased p-Akt. Interestingly, TF could inhibit CS-induced oxidative stress in the lungs of COPD mice. TF treatment significantly inhibited the level of malondialdehyde (MDA) and increased the activity of superoxide dismutase (SOD). In addition, TF markedly downregulated TRPV1 and cytochrome P450 2E1 (CYP2E1) and upregulated the expression of SOD-2, while the p-JNK level was observed to be inhibited in COPD mice. Taken together, our findings showed that the protective effect and putative mechanism of the action of TF resulted in the inhibition of inflammation and oxidative stress through the regulation of TRPV1 and the related signal pathway in lung tissues. It suggested that TF derived from loquat leaves could be considered to be an alternative or a new functional material and used for the treatment of CS-induced COPD.
Collapse
Affiliation(s)
- Tunyu Jian
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Jian Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China. and Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoqin Ding
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Han Lv
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Jiawei Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Yuexian Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Bingru Ren
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Bei Tong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Yuanyuan Zuo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Kelei Su
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210000, China and Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Weilin Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China. and Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
38
|
Liu JY, Zhang MY, Qu YQ. The Underlying Role of Mitophagy in Different Regulatory Mechanisms of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2020; 15:2167-2177. [PMID: 32982209 PMCID: PMC7501977 DOI: 10.2147/copd.s265728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
COPD is a common disease of the respiratory system. Inflammation, cellular senescence and necroptosis are all pathological alterations of this disease, which may lead to emphysema and infection that aggravate disease progression. Mitochondria acting as respiration-related organelles is usually observed with abnormal changes in morphology and function in CS-stimulated models and COPD patients. Damaged mitochondria can activate mitophagy, a vital mechanism for mitochondrial quality control, whereas under the persistent stimulus of CS or other forms of oxidative stress, mitophagy is impaired, resulting in insufficient clearance of damaged mitochondria. However, the excessive activation of mitophagy also seems to disturb the pathology of COPD. In this review, we demonstrate the variations in mitochondria and mitophagy in CS-induced models and COPD patients and discuss the underlying regulatory mechanism of mitophagy and COPD, including the roles of inflammation, senescence, emphysema and infection.
Collapse
Affiliation(s)
- Jian-Yu Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Meng-Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
39
|
Sotty J, Kluza J, De Sousa C, Tardivel M, Anthérieu S, Alleman LY, Canivet L, Perdrix E, Loyens A, Marchetti P, Lo Guidice JM, Garçon G. Mitochondrial alterations triggered by repeated exposure to fine (PM 2.5-0.18) and quasi-ultrafine (PM 0.18) fractions of ambient particulate matter. ENVIRONMENT INTERNATIONAL 2020; 142:105830. [PMID: 32585499 DOI: 10.1016/j.envint.2020.105830] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Nowadays ambient particulate matter (PM) levels still regularly exceed the guideline values established by World Health Organization in most urban areas. Numerous experimental studies have already demonstrated the airway toxicity of the fine fraction of PM (FP), mainly triggered by oxidative stress-induced airway inflammation. However, only few studies have actually paid close attention to the ultrafine fraction of PM (UFP), which is likely to be more easily internalized in cells and more biologically reactive. Mitochondria are major endogenous sources of reactive oxygen species (ROS) through oxidative metabolism, and coordinate many critical cellular signaling processes. Mitochondria have been often studied in the context of PM toxicity and generally associated with apoptosis activation. However, little is known about the underlying adaptation mechanisms that could occur following exposure at sub-apoptotic doses of ambient PM. Here, normal human bronchial epithelial BEAS-2B cells were acutely or repeatedly exposed to relatively low doses (5 µg.cm-2) of FP (PM2.5-0.18) or quasi-UFP (Q-UFP; PM0.18) to better access the critical changes in mitochondrial morphology, functions, and dynamics. No significant cytotoxicity nor increase of apoptotic events were reported for any exposure. Mitochondrial membrane potential (ΔΨm) and intracellular ATP content were also not significantly impaired. After cell exposure to sub-apoptotic doses of FP and notably Q-UFP, oxidative phosphorylation was increased as well as mitochondrial mass, resulting in increased production of mitochondrial superoxide anion. Given this oxidative boost, the NRF2-ARE signaling pathway was significantly activated. However, mitochondrial dynamic alterations in favor of accentuated fission process were observed, in particular after Q-UFP vs FP, and repeated vs acute exposure. Taken together, these results supported mitochondrial quality control and metabolism dysfunction as an early lung underlying mechanism of toxicity, thereby leading to accumulation of defective mitochondria and enhanced endogenous ROS generation. Therefore, these features might play a key role in maintaining PM-induced oxidative stress and inflammation within lung cells, which could dramatically contribute to the exacerbation of inflammatory chronic lung diseases. The prospective findings of this work could also offer new insights into the physiopathology of lung toxicity, arguably initiate and/or exacerbate by acutely and rather repeated exposure to ambient FP and mostly Q-UFP.
Collapse
Affiliation(s)
- J Sotty
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France
| | - J Kluza
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut de Recherche contre le Cancer de Lille, UMR 9020-UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - C De Sousa
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France
| | - M Tardivel
- Univ. Lille, BioImaging Centre Lille-Nord de France (BICeL), 59000, Lille, France
| | - S Anthérieu
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France
| | - L-Y Alleman
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, 59000 Lille, France
| | - L Canivet
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France
| | - E Perdrix
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, 59000 Lille, France
| | - A Loyens
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - Lille Neuroscience & Cognition, 59000 Lille, France
| | - P Marchetti
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut de Recherche contre le Cancer de Lille, UMR 9020-UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - J-M Lo Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France
| | - G Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France.
| |
Collapse
|
40
|
CUL1-Mediated Organelle Fission Pathway Inhibits the Development of Chronic Obstructive Pulmonary Disease. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:5390107. [PMID: 32565880 PMCID: PMC7271281 DOI: 10.1155/2020/5390107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a global high-incidence chronic airway inflammation disease. Its deterioration will lead to more serious lung lesions and even lung cancer. Therefore, it is urgent to determine the pathogenesis of COPD and find potential therapeutic targets. The purpose of this study is to reveal the molecular mechanism of COPD disease development through in-depth analysis of transcription factors and ncRNA-driven pathogenic modules of COPD. We obtained the expression profile of COPD-related microRNAs from the NCBI-GEO database and analyzed the differences among groups to identify the microRNAs significantly associated with COPD. Then, their target genes are predicted and mapped to a protein-protein interaction (PPI) network. Finally, key transcription factors and the ncRNA of the regulatory module were identified based on the hypergeometric test. The results showed that CUL1 was the most interactive gene in the highly interactive module, so it was recognized as a dysfunctional molecule of COPD. Enrichment analysis also showed that it was much involved in the biological process of organelle fission, the highest number of regulatory modules. In addition, ncRNAs, mainly composed of miR-590-3p, miR-495-3p, miR-186-5p, and transcription factors such as MYC, BRCA1, and CDX2, significantly regulate COPD dysfunction blocks. In summary, we revealed that the COPD-related target gene CUL1 plays a key role in the potential dysfunction of the disease. It promotes the proliferation of fibroblast cells in COPD patients by mediating functional signals of organelle fission and thus participates in the progress of the disease. Our research helps biologists to further understand the etiology and development trend of COPD.
Collapse
|
41
|
Hu L, Liu F, Li L, Zhang L, Yan C, Li Q, Qiu J, Dong J, Sun J, Zhang H. Effects of icariin on cell injury and glucocorticoid resistance in BEAS-2B cells exposed to cigarette smoke extract. Exp Ther Med 2020; 20:283-292. [PMID: 32550884 PMCID: PMC7296294 DOI: 10.3892/etm.2020.8702] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids (GCs) exert a therapeutic effect in numerous chronic inflammatory diseases. However, chronic obstructive pulmonary disease (COPD) tends to be GC-resistant. Icariin, a major component of flavonoids isolated from Epimedium brevicornum Maxim (Berberidaceae), significantly relieves symptoms in patients with COPD. However, the mechanism of action remains unclear and further investigation is required to establish whether it may serve as an alternative or complementary therapy for COPD. The aim of the present study was to determine the effects of icariin in human bronchial epithelial cells exposed to cigarette smoke extract (CSE) and to determine whether icariin reverses GC resistance. The results revealed that icariin significantly increased the proliferation of CSE-exposed cells. Furthermore, icariin significantly increased protein expression of the anti-inflammatory factor interleukin (IL)-10 and significantly decreased protein expression of the pro-inflammatory factors IL-8 and tumor necrosis factor α. Icariin also attenuated the expression of the cellular matrix remodelling biomarkers matrix metallopeptidase 9 and tissue inhibitor of metalloproteinase 1, and decreased the production of reactive oxygen species (ROS). In addition, icariin regulated the expression of GC resistance-related factors, such as GC receptors, histone deacetylase 2, nuclear factor erythroid-2-related factor 2 and nuclear factor κ B. The results obtained in the present study suggested that icariin may decrease CSE-induced inflammation, airway remodelling and ROS production by mitigating GC resistance. In conclusion, icariin may potentially be used in combination with GCs to increase therapeutic efficacy and reduce GC resistance in COPD.
Collapse
Affiliation(s)
- Lingli Hu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Feng Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Lulu Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Li Zhang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Chen Yan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Qiuping Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Jian Qiu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Hongying Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Institute of Integrated Traditional Chinese and Western Medicine, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
42
|
Yao RQ, Ren C, Xia ZF, Yao YM. Organelle-specific autophagy in inflammatory diseases: a potential therapeutic target underlying the quality control of multiple organelles. Autophagy 2020; 17:385-401. [PMID: 32048886 PMCID: PMC8007140 DOI: 10.1080/15548627.2020.1725377] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The structural integrity and functional stability of organelles are prerequisites for the viability and responsiveness of cells. Dysfunction of multiple organelles is critically involved in the pathogenesis and progression of various diseases, such as chronic obstructive pulmonary disease, cardiovascular diseases, infection, and neurodegenerative diseases. In fact, those organelles synchronously present with evident structural derangement and aberrant function under exposure to different stimuli, which might accelerate the corruption of cells. Therefore, the quality control of multiple organelles is of great importance in maintaining the survival and function of cells and could be a potential therapeutic target for human diseases. Organelle-specific autophagy is one of the major subtypes of autophagy, selectively targeting different organelles for quality control. This type of autophagy includes mitophagy, pexophagy, reticulophagy (endoplasmic reticulum), ribophagy, lysophagy, and nucleophagy. These kinds of organelle-specific autophagy are reported to be beneficial for inflammatory disorders by eliminating damaged organelles and maintaining homeostasis. In this review, we summarized the recent findings and mechanisms covering different kinds of organelle-specific autophagy, as well as their involvement in various diseases, aiming to arouse concern about the significance of the quality control of multiple organelles in the treatment of inflammatory diseases.Abbreviations: ABCD3: ATP binding cassette subfamily D member 3; AD: Alzheimer disease; ALS: amyotrophic lateral sclerosis; AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; ARIH1: ariadne RBR E3 ubiquitin protein ligase 1; ATF: activating transcription factor; ATG: autophagy related; ATM: ATM serine/threonine kinase; BCL2: BCL2 apoptosis regulator; BCL2L11/BIM: BCL2 like 11; BCL2L13: BCL2 like 13; BECN1: beclin 1; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3 like; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CANX: calnexin; CAT: catalase; CCPG1: cell cycle progression 1; CHDH: choline dehydrogenase; COPD: chronic obstructive pulmonary disease; CSE: cigarette smoke exposure; CTSD: cathepsin D; DDIT3/CHOP: DNA-damage inducible transcript 3; DISC1: DISC1 scaffold protein; DNM1L/DRP1: dynamin 1 like; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EIF2S1/eIF2α: eukaryotic translation initiation factor 2 alpha kinase 3; EMD: emerin; EPAS1/HIF-2α: endothelial PAS domain protein 1; ER: endoplasmic reticulum; ERAD: ER-associated degradation; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; FBXO27: F-box protein 27; FKBP8: FKBP prolyl isomerase 8; FTD: frontotemporal dementia; FUNDC1: FUN14 domain containing 1; G3BP1: G3BP stress granule assembly factor 1; GBA: glucocerebrosidase beta; HIF1A/HIF1: hypoxia inducible factor 1 subunit alpha; IMM: inner mitochondrial membrane; LCLAT1/ALCAT1: lysocardiolipin acyltransferase 1; LGALS3/Gal3: galectin 3; LIR: LC3-interacting region; LMNA: lamin A/C; LMNB1: lamin B1; LPS: lipopolysaccharide; MAPK8/JNK: mitogen-activated protein kinase 8; MAMs: mitochondria-associated membranes; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MFN1: mitofusin 1; MOD: multiple organelles dysfunction; MTPAP: mitochondrial poly(A) polymerase; MUL1: mitochondrial E3 ubiquitin protein ligase 1; NBR1: NBR1 autophagy cargo receptor; NLRP3: NLR family pyrin domain containing 3; NUFIP1: nuclear FMR1 interacting protein 1; OMM: outer mitochondrial membrane; OPTN: optineurin; PD: Parkinson disease; PARL: presenilin associated rhomboid like; PEX3: peroxisomal biogenesis factor 3; PGAM5: PGAM family member 5; PHB2: prohibitin 2; PINK1: PTEN induced putative kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RETREG1/FAM134B: reticulophagy regulator 1; RHOT1/MIRO1: ras homolog family member T1; RIPK3/RIP3: receptor interacting serine/threonine kinase 3; ROS: reactive oxygen species; RTN3: reticulon 3; SEC62: SEC62 homolog, preprotein translocation factor; SESN2: sestrin2; SIAH1: siah E3 ubiquitin protein ligase 1; SNCA: synuclein alpha; SNCAIP: synuclein alpha interacting protein; SQSTM1/p62: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TFEB: transcription factor EB; TICAM1/TRIF: toll-like receptor adaptor molecule 1; TIMM23: translocase of inner mitochondrial membrane 23; TNKS: tankyrase; TOMM: translocase of the outer mitochondrial membrane; TRIM: tripartite motif containing; UCP2: uncoupling protein 2; ULK1: unc-51 like autophagy activating kinase; UPR: unfolded protein response; USP10: ubiquitin specific peptidase 10; VCP/p97: valosin containing protein; VDAC: voltage dependent anion channels; XIAP: X-linked inhibitor of apoptosis; ZNHIT3: zinc finger HIT-type containing 3.
Collapse
Affiliation(s)
- Ren-Qi Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, People's Republic of China.,Department of Burn Surgery, Changhai Hospital, Navy Medical University, Shanghai, People's Republic of China
| | - Chao Ren
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Zhao-Fan Xia
- Department of Burn Surgery, Changhai Hospital, Navy Medical University, Shanghai, People's Republic of China
| | - Yong-Ming Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
43
|
Al-Azzawi MA. Pathological association between oxidative stress and chronic obstructive pulmonary disease. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Wang LX, Zhu XM, Yao YM. Sestrin2: Its Potential Role and Regulatory Mechanism in Host Immune Response in Diseases. Front Immunol 2019; 10:2797. [PMID: 31867002 PMCID: PMC6904332 DOI: 10.3389/fimmu.2019.02797] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
Sestrin2 (SESN2), a highly evolutionarily conserved protein, is critically involved in cellular responses to various stresses. SESN2 has a protective effect on physiological and pathological states mainly via regulating oxidative stress, endoplasmic reticulum stress, autophagy, metabolism, and inflammation. In recent years, breakthrough investigations with regard to the regulation and signaling mechanisms of SESN2 have markedly deepened our understanding of its potential role as well as its significance in host response. However, the functions of SESN2 in the immune system and inflammation remain elusive. It has been documented that many immune cells positively express SESN2 and, in turn, that SESN2 might modulate cellular activities. This review incorporates recent progress and aims to provide novel insight into the protective role and regulatory pathway of SESN2, which acts as a potential biomarker and therapeutic target in the context of various diseases.
Collapse
Affiliation(s)
- Li-Xue Wang
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Xiao-Mei Zhu
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Yong-Ming Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China.,State Key Laboratory of Kidney Disease, The Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
45
|
Jiang S, Sun J, Mohammadtursun N, Hu Z, Li Q, Zhao Z, Zhang H, Dong J. Dual role of autophagy/mitophagy in chronic obstructive pulmonary disease. Pulm Pharmacol Ther 2019; 56:116-125. [DOI: 10.1016/j.pupt.2019.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/18/2019] [Accepted: 04/07/2019] [Indexed: 02/06/2023]
|
46
|
Fang T, Wang M, Xiao H, Wei X. Mitochondrial dysfunction and chronic lung disease. Cell Biol Toxicol 2019; 35:493-502. [PMID: 31119467 DOI: 10.1007/s10565-019-09473-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/18/2019] [Indexed: 02/05/2023]
Abstract
The functions of body gradually decrease as the age increases, leading to a higher frequency of incidence of age-related diseases. Diseases associated with aging in the respiratory system include chronic obstructive pulmonary disease (COPD), IPF (idiopathic pulmonary fibrosis), asthma, lung cancer, and so on. The mitochondrial dysfunction is not only a sign of aging, but also is a disease trigger. This article aims to explain mitochondrial dysfunction as an aging marker, and its role in aging diseases of lung. We also discuss whether the mitochondria can be used as a target for the treatment of aging lung disease.
Collapse
Affiliation(s)
- Tingting Fang
- Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China
| | - Manni Wang
- Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China
| | - Hengyi Xiao
- Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China.
| | - Xiawei Wei
- Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China.
| |
Collapse
|
47
|
Selman M, Martinez FJ, Pardo A. Why Does an Aging Smoker’s Lung Develop Idiopathic Pulmonary Fibrosis and Not Chronic Obstructive Pulmonary Disease? Am J Respir Crit Care Med 2019; 199:279-285. [DOI: 10.1164/rccm.201806-1166pp] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Mexico City, Mexico
| | - Fernando J. Martinez
- Weill Cornell Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York
- Deputy Editor, AJRCCM; and
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
48
|
Leclercq B, Kluza J, Antherieu S, Sotty J, Alleman LY, Perdrix E, Loyens A, Coddeville P, Lo Guidice JM, Marchetti P, Garçon G. Air pollution-derived PM 2.5 impairs mitochondrial function in healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1434-1449. [PMID: 30278417 DOI: 10.1016/j.envpol.2018.09.062] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 05/21/2023]
Abstract
In order to clarify whether the mitochondrial dysfunction is closely related to the cell homeostasis maintenance after particulate matter (PM2.5) exposure, oxidative, inflammatory, apoptotic and mitochondrial endpoints were carefully studied in human bronchial epithelial BEAS-2B, normal human bronchial epithelial (NHBE) and chronic obstructive pulmonary disease (COPD)-diseased human bronchial epithelial (DHBE) cells acutely or repeatedly exposed to air pollution-derived PM2.5. Some modifications of the mitochondrial morphology were observed within all these cell models repeatedly exposed to the highest dose of PM2.5. Dose- and exposure-dependent oxidative damages were reported in BEAS-2B, NHBE and particularly COPD-DHBE cells acutely or repeatedly exposed to PM2.5. Nuclear factor erythroid 2-p45 related factor 2 (NRF2) gene expression and binding activity, together with the mRNA levels of some NRF2 target genes, were directly related to the number of exposures for the lowest PM2.5 dose (i.e., 2 μg/cm2), but, surprisingly, inversely related to the number of exposures for the highest dose (i.e., 10 μg/cm2). There were dose- and exposure-dependent increases of both nuclear factor kappa-B (NF-κB) binding activity and NF-κB target cytokine secretion in BEAS-2B, NHBE and particularly COPD-DHBE cells exposed to PM2.5. Mitochondrial ROS production, membrane potential depolarization, oxidative phosphorylation, and ATP production were significantly altered in all the cell models repeatedly exposed to the highest dose of PM2.5. Collectively, our results indicate a cytosolic ROS overproduction, inducing oxidative damage and activating oxygen sensitive NRF2 and NF-kB signaling pathways for all the cell models acutely or repeatedly exposed to PM2.5. However, one of the important highlight of our findings is that the prolonged and repeated exposure in BEAS-2B, NHBE and in particular sensible COPD-DHBE cells further caused an oxidative boost able to partially inactivate the NRF2 signaling pathway and to critically impair mitochondrial redox homeostasis, thereby producing a persistent mitochondrial dysfunction and a lowering cell energy supply.
Collapse
Affiliation(s)
- B Leclercq
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483 IMPECS-IMPact de l'Environnement Chimique sur la Santé humaine, France; IMT Lille Douai, Univ. Lille, SAGE-Département Sciences de l'Atmosphère et Génie de l'Environnement, F-59000, Lille, France
| | - J Kluza
- Univ. Lille, UMR-S 1172 - JPArc Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
| | - S Antherieu
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483 IMPECS-IMPact de l'Environnement Chimique sur la Santé humaine, France
| | - J Sotty
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483 IMPECS-IMPact de l'Environnement Chimique sur la Santé humaine, France
| | - L Y Alleman
- IMT Lille Douai, Univ. Lille, SAGE-Département Sciences de l'Atmosphère et Génie de l'Environnement, F-59000, Lille, France
| | - E Perdrix
- IMT Lille Douai, Univ. Lille, SAGE-Département Sciences de l'Atmosphère et Génie de l'Environnement, F-59000, Lille, France
| | - A Loyens
- Inserm, UMR-S 1172 - JPArc Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
| | - P Coddeville
- IMT Lille Douai, Univ. Lille, SAGE-Département Sciences de l'Atmosphère et Génie de l'Environnement, F-59000, Lille, France
| | - J-M Lo Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483 IMPECS-IMPact de l'Environnement Chimique sur la Santé humaine, France
| | - P Marchetti
- Univ. Lille, UMR-S 1172 - JPArc Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
| | - G Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483 IMPECS-IMPact de l'Environnement Chimique sur la Santé humaine, France.
| |
Collapse
|
49
|
Tsubouchi K, Araya J, Kuwano K. PINK1-PARK2-mediated mitophagy in COPD and IPF pathogeneses. Inflamm Regen 2018; 38:18. [PMID: 30386443 PMCID: PMC6199723 DOI: 10.1186/s41232-018-0077-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/02/2018] [Indexed: 02/11/2023] Open
Abstract
Mitochondria regulate not only cell functions through energy generation but also aging-associated cell phenotypes. Impaired mitochondrial structural and functional integrity accompanied by excessive mitochondrial reactive oxygen species (mtROS) production is associated with enhanced programmed cell death (PCD) and cellular senescence. Dysregulation of mechanisms for mitochondrial integrity, including mitophagy, induces accumulation of mitochondrial damage. Mitophagy is a highly conserved mechanism of selectively delivering damaged mitochondria for lysosomal degradation and is mainly governed by phosphatase and tensin homolog (PTEN)-induced putative protein kinase 1 (PINK1) and PARK2. Accumulating evidence suggests that PINK1-PARK2-mediated mitophagy has an important role in the pathogenesis of aging-associated pulmonary disorders, represented by chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). COPD characterized by progressive airflow limitation is mainly caused by cigarette smoke (CS) exposure, and accumulation of damaged mitochondria in bronchial epithelial cells (BEC) has been demonstrated. Intriguingly, both enhanced and impaired mitophagy have been implicated in COPD pathogenesis. Enhanced mitophagy induced by increased PINK1 expression has been associated with programmed necrosis, necroptosis. On the other hand, reduced PARK2 levels were linked to insufficient mitophagy, resulting in accelerated cellular senescence in BEC. Although dominant involvement of PCD and cellular senescence remains unclear, PINK1-PARK2-mediated mitophagy regulates mitochondrial ROS and cell fate during COPD pathogenesis. Involvement of insufficient mitophagy has been proposed in lung fibrosis development during IPF pathogenesis. Accumulation of dysmorphic mitochondria and increased ROS production linked to decrease in PINK1 expression were demonstrated in type II alveolar epithelial cells (AECIIs) in IPF lungs, which can be associated with enhanced apoptosis and cellular senescence. Furthermore, reduced PARK2 expression levels have been shown in myofibroblasts in IPF lungs. Insufficient mitophagy caused by PARK2 deficiency induced mtROS production with concomitantly activated platelet-derived growth factor receptor (PDGFR)/mammalian target of rapamycin (mTOR) signaling, resulting in increased myofibroblast differentiation and proliferation. Inappropriate PINK1-PARK2-mediated mitophagy appears to be mainly responsible for regulating cell fate, including PCD, cellular senescence, and myofibroblast differentiation during COPD and IPF pathogeneses. Modalities to achieve specific and appropriate levels of PINK1-PARK2-mediated mitophagy activation may be a promising therapeutic option to regulate the aging-associated pathology, COPD, and IPF.
Collapse
Affiliation(s)
- Kazuya Tsubouchi
- 1Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461 Japan.,2Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Araya
- 1Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Kazuyoshi Kuwano
- 1Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461 Japan
| |
Collapse
|
50
|
Seo M, Qiu W, Bailey W, Criner GJ, Dransfield MT, Fuhlbrigge AL, Reilly JJ, Scholand MB, Castaldi P, Chase R, Parker M, Saferali A, Yun JH, Crapo JD, Cho MH, Beaty TH, Silverman EK, Hersh CP. Genomics and response to long-term oxygen therapy in chronic obstructive pulmonary disease. J Mol Med (Berl) 2018; 96:1375-1385. [PMID: 30353303 DOI: 10.1007/s00109-018-1708-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide, and long-term oxygen therapy has been shown to reduce mortality in COPD patients with severe hypoxemia. However, the Long-term Oxygen Treatment Trial (LOTT), a large randomized trial, found no benefit of oxygen therapy in COPD patients with moderate hypoxemia. We hypothesized that there may be differences in response to oxygen which depend on genotype or gene expression. In a genome-wide time-to-event analysis of the primary outcome of death or hospitalization in 331 subjects, 97 single nucleotide polymorphisms (SNPs) showed evidence of interaction with oxygen therapy at P < 1e-5, including 7 SNPs near arylsulfatase B (ARSB; P = 6e-6). In microarray expression profiling on 51 whole blood samples from 37 individuals, at screening and/or at 12-month follow-up, ARSB expression was associated with the primary outcome depending on oxygen treatment. The significant SNPs were conditional expression quantitative trait loci for ARSB expression. In a network analysis of genes affected by long-term oxygen, two observed clusters including 26 co-expressed genes were enriched in mitochondrial function. Using data from the observational COPDGene Study, we validated the expression of 25 of these 26 genes, plus ARSB. The effect of long-term oxygen therapy in COPD varied based on ARSB expression and genotype. ARSB has previously been shown to be associated with hypoxemia in human bronchial and colonic epithelial cells and in a mouse model. In peripheral blood, long-term oxygen treatment affected expression of mitochondrial-related genes, a biologically relevant pathway in COPD. SNPs and expression of ARSB are associated with response to long-term oxygen in COPD. The ARSB SNPs were expression quantitative trait loci depending on oxygen therapy. Genes differentially expressed by long-term oxygen were enriched in mitochondrial functions. This suggests a potential biomarker to personalize use of long-term oxygen in COPD.
Collapse
Affiliation(s)
- Minseok Seo
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - William Bailey
- Lung Health Center, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, USA
| | - Mark T Dransfield
- Lung Health Center, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - John J Reilly
- University of Colorado School of Medicine, Denver, CO, USA
| | - Mary Beth Scholand
- Division of Pulmonary Medicine, University of Utah, Salt Lake City, UT, USA
| | - Peter Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Robert Chase
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA, 02115, USA
| | - Margaret Parker
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Aabida Saferali
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Jeong H Yun
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - James D Crapo
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|