1
|
Aleksandrova E, Dimov D, Tacheva T, Petrova H, Celik K, Vlaykova T. Smoking-Dependent Association of Serum Brain-Derived Neurotrophic Factor with Pulmonary Function Parameters in Chronic Obstructive Pulmonary Disease. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1111. [PMID: 39064540 PMCID: PMC11279016 DOI: 10.3390/medicina60071111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: One of the members of the neurotrophin (NT) family is the brain-derived neurotrophic factor (BDNF). In addition to its role in the nerve system, it has been found to play a role in lung health and diseases. Materials and Methods: The serum concentrations of BDNF were assessed in 57 patients with COPD and in 19 control individuals and the possible associations of BDNF with the spirometric indexes and disease stages were explored. Results: We did not find a significant difference between the serum concentrations of BDNF of patients and controls (p = 0.521). A significant negative correlation of the serum BDNF levels with the age of the patients (Rho = -0.279, p = 0.036) was observed. In addition, a borderline negative correlation with the age of disease onset (Rho= -0.244, p = 0.063) was also found. When analyzing these correlations in different genders, we found stronger statistical significance in male patients (Rho = -0.398, p = 0.009; and Rho = -0.419, p = 0.006), while no such significance was found in females (p = 0.574 and p = 0.342). The analyses of the possible relations of serum BDNF concentration with the spirometric parameters in the whole group of patients did not reveal any significance (p = 0.231 for FEV1%pr. and p = 0.271 for FEV1/FVC%). However, when the patients were dichotomized on the basis of smoking habits, we obtained a strong positive correlation between BDNF and FEV1%pr. (Rho = 0.501, p = 0.048) in non-smokers, but strong negative correlations with FEV1%pr. (Rho = -0.468, p = 0.003) and with FEV1/FVC% (Rho = -0.331, p = 0.040) in ex/current smokers. Non-smokers with moderate disease (GOLD II) had higher BDNF serum concentrations than patients with GOLD stage III/IV (p = 0.031). In ex/current smokers, there was an opposite association (p = 0.045). Conclusions: The results of our study suggest that the expression and secretion of BDNF are changed in COPD, but its effects and functions may differ according to the smoking history of the patients.
Collapse
Affiliation(s)
- Elina Aleksandrova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria; (D.D.); (T.T.); (H.P.); (K.C.); (T.V.)
| | - Dimo Dimov
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria; (D.D.); (T.T.); (H.P.); (K.C.); (T.V.)
| | - Tanya Tacheva
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria; (D.D.); (T.T.); (H.P.); (K.C.); (T.V.)
| | - Hristina Petrova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria; (D.D.); (T.T.); (H.P.); (K.C.); (T.V.)
| | - Kahan Celik
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria; (D.D.); (T.T.); (H.P.); (K.C.); (T.V.)
| | - Tatyana Vlaykova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 6000 Stara Zagora, Bulgaria; (D.D.); (T.T.); (H.P.); (K.C.); (T.V.)
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
2
|
Dong H, Lv X, Gao P, Hao Y. Potential role of irisin in lung diseases and advances in research. Front Pharmacol 2023; 14:1307651. [PMID: 38143500 PMCID: PMC10746167 DOI: 10.3389/fphar.2023.1307651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
Irisin, a myokine, is secreted by the movement of skeletal muscles. It plays an important role in metabolic homeostasis, insulin resistance, anti-inflammation, oxidative stress, and bone metabolism. Several studies have reported that irisin-related signaling pathways play a critical role in the treatment of various diseases, including obesity, cardiovascular disease, diabetes, and neurodegenerative disorders. Recently, the potential role of irisin in lung diseases, including chronic obstructive pulmonary disease, acute lung injury, lung cancer, and their associated complications, has received increasing attention. This article aims to explore the role of irisin in lung diseases, primarily focusing on the underlying molecular mechanisms, which may serve as a marker for the diagnosis as well as a potential target for the treatment of lung diseases, thus providing new strategies for their treatment.
Collapse
Affiliation(s)
| | | | - Peng Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yuqiu Hao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Giriyappagoudar M, Vastrad B, Horakeri R, Vastrad C. Study on Potential Differentially Expressed Genes in Idiopathic Pulmonary Fibrosis by Bioinformatics and Next-Generation Sequencing Data Analysis. Biomedicines 2023; 11:3109. [PMID: 38137330 PMCID: PMC10740779 DOI: 10.3390/biomedicines11123109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with reduced quality of life and earlier mortality, but its pathogenesis and key genes are still unclear. In this investigation, bioinformatics was used to deeply analyze the pathogenesis of IPF and related key genes, so as to investigate the potential molecular pathogenesis of IPF and provide guidance for clinical treatment. Next-generation sequencing dataset GSE213001 was obtained from Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) were identified between IPF and normal control group. The DEGs between IPF and normal control group were screened with the DESeq2 package of R language. The Gene Ontology (GO) and REACTOME pathway enrichment analyses of the DEGs were performed. Using the g:Profiler, the function and pathway enrichment analyses of DEGs were performed. Then, a protein-protein interaction (PPI) network was constructed via the Integrated Interactions Database (IID) database. Cytoscape with Network Analyzer was used to identify the hub genes. miRNet and NetworkAnalyst databaseswereused to construct the targeted microRNAs (miRNAs), transcription factors (TFs), and small drug molecules. Finally, receiver operating characteristic (ROC) curve analysis was used to validate the hub genes. A total of 958 DEGs were screened out in this study, including 479 up regulated genes and 479 down regulated genes. Most of the DEGs were significantly enriched in response to stimulus, GPCR ligand binding, microtubule-based process, and defective GALNT3 causes HFTC. In combination with the results of the PPI network, miRNA-hub gene regulatory network and TF-hub gene regulatory network, hub genes including LRRK2, BMI1, EBP, MNDA, KBTBD7, KRT15, OTX1, TEKT4, SPAG8, and EFHC2 were selected. Cyclothiazide and rotigotinethe are predicted small drug molecules for IPF treatment. Our findings will contribute to identification of potential biomarkers and novel strategies for the treatment of IPF, and provide a novel strategy for clinical therapy.
Collapse
Affiliation(s)
- Muttanagouda Giriyappagoudar
- Department of Radiation Oncology, Karnataka Institute of Medical Sciences (KIMS), Hubballi 580022, Karnataka, India;
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. Socitey’s College of Pharmacy, Gadag 582101, Karnataka, India;
| | - Rajeshwari Horakeri
- Department of Computer Science, Govt First Grade College, Hubballi 580032, Karnataka, India;
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
4
|
Liu X, Hu Q, Xu T, Yuan Q, Hu Q, Hu N, Sun W, Bai Y, Liu L, Feng J, Yi Q. Fndc5/irisin deficiency leads to dysbiosis of gut microbiota contributing to the depressive-like behaviors in mice. Brain Res 2023; 1819:148537. [PMID: 37591459 DOI: 10.1016/j.brainres.2023.148537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Depression is one of the most common mental diseases and the leading cause of disability worldwide. A dysfunctional gut microbiota-brain axis is one of the main pathological bases of depression. Irisin, an exercise-related myokine, reduces depression-like behaviors and may guide the relief of depressive symptoms by exercise. However, its underlying mechanism remains unclear. METHODS Fibronectin type III domain containing 5 (Fndc5)/Irisin was knocked out in male wide-type C57BL/6N mice using CRISPR-cas9. The depression and anxiety symptoms were examined in irisin knockout and control mice with or without chronic unpredictable mild stress by sucrose preference test (SPT), forced swimming test (FST), and tail suspension test (TST). Fecal microbiota was assessed by 16S rRNA sequencing and microbiota-related metabolites using liquid chromatography with tandem mass spectrometry. Differential metabolites were analyzed with the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. RESULTS The knockout mice showed anxiety- and depression-like behaviors and altered diversity and richness of gut microbiota. At the phylum level, these mice had decreased Firmicutes and increased Bacteroidota populations, while at the genus level, they exhibited a low relative abundance of Lactobacillus and Bifidobacterium. Moreover, knocking out of Irisin gene in these mice significantly reduced N-desmethyl-mifepristone (RU 42633) and elevated (-)-stercobilin levels. The KEGG results showed that the microbiota-related metabolites affected by irisin mainly clustered into arginine and proline metabolism and affected the mechanistic target of rapamycin kinase (mTOR) signaling pathway. CONCLUSION Our findings show that Fndc5/irisin deficiency causes depression in mice by inducing dysbiosis of gut microbiota and changes in microbiota-related metabolites.
Collapse
Affiliation(s)
- Xing Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Qinxue Hu
- Department of Critical Care Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Tianhao Xu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Qiaoli Yuan
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Qin Hu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Na Hu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital (First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, China
| | - Yiping Bai
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Department of Anesthesiology, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
5
|
Skrzep-Poloczek B, Idzik M, Michalczyk K, Chełmecka E, Kukla M, Zalejska-Fiolka J, Poloczek J, Bogielski B, Jochem J, Nowak D, Stygar D. A 21-Day Individual Rehabilitation Exercise Training Program Changes Irisin, Chemerin, and BDNF Levels in Patients after Hip or Knee Replacement Surgery. J Clin Med 2023; 12:4881. [PMID: 37568282 PMCID: PMC10419925 DOI: 10.3390/jcm12154881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 08/13/2023] Open
Abstract
Osteoarthritis (OA) is the most frequent worldwide cause of adult population disabilities. The study evaluated the effects of a 21-day individual rehabilitation exercise training program focused on improving patients' functional capacity. The study analyzed the changes in irisin, chemerin, and BDNF serum levels in 36 OA patients subjected to an individually-adjusted rehabilitation program 90 days after surgical hip or knee replacement. The changes in irisin, chemerin, and BDNF serum levels were measured using enzyme-linked immunosorbent assay (ELISA) kits. A 21-day individual rehabilitation exercise training program significantly increased irisin and BDNF, and decreased chemerin serum levels. The presented study indicates that individually-adjusted exercise training is an important modulator influencing serum levels of anti- and pro-inflammatory factors, leading to positive clinical outcomes in osteoarthritis therapy. Selected factors are considered potential markers of various pathophysiological conditions. The presented study brings new details to the discussion.
Collapse
Affiliation(s)
- Bronisława Skrzep-Poloczek
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-808 Zabrze, Poland; (B.S.-P.); (B.B.)
| | - Maciej Idzik
- Independent Public Health Care, Opole Cancer Center Prof. Tadeusz Koszarowski, Katowicka 45-061 Street, 46-020 Opole, Poland;
| | - Katarzyna Michalczyk
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-808 Zabrze, Poland; (B.S.-P.); (B.B.)
| | - Elżbieta Chełmecka
- Department of Statistics, Department of Instrumental Analysis, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Ostrogórska 31 Street, 41-200 Sosnowiec, Poland;
| | - Michał Kukla
- Department of Internal Medicine and Geriatrics, Jagiellonian University Medical College in Cracow, Jakubowskiego 28 Street, 31-501 Cracow, Poland;
- Department of Endoscopy, University Hospital in Cracow, Jakubowskiego 28 Street, 31-501 Cracow, Poland
| | - Jolanta Zalejska-Fiolka
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-808 Zabrze, Poland;
| | - Jakub Poloczek
- Department of Rehabilitation, 3rd Specialist Hospital in Rybnik, Energetyków 46 Street, 44-200 Rybnik, Poland
| | - Bartosz Bogielski
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-808 Zabrze, Poland; (B.S.-P.); (B.B.)
| | - Jerzy Jochem
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-808 Zabrze, Poland; (B.S.-P.); (B.B.)
| | - Damian Nowak
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-808 Zabrze, Poland; (B.S.-P.); (B.B.)
| | - Dominika Stygar
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-808 Zabrze, Poland; (B.S.-P.); (B.B.)
- SLU University Animal Hospital, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| |
Collapse
|
6
|
Zheng W, Gu L, Zhou Y, Wang C, Lan X, Zhang B, Li Z, Ning Y. Baseline Plasma BDNF Levelsare Associated with Antianhedonic Effects of Repeated-Dose Intravenous Ketamine in Major Depressive Disorder. Curr Neuropharmacol 2023; 21:1013-1021. [PMID: 36173064 PMCID: PMC10227912 DOI: 10.2174/1570159x20666220927085706] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Evidence has shown that brain-derived neurotrophic factor (BDNF) is associated with anhedonia symptoms in major depressive disorder (MDD) patients, while the rapid antianhedonic effects of ketamine may occur independently of depressive symptoms. To our knowledge, the relationship between plasma BDNF (pBDNF) and the effect of repeated-dose intravenous ketamine on anhedonic symptoms has not been investigated. METHODS Seventy-five Chinese individuals with MDD received ketamine treatments. Anhedonia and pBDNF concentrations were evaluated with a subscale of the Montgomery-Åsberg Depression Rating Scale (MADRS) and enzyme-linked immunosorbent assay (ELISA) at baseline, day 13 and day 26. RESULTS Baseline pBDNF levels were associated with changes in anhedonic symptoms on day 13 (r=0.30, P=0.008). Interestingly, pBDNF concentrations were associated with changes in anhedonia symptomson day 26 (r= -0.32, P=0.02). Baseline pBDNF levels were higher in antianhedonic responders than in antianhedonic nonresponders (F=4.2, P=0.04). Ketaminereduced anhedonia symptoms in antianhedonic responders compared to nonresponders on days 13 and 26 (all Ps<0.05). The baseline high BDNF group had a lower level of anhedonia than the low BDNF group on days 13 (P<0.001) and 26 (P=0.01). CONCLUSION Our study suggests that baseline pBDNF concentrations may predict the antianhedonic effect in individuals with MDD treated with repeated doses of ketamine.
Collapse
Affiliation(s)
- Wei Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Limei Gu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanling Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chengyu Wang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaofeng Lan
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zezhi Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Du Y, Wu J, Tian Y, Zhang L, Zhao P, Li J. Serum metabolomics using ultra-high performance liquid chromatography-Q-Exactive tandem mass spectrometry reveals the mechanism of action of exercise training on chronic obstructive pulmonary disease rats. Biomed Chromatogr 2023; 37:e5507. [PMID: 36097398 DOI: 10.1002/bmc.5507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/17/2022] [Accepted: 09/09/2022] [Indexed: 12/15/2022]
Abstract
Exercise training is the cornerstone component of pulmonary rehabilitation, which results in symptom-reducing, psychosocial, and health economic benefits for chronic obstructive pulmonary disease (COPD) patients. However, the potential mechanisms of its action are poorly understood. This study conducted serum metabolomics using ultra-high performance liquid chromatography-Q-Exactive tandem mass spectrometry to determine the metabolic changes in COPD rats, and the effects of exercise training on improvement in COPD were further investigated. Twelve differential metabolites-which are primarily related to tryptophan metabolism, sphingolipid metabolism, glycerophospholipid metabolism, riboflavin metabolism, pantothenate and CoA biosynthesis, and lysine degradation-were identified in relation to COPD. After the intervention of exercise training, the levels of most metabolites were restored, and the changes in five metabolites were statistically significant, which suggested that exercise training provided effective protection against COPD and might play its role by rebalancing disordered metabolism pathways. This work enhanced our comprehension of the protective mechanism of exercise training on COPD.
Collapse
Affiliation(s)
- Yan Du
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.,Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jing Wu
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yange Tian
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.,Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lanxi Zhang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
| | - Peng Zhao
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.,Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiansheng Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China.,Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
8
|
Qi JY, Yang LK, Wang XS, Wang M, Li XB, Feng B, Wu YM, Zhang K, Liu SB. Irisin: A promising treatment for neurodegenerative diseases. Neuroscience 2022; 498:289-299. [PMID: 35872251 DOI: 10.1016/j.neuroscience.2022.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/10/2022] [Accepted: 07/15/2022] [Indexed: 11/19/2022]
Abstract
The beneficial effects of exercise on human brain function have been demonstrated in previous studies. Myokines secreted by muscle have attracted increasing attention because of their bridging role between exercise and brain health. Regulated by PPARγ coactivator 1α, fibronectin type III domain-containing protein 5 releases irisin after proteolytic cleavage. Irisin, a type of myokine, is secreted during exercise, which induces white adipose tissue browning and relates to energy metabolism. Recently, irisin has been shown to exert a protective effect on the central nervous system. Irisin secretion triggers an increase in brain-derived neurotrophic factor levels in the hippocampus, contributing to the amelioration of cognition impairments. Irisin also plays an important role in the survival, differentiation, growth, and development of neurons. This review summarizes the role of irisin in neurodegenerative diseases and other neurological disorders. As a novel positive mediator of exercise in the brain, irisin may effectively prevent or decelerate the progress of neurodegenerative diseases in models and also improve cognitive functions. We place emphasis herein on the potential of irisin for prevention rather than treatment in neurodegenerative diseases. In ischemic diseases, irisin can alleviate the pathophysiological processes associated with stroke. Meanwhile, irisin has anxiolytic and antidepressant effects. The potential therapeutic effects of irisin in epilepsy and pain have been initially revealed. Due to the pleiotropic and beneficial properties of irisin, the possibility of irisin treating other neurological diseases could be gradually explored in the future.
Collapse
Affiliation(s)
- Jing-Yu Qi
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Liu-Kun Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xin-Shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Min Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xu-Bo Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Ban Feng
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
9
|
Qi JY, Yang LK, Wang XS, Wang M, Li XB, Feng B, Wu YM, Liu SB, Zhang K. Mechanism of CNS regulation by irisin, a multifunctional protein. Brain Res Bull 2022; 188:11-20. [PMID: 35850187 DOI: 10.1016/j.brainresbull.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
Exercise not only builds up our body but also improves cognitive function. Skeletal muscle secretes myokine during exercise as a large reservoir of signaling molecules, which can be considered as a medium between exercise and brain health. Irisin is a circulating myokine derived from the Fibronectin type III domain-containing protein 5 (FNDC5). Irisin regulates energy metabolism because it can stimulate the "Browning" of white adipose tissue. It has been reported that irisin can cross the blood-brain barrier and increase the expression of a brain-derived neurotrophic factor (BDNF) in the hippocampus, which improves learning and memory. In addition, the neuroprotective effect of irisin has been verified in various disease models. Therefore, this review summarizes how irisin plays a neuroprotective role, including its signal pathway and mechanism. In addition, we will briefly discuss the therapeutic potential of irisin for neurological diseases.
Collapse
Affiliation(s)
- Jing-Yu Qi
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Liu-Kun Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xin-Shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Min Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xu-Bo Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Ban Feng
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
10
|
Li X, Cao X, Zhao M, Bao Y. The Changes of Irisin and Inflammatory Cytokines in the Age-Related Macular Degeneration and Retinal Vein Occlusion. Front Endocrinol (Lausanne) 2022; 13:861757. [PMID: 35370941 PMCID: PMC8970465 DOI: 10.3389/fendo.2022.861757] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 12/26/2022] Open
Abstract
Purpose Age-related macular degeneration (AMD) and retinal vein occlusion (RVO) are irreversible chorioretinal diseases, which might induce severe damage in visual function. The metabolic factor and inflammatory factors might play important roles in the pathogenesis of AMD and RVO. The levels of irisin and 14 cytokines were analyzed in aqueous humor of AMD and RVO eyes to evaluate the roles of irisin and inflammatory factors. Methods We collected aqueous humor samples from patients with AMD (n = 27), RVO (n = 30), and cataract (as control, n = 23) eyes. Samples were assayed using ELISA kit for irisin and a multiplex immunoassay kit for 14 cytokines. The macular thickness (MT) was measured with OCT in all included eyes. Results MT in the RVO group is significantly higher than that in the AMD or control group. Irisin levels in the aqueous samples of AMD and RVO eyes were both significantly lower than that in the control. Furthermore, a positive correlation was found between irisin and MT in the RVO. Compared with the controls, AMD eyes had significantly higher levels of BDNF, VEGF-A, VEGF-R1, VEGF-R2, IL-10, TNF-α, VCAM-1, IP-10, and MCP-1. Similarly, RVO eyes had significantly higher levels of BDNF, VEGF-A, VEGF-R1, VEGF-R2, IL-6, IL-8, IL-10, TNF-α, ICAM-1, VCAM-1, IP-10, and MCP-1. However, there was no significant difference between the levels of PDGF-BB or TNF-β in these three groups. A negative correlation was found between VEGF-A and MT in AMD, as well as in control. Furthermore, a positive correlation was found between IL-6 and MT in the 80 included eyes, as well as in RVO. A positive correlation was found between ICAM-1 and MT in the 80 included eyes, as well as in RVO. Conclusions The metabolic factor, irisin levels in the aqueous humor are decreased in AMD and RVO eyes and show a positive correlation between irisin and MT in RVO eyes, prompting researchers to explore the relationship between irisin and macular edema. We also identified the higher expression of vascular growth factors (VEGF-A, VEGF-R1, and PDGF-BB), inflammatory cytokines (IL-6, IL-8, IL-10, and TNF-α), and chemokines (ICAM-1, VCAM-1, IP-10, and MCP-1) in AMD and RVO eyes.
Collapse
Affiliation(s)
- Xiaochun Li
- Department of Ophthalmology, Peking University People’s Hospital; Eye Diseases and Optometry Institute; Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases; College of Optometry, Peking University Health Science Center, Beijing, China
- Department of Ophthalmology, Peking University International Hospital, Beijing, China
| | - Xiaoguang Cao
- Department of Ophthalmology, Peking University People’s Hospital; Eye Diseases and Optometry Institute; Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases; College of Optometry, Peking University Health Science Center, Beijing, China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People’s Hospital; Eye Diseases and Optometry Institute; Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases; College of Optometry, Peking University Health Science Center, Beijing, China
| | - Yongzhen Bao
- Department of Ophthalmology, Peking University People’s Hospital; Eye Diseases and Optometry Institute; Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases; College of Optometry, Peking University Health Science Center, Beijing, China
| |
Collapse
|
11
|
Jo D, Song J. Irisin Acts via the PGC-1α and BDNF Pathway to Improve Depression-like Behavior. Clin Nutr Res 2021; 10:292-302. [PMID: 34796134 PMCID: PMC8575642 DOI: 10.7762/cnr.2021.10.4.292] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 11/19/2022] Open
Abstract
Depression is the most prevalent psychiatric disorder experienced by the world's population. Mechanisms associated with depression-like behavior have not been fully investigated. Among the therapeutic solution for depression, exercise is considered an important regulator attenuating depressive neuropathology. Exercise has been reported to boost the secretion of myokines such as irisin and myostatin in skeletal muscles. Myokines secreted during exercise are involved in various cellular responses including the endocrine and autocrine systems. Especially, irisin as a cleaved version of fibronectin domain-containing protein 5 has multiple functions such as white fat-browning, energy expenditure increase, anti-inflammatory effects, and mitochondrial function improvement in both systemic circulation and central nervous system. Furthermore, irisin activates energy metabolism-related signaling peroxisome proliferator-activated receptor-gamma coactivator-1 alpha and memory formation-related signaling brain-derived neurotrophic factor involved in depression. However, the role and mechanism of irisin in depression disorder is not obvious until now. Here, we review recent evidences regarding the therapeutic effect of irisin in depression disorder. We suggest that irisin is a key molecule that suppresses several neuropathological mechanisms involved in depression.
Collapse
Affiliation(s)
- Danbi Jo
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea.,Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Juhyun Song
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea.,Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
| |
Collapse
|
12
|
Pinson MR, Deutz NEP, Harrykissoon R, Zachria AJ, Engelen MPKJ. Disturbances in branched-chain amino acid profile and poor daily functioning in mildly depressed chronic obstructive pulmonary disease patients. BMC Pulm Med 2021; 21:351. [PMID: 34743729 PMCID: PMC8573879 DOI: 10.1186/s12890-021-01719-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Depression is one of the most common and untreated comorbidities in chronic obstructive pulmonary disease (COPD), and is associated with poor health outcomes (e.g. increased hospitalization/exacerbation rates). Although metabolic disturbances have been suggested in depressed non-diseased conditions, comprehensive metabolic phenotyping has never been conducted in those with COPD. We examined whether depressed COPD patients have certain clinical/functional features and exhibit a specific amino acid phenotype which may guide the development of targeted (nutritional) therapies. METHODS Seventy-eight outpatients with moderate to severe COPD (GOLD II-IV) were stratified based on presence of depression using a validated questionnaire. Lung function, disease history, habitual physical activity and protein intake, body composition, cognitive and physical performance, and quality of life were measured. Comprehensive metabolic flux analysis was conducted by pulse stable amino acid isotope administration. We obtained blood samples to measure postabsorptive kinetics (production and clearance rates) and plasma concentrations of amino acids by LC-MS/MS. Data are expressed as mean [95% CI]. Stats were done by graphpad Prism 9.1.0. ɑ < 0.05. RESULTS The COPD depressed (CD, n = 27) patients on average had mild depression, were obese (BMI: 31.7 [28.4, 34.9] kg/m2), and were characterized by shorter 6-min walk distance (P = 0.055), physical inactivity (P = 0.03), and poor quality of life (P = 0.01) compared to the non-depressed COPD (CN, n = 51) group. Lung function, disease history, body composition, cognitive performance, and daily protein intake were not different between the groups. In the CD group, plasma branched chain amino acid concentration (BCAA) was lower (P = 0.02), whereas leucine (P = 0.01) and phenylalanine (P = 0.003) clearance rates were higher. Reduced values were found for tyrosine plasma concentration (P = 0.005) even after adjustment for the large neutral amino acid concentration (= sum BCAA, tyrosine, phenylalanine and tryptophan) as a marker of dopamine synthesis (P = 0.048). CONCLUSION Mild depression in COPD is associated with poor daily performance and quality of life, and a set of metabolic changes in depressed COPD that include perturbation of large neutral amino acids, specifically the BCAAs. Trial registration clinicaltrials.gov: NCT01787682, 11 February 2013-Retrospectively registered; NCT02770092, 12 May 2016-Retrospectively registered; NCT02780219, 23 May 2016-Retrospectively registered; NCT03796455, 8 January 2019-Retrospectively registered.
Collapse
Affiliation(s)
- Marisa R Pinson
- Department of Health and Kinesiology, Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, USA
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Nicolaas E P Deutz
- Department of Health and Kinesiology, Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, USA
| | - Rajesh Harrykissoon
- Pulmonary, Critical Care and Sleep Medicine, Scott and White Medical Center, College Station, TX, USA
| | - Anthony J Zachria
- Pulmonary, Critical Care and Sleep Medicine, Scott and White Medical Center, College Station, TX, USA
| | - Mariëlle P K J Engelen
- Department of Health and Kinesiology, Center for Translational Research in Aging and Longevity, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
13
|
Guo Z, Liu L, Li S, Xu B, Xu Y, Li H. Effect of BDNF on airway inflammation in a rat model of COPD. Exp Ther Med 2021; 22:1116. [PMID: 34504570 PMCID: PMC8383767 DOI: 10.3892/etm.2021.10550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/02/2021] [Indexed: 12/03/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation that is not fully reversible. The airflow limitation is usually progressive and associated with an abnormal inflammatory response of the lungs to noxious particles or gases. The present study aimed to investigate the effect of brain-derived neurotrophic factor (BDNF) on lung function and airway inflammation in a rat model of COPD. A rat model of COPD was established in this study, and anti-BDNF antibody was injected to observe the effect of BDNF on pulmonary function and airway inflammation. Lung function and hematoxylin and eosin staining analyses were performed. BDNF in the airway was examined using immunohistochemistry, western blotting and enzyme-linked immunosorbent assay. Levels of oxidant stress and inflammatory cytokines were measured. After long-term heavy cigarette exposure, pulmonary inflammation and emphysema were observed, while lung function had deteriorated in the COPD, COPD + anti-BDNF and COPD + normal saline groups. Levels of BDNF expression, malondialdehyde, tumor necrosis factor-α and interleukin-6 were increased in rats with COPD compared with control rats, while levels of superoxide dismutase and glutathione peroxidase were decreased. Anti-BDNF intervention improved airway inflammation. To conclude, anti-BDNF intervention could alleviate inflammation and improve any imbalance between oxidation and antioxidation in the airway.
Collapse
Affiliation(s)
- Zhengli Guo
- Medical College, Soochow University, Suzhou, Jiangsu 215031, P.R. China.,Department of Geriatrics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Lei Liu
- Department of Geriatrics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Shasha Li
- Clinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Bingqing Xu
- Department of Geriatrics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Yihui Xu
- Department of Geriatrics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Huiping Li
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, P.R. China
| |
Collapse
|
14
|
Mucher P, Batmyagmar D, Perkmann T, Repl M, Radakovics A, Ponocny-Seliger E, Lukas I, Fritzer-Szekeres M, Lehrner J, Knogler T, Tscholakoff D, Fondi M, Wagner OF, Winker R, Haslacher H. Basal myokine levels are associated with quality of life and depressed mood in older adults. Psychophysiology 2021; 58:e13799. [PMID: 33655551 PMCID: PMC8243943 DOI: 10.1111/psyp.13799] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
In an aging society, late-life depression has become an increasing problem. There is evidence that physical activity ameliorates depressive symptoms and increases the quality of life (QoL). However, the underlying mechanisms are still poorly understood. Myokines are molecules secreted in response to muscle contraction. Some of them can cross the blood-brain barrier, making them promising candidates for mediating the beneficial effects of physical activity on mood. The present study aims to compare circulating myokine levels to depression/QoL in older athletes and controls. 55 athletes, 57 controls >59 years were enrolled. The assessment included ergometry, magnetic resonance imaging, blood withdrawal, and neuropsychological testing. Serum interleukin-6 (IL-6), irisin, brain-derived neurotrophic factor (BDNF), kynurenine, and cathepsin B were analyzed and compared to surrogates of depression and quality of life. Athletes presented with higher levels of Cathepsin B. Among controls, all myokines but irisin were associated with age. Also, among controls, kynurenine and IL-6 correlated inversely with specific dimensions of quality of life questionnaires, and IL-6 further with depressive symptoms and decreased physical performance. No such associations could be found among athletes. Irisin levels were inversely associated with mild depression and low-grade white matter-lesions in the brain and predicted impaired QoL. The circulating levels of several myokines/muscle activity-related factors appear to be associated with depressive symptoms and impaired QoL among older adults. However, in athletes, some of these connections seem ameliorated, suggesting additional stressors (as f.e. age) or a different pathomechanism among athletes.
Collapse
Affiliation(s)
- Patrick Mucher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,FH Campus Wien, University of Applied Sciences, Vienna, Austria
| | | | - Thomas Perkmann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Manuela Repl
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Astrid Radakovics
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Ina Lukas
- Health and Prevention Center, Sanatorium Hera, Vienna, Austria
| | | | - Johann Lehrner
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Knogler
- Institute for Imaging Diagnostics, Sanatorium Hera, Vienna, Austria
| | | | - Martina Fondi
- FH Campus Wien, University of Applied Sciences, Vienna, Austria
| | - Oswald F Wagner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Robert Winker
- Health and Prevention Center, Sanatorium Hera, Vienna, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Wu C, Lu J, Lu S, Huang M, Xu Y. Increased ratio of mature BDNF to precursor-BDNF in patients with major depressive disorder with severe anhedonia. J Psychiatr Res 2020; 126:92-97. [PMID: 32428748 DOI: 10.1016/j.jpsychires.2020.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/25/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Although studies have shown that severe anhedonia in patients with major depressive disorder (MDD) is associated with poor treatment outcomes, the biological mechanism of this feature is unclear. The aim of this study was to investigate the dysfunction of brain-derived neurotrophic factor (BDNF) metabolism, measured by the ratio of mature BDNF to precursor-BDNF, in MDD patients with severe anhedonia. METHODS We measured plasma levels of mature BDNF (mBDNF), precursor-BDNF (proBDNF), tissue plasminogen activator (tPA) and tropomyosin-related kinase B (trkB) in outpatients with MDD with anhedonia (n = 26), outpatients with MDD without anhedonia (n = 29) and age- and sex-matched healthy controls (HCs, n = 38) by enzyme-linked immunosorbent assay kits, and we calculated the ratio of mBDNF to proBDNF (M/P). We compared these biological determinants among the three groups and explored the interrelationships between anhedonia severity and BDNF metabolism. RESULTS The levels of mBDNF, proBDNF, and tPA and the ratio of M/P were identified with highly significant differences among the three groups. Compared with MDD patients without anhedonia and healthy controls, MDD patients with anhedonia showed higher level of the ratio of M/P, and it was positively associated with the SHAPS scores in MDD patients. Compared to healthy controls, the plasma tPA concentrations were higher in MDD patients with anhedonia but were not different from those in MDD patients without anhedonia. CONCLUSION These results provide novel evidence regarding the relationship between anhedonia and plasma BDNF metabolism. The hypermetabolism of BDNF may be a function of anhedonia rather than other characteristics in MDD.
Collapse
Affiliation(s)
- Congchong Wu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Lu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China; Brain Research Institute of Zhejiang University, Hangzhou, China
| | - Shaojia Lu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China; Brain Research Institute of Zhejiang University, Hangzhou, China
| | - Manli Huang
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China; Brain Research Institute of Zhejiang University, Hangzhou, China.
| | - Yi Xu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China; Brain Research Institute of Zhejiang University, Hangzhou, China.
| |
Collapse
|
16
|
More CE, Papp C, Harsanyi S, Gesztelyi R, Mikaczo A, Tajti G, Kardos L, Seres I, Lorincz H, Csapo K, Zsuga J. Altered irisin/BDNF axis parallels excessive daytime sleepiness in obstructive sleep apnea patients. Respir Res 2019; 20:67. [PMID: 30952206 PMCID: PMC6449996 DOI: 10.1186/s12931-019-1033-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/26/2019] [Indexed: 02/08/2023] Open
Abstract
STUDY OBJECTIVES Obstructive sleep apnea hypopnea syndrome (OSAHS) is a sleep-related breathing disorder, characterized by excessive daytime sleepiness (EDS), paralleled by intermittent collapse of the upper airway. EDS may be the symptom of OSAHS per se but may also be due to the alteration of central circadian regulation. Irisin is a putative myokine and has been shown to induce BDNF expression in several sites of the brain. BDNF is a key factor regulating photic entrainment and consequent circadian alignment and adaptation to the environment. Therefore, we hypothesized that EDS accompanying OSAHS is reflected by alteration of irisin/BDNF axis. METHODS Case history, routine laboratory parameters, serum irisin and BDNF levels, polysomnographic measures and Epworth Sleepiness Scale questionnaire (ESS) were performed in a cohort of OSAHS patients (n = 69). Simple and then multiple linear regression was used to evaluate data. RESULTS We found that EDS reflected by the ESS is associated with higher serum irisin and BDNF levels; β: 1.53; CI: 0.35, 6.15; p = 0.012 and β: 0.014; CI: 0.0.005, 0.023; p = 0.02, respectively. Furthermore, influence of irisin and BDNF was significant even if the model accounted for their interaction (p = 0.006 for the terms serum irisin, serum BDNF and their interaction). Furthermore, a concentration-dependent effect of both serum irisin and BDNF was evidenced with respect to their influence on the ESS. CONCLUSIONS These results suggest that the irisin-BDNF axis influences subjective daytime sleepiness in OSAS patients reflected by the ESS. These results further imply the possible disruption of the circadian regulation in OSAHS. Future interventional studies are needed to confirm this observation.
Collapse
Affiliation(s)
- Csaba E More
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Csaba Papp
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Szilvia Harsanyi
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Angela Mikaczo
- Department of Pulmonology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Gabor Tajti
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Laszlo Kardos
- Institute of Clinical Pharmacology, Infectious Diseases and Allergology, Kenezy Gyula Teaching County Hospital and Outpatient Clinic, Bartok Bela ut 2-26, Debrecen, 4031, Hungary
| | - Ildiko Seres
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Hajnalka Lorincz
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Krisztina Csapo
- Department of Neurology, Faculty of Medicine, University of Debrecen, Moricz Zsigmond krt. 22, Debrecen, 4032, Hungary
| | - Judit Zsuga
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary.
| |
Collapse
|
17
|
de Oliveira Bristot VJ, de Bem Alves AC, Cardoso LR, da Luz Scheffer D, Aguiar AS. The Role of PGC-1α/UCP2 Signaling in the Beneficial Effects of Physical Exercise on the Brain. Front Neurosci 2019; 13:292. [PMID: 30983964 PMCID: PMC6449457 DOI: 10.3389/fnins.2019.00292] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 03/13/2019] [Indexed: 01/12/2023] Open
Abstract
In understanding the pathology of neurological diseases, the role played by brain energy metabolism is gaining prominence. Animal models have demonstrated that regular physical exercise improves brain energy metabolism while also providing antidepressant, anxiolytic, antioxidant and neuroprotective functions. This review summarizes the latest evidence on the roles played by peroxisome proliferator-activated receptor gamma (PPAR-γ) coactivator 1-alpha (PGC-1α) and mitochondrial uncoupling protein (UCP) in this scenario. The beneficial effects of exercise seem to depend on crosstalk between muscles and nervous tissue through the increased release of muscle irisin during exercise.
Collapse
Affiliation(s)
- Viviane José de Oliveira Bristot
- Research Group on Biology of Exercise, Department of Health Sciences, Centro Araranguá, Federal University of Santa Catarina, Araranguá, Brazil
| | - Ana Cristina de Bem Alves
- Research Group on Biology of Exercise, Department of Health Sciences, Centro Araranguá, Federal University of Santa Catarina, Araranguá, Brazil
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Liziane Rosa Cardoso
- Research Group on Biology of Exercise, Department of Health Sciences, Centro Araranguá, Federal University of Santa Catarina, Araranguá, Brazil
| | - Débora da Luz Scheffer
- Research Group on Biology of Exercise, Department of Health Sciences, Centro Araranguá, Federal University of Santa Catarina, Araranguá, Brazil
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Aderbal Silva Aguiar
- Research Group on Biology of Exercise, Department of Health Sciences, Centro Araranguá, Federal University of Santa Catarina, Araranguá, Brazil
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
18
|
Wu Y, Zhu B, Chen Z, Duan J, Luo A, Yang L, Yang C. New Insights Into the Comorbidity of Coronary Heart Disease and Depression. Curr Probl Cardiol 2019; 46:100413. [PMID: 31005351 DOI: 10.1016/j.cpcardiol.2019.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/03/2019] [Indexed: 12/19/2022]
Abstract
Coronary heart disease (CHD) and depression are common disorders that markedly impair quality of life and impose a great financial burden on society. They are also frequently comorbid, exacerbating patient condition, and worsening prognosis. This comorbidity strongly suggests shared pathologic mechanisms. This review focuses on the incidence of depression in patients with CHD, deleterious effects of depression on CHD symptoms, and the potential mechanisms underlying comorbidity. In addition to the existing frequent mechanisms that are well known for decades, this review summarized interesting and original potential mechanisms to underlie the comorbidity, such as endocrine substances, gut microbiome, and microRNA. Finally, there are several treatment strategies for the comorbidity, involving drugs and psychotherapy, which may provide a theoretical basis for further basic research and clinical investigations on improved therapeutic interventions.
Collapse
|
19
|
Kim S, Choi JY, Moon S, Park DH, Kwak HB, Kang JH. Roles of myokines in exercise-induced improvement of neuropsychiatric function. Pflugers Arch 2019; 471:491-505. [PMID: 30627775 DOI: 10.1007/s00424-019-02253-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/18/2018] [Accepted: 01/03/2019] [Indexed: 01/28/2023]
Abstract
Exercise is a well-known non-pharmacological intervention to improve brain functions, including cognition, memory, and motor coordination. Contraction of skeletal muscles during exercise releases humoral factors that regulate the whole-body metabolism via interaction with other non-muscle organs. Myokines are muscle-derived effectors that regulate body metabolism by autocrine, paracrine, or endocrine action and were reportedly suggested as "exercise factors" that can improve the brain function. However, several aspects remain to be elucidated, namely the specific activities of myokines related to the whole-body metabolism or brain function, the mechanisms of regulation of other organs or cells, the sources of "exercise factors" that regulate brain function, and their mechanisms of interaction with non-muscle organs. In this paper, we present the physiological functions of myokines secreted by exercise, including regulation of the whole-body metabolism by interaction with other organs and adaptation of skeletal muscles to exercise. In addition, we discuss the functions of myokines that possibly contribute to exercise-induced improvement of brain function. Among several myokines, brain-derived neurotrophic factor (BDNF) is the most studied myokine that regulates adult neurogenesis and synaptic plasticity. However, the source of circulating BDNF and its upstream effector, insulin-like growth factor (IGF-1), and irisin and the effect size of peripheral BDNF, irisin, and IGF-1 released after exercise should be further investigated. Recently, cathepsin B has been reported to be secreted from skeletal muscles and upregulate BDNF following exercise, which was associated with improved cognitive function. We reviewed the level of evidence for the effect of myokine on the brain function. Level of evidence for the association of the change in circulating myokine following exercise and improvement of neuropsychiatric function is lower than the level of evidence for the benefit of exercise on the brain. Therefore, more clinical evidences for the association of myokine release after exercise and their effect on the brain function are required. Finally, we discuss the effect size of the action of myokines on cognitive benefits of exercise, in addition to other contributors, such as improvement of the cardiovascular system or the effect of "exercise factors" released from non-muscle organs, particularly in patients with sarcopenia.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Pharmacology and Hypoxia-related Disease Research Center, Inha University School of Medicine, Room 1015, 60th Anniversary Hall, 100, Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea.,Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Ji-Young Choi
- Department of Pharmacology and Hypoxia-related Disease Research Center, Inha University School of Medicine, Room 1015, 60th Anniversary Hall, 100, Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| | - Sohee Moon
- Department of Pharmacology and Hypoxia-related Disease Research Center, Inha University School of Medicine, Room 1015, 60th Anniversary Hall, 100, Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| | - Dong-Ho Park
- Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Hyo-Bum Kwak
- Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Ju-Hee Kang
- Department of Pharmacology and Hypoxia-related Disease Research Center, Inha University School of Medicine, Room 1015, 60th Anniversary Hall, 100, Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea.
| |
Collapse
|
20
|
Vecchio LM, Meng Y, Xhima K, Lipsman N, Hamani C, Aubert I. The Neuroprotective Effects of Exercise: Maintaining a Healthy Brain Throughout Aging. Brain Plast 2018; 4:17-52. [PMID: 30564545 PMCID: PMC6296262 DOI: 10.3233/bpl-180069] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2018] [Indexed: 02/06/2023] Open
Abstract
Physical activity plays an essential role in maintaining a healthy body, yet it also provides unique benefits for the vascular and cellular systems that sustain a healthy brain. While the benefit of exercise has been observed in humans of all ages, the availability of preclinical models has permitted systematic investigations into the mechanisms by which exercise supports and protects the brain. Over the past twenty-five years, rodent models have shown that increased physical activity elevates neurotrophic factors in the hippocampal and cortical areas, facilitating neurotransmission throughout the brain. Increased physical activity (such as by the voluntary use of a running wheel or regular, timed sessions on a treadmill) also promotes proliferation, maturation and survival of cells in the dentate gyrus, contributing to the process of adult hippocampal neurogenesis. In this way, rodent studies have tremendous value as they demonstrate that an 'active lifestyle' has the capacity to ameliorate a number of age-related changes in the brain, including the decline in adult neurogenesis. Moreover, these studies have shown that greater physical activity may protect the brain health into advanced age through a number of complimentary mechanisms: in addition to upregulating factors in pro-survival neurotrophic pathways and enhancing synaptic plasticity, increased physical activity promotes brain health by supporting the cerebrovasculature, sustaining the integrity of the blood-brain barrier, increasing glymphatic clearance and proteolytic degradation of amyloid beta species, and regulating microglia activation. Collectively, preclinical studies demonstrate that exercise initiates diverse and powerful neuroprotective pathways that may converge to promote continued brain health into old age. This review will draw on both seminal and current literature that highlights mechanisms by which exercise supports the functioning of the brain, and aids in its protection.
Collapse
Affiliation(s)
- Laura M. Vecchio
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| | - Ying Meng
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Institute of Medical Sciences, University of Toronto, ON, Canada
| | - Kristiana Xhima
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| | - Nir Lipsman
- Institute of Medical Sciences, University of Toronto, ON, Canada
- Physical Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
| | - Clement Hamani
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Institute of Medical Sciences, University of Toronto, ON, Canada
| | - Isabelle Aubert
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| |
Collapse
|
21
|
Jin Y, Sumsuzzman DM, Choi J, Kang H, Lee SR, Hong Y. Molecular and Functional Interaction of the Myokine Irisin with Physical Exercise and Alzheimer's Disease. Molecules 2018; 23:molecules23123229. [PMID: 30544500 PMCID: PMC6321132 DOI: 10.3390/molecules23123229] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022] Open
Abstract
Irisin, a skeletal muscle-secreted myokine, produced in response to physical exercise, has protective functions in both the central and the peripheral nervous systems, including the regulation of brain-derived neurotrophic factors. In particular, irisin is capable of protecting hippocampus. Since this area is the region of the brain that is most susceptible to Alzheimer's disease (AD), such beneficial effect may inhibit or delay the emergence of neurodegenerative diseases, including AD. Also, the factors engaged in irisin formation appear to suppress Aβ aggregation, which is the pathological hallmark of AD. This review is based on the hypothesis that irisin produced by physical exercise helps to control AD progression. Herein, we describe the physiology of irisin and its potential role in delaying or preventing AD progression in human.
Collapse
Affiliation(s)
- Yunho Jin
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-Aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
| | - Dewan Md Sumsuzzman
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-Aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
| | - Jeonghyun Choi
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-Aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
| | - Hyunbon Kang
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-Aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Department of Physical Therapy, Graduate School of Inje University, Gimhae 50834, Korea.
| | - Sang-Rae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 50834, Korea.
| | - Yonggeun Hong
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-Aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Department of Physical Therapy, Graduate School of Inje University, Gimhae 50834, Korea.
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Gimhae 50834, Korea.
| |
Collapse
|
22
|
de Araujo CLP, da Silva IRV, Reinaldo GP, Peccin PK, Pochmann D, Teixeira PJZ, Elsner VR, Dal Lago P. Pulmonary rehabilitation and BDNF levels in patients with chronic obstructive pulmonary disease: A pilot study. Respir Physiol Neurobiol 2018; 259:63-69. [PMID: 30067940 DOI: 10.1016/j.resp.2018.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/07/2018] [Accepted: 07/29/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND COPD physiopathology involves multiple pathways and evidence indicates that brain-derived neurotrophic factor (BDNF) is an important biomarker associated with parameters of COPD severity. This study aimed to analyze the time course of the effects of a pulmonary rehabilitation program (PRP) on BDNF levels and on functional status in COPD patients. METHODS Patients were enrolled in a 24-session PRP. Exercise capacity, dyspnea, health-related quality of life, and the BODE index were assessed at baseline and after the PRP. BDNF plasma levels were measured at baseline (immediately before the 1st session), after the 1st session, and before and after the 24th session. RESULTS Sixteen patients were included. A reduction in BDNF levels was observed after the 1st session and an increase was observed between the end of the 1st session and the beginning of the 24th session. The PRP promoted an improvement in exercise capacity and health-related quality of life and a reduction in dyspnea and the BODE index. CONCLUSION Exercise acutely reduced BDNF levels, an effect that was nullified by the overall intervention.
Collapse
Affiliation(s)
- Cintia Laura Pereira de Araujo
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil.
| | - Ivy Reichert Vital da Silva
- Programa de Pós-Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, Brazil.
| | - Gustavo Pereira Reinaldo
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil.
| | - Pâmela Krause Peccin
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, Brazil.
| | - Daniela Pochmann
- Programa de Pós-Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, Brazil.
| | - Paulo José Zimermann Teixeira
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil; Serviço de Reabilitação Pulmonar do Pavilhão Pereira Filho, Irmandade Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Porto Alegre, Brazil.
| | - Viviane Rostirola Elsner
- Programa de Pós-Graduação em Biociências e Reabilitação do Centro Universitário Metodista-IPA, Porto Alegre, Brazil.
| | - Pedro Dal Lago
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil.
| |
Collapse
|
23
|
Central irisin administration affords antidepressant-like effect and modulates neuroplasticity-related genes in the hippocampus and prefrontal cortex of mice. Prog Neuropsychopharmacol Biol Psychiatry 2018. [PMID: 29524513 DOI: 10.1016/j.pnpbp.2018.03.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Evidence has indicated that the practice of physical exercise has antidepressant effects that might be associated with irisin release and BDNF signaling. In this study we investigated the effects of the central administration of irisin or BDNF in predictive tests of antidepressant properties paralleled with the gene expression of peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α), fibronectin type III domain-containing protein 5 (FNDC5) and brain-derived neurotrophic factor (BDNF) in the hippocampus and prefrontal cortex of mice. Irisin (0.5-1 ng/mouse, i.c.v.) reduced the immobility time in the tail suspension test (TST) and forced swim test (FST), without altering locomotion in the open field test (OFT). Irisin reduced the immobility time in the TST up to 6 h after its administration. Irisin administration (6 h) increased PGC-1α mRNA in the hippocampus and prefrontal cortex and reduced (1 h) PGC-1α mRNA in the prefrontal cortex. FNDC5 and BDNF mRNA expression was decreased (1 h) in both structures and remained reduced up to 6 h in the prefrontal cortex. Moreover, BDNF administered at 0.25 μg/mouse, i.c.v. (1 and 6 h before the test) reduced the immobility time in the TST. BDNF administration reduced PGC-1α mRNA in the hippocampus (6 h) and prefrontal cortex (1 and 6 h). It also increased FNDC5 mRNA expression in the hippocampus (1 and 6 h), but reduced the expression of this gene and also BDNF mRNA in the prefrontal cortex (1 and 6 h). None of the treatments altered BDNF protein levels in both structures. In conclusion, irisin presents a behavioral antidepressant profile similar to BDNF, an effect associated with the modulation of gene expression of PGC-1α, FNDC5 and BDNF, reinforcing the pivotal role of these genes in mood regulation.
Collapse
|
24
|
Asadi Y, Gorjipour F, Behrouzifar S, Vakili A. Irisin Peptide Protects Brain Against Ischemic Injury Through Reducing Apoptosis and Enhancing BDNF in a Rodent Model of Stroke. Neurochem Res 2018; 43:1549-1560. [PMID: 29882126 DOI: 10.1007/s11064-018-2569-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 12/28/2022]
Abstract
Evidence has shown therapeutic potential of irisin in cerebral stroke. The present study aimed to assess the effects of recombinant irisin on the infarct size, neurological outcomes, blood-brain barrier (BBB) permeability, apoptosis and brain-derived neurotrophic factor (BDNF) expression in a mouse model of stroke. Transient focal cerebral ischemia was established by middle cerebral artery occlusion (MCAO) for 45 min and followed reperfusion for 23 h in mice. Recombinant irisin was administrated at doses of 0.1, 0.5, 2.5, 7.5, and 15 µg/kg, intracerebroventricularly (ICV), on the MCAO beginning. Neurological outcomes, infarct size, brain edema and BBB permeability were evaluated by modified neurological severity score (mNSS), 2,3,5-triphenyltetrazolium chloride (TTC) staining and Evans blue (EB) extravasation methods, respectively, at 24 h after ischemia. Apoptotic cells and BDNF protein were detected by TUNEL assay and immunohistochemistry techniques. The levels of Bcl-2, Bax and caspase-3 proteins were measured by immunoblotting technique. ICV irisin administration at doses of 0.5, 2.5, 7.5 and 15 µg/kg, significantly reduced infarct size, whereas only in 7.5 and 15 µg/kg improved neurological outcome (P < 0.001). Treatment with irisin (7.5 µg/kg) reduced brain edema (P < 0.001) without changing BBB permeability (P > 0.05). Additionally, irisin (7.5 µg/kg) significantly diminished apoptotic cells and increased BDNF immunoreactivity in the ischemic brain cortex (P < 0.004). Irisin administration significantly downregulated the Bax and caspase-3 expression and upregulated the Bcl-2 protein. The present study indicated that irisin attenuates brain damage via reducing apoptosis and increasing BDNF protein of brain cortex in the experimental model of stroke in mice.
Collapse
Affiliation(s)
- Yasin Asadi
- Research Center and Department of Physiology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fazel Gorjipour
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Behrouzifar
- Research Center and Department of Physiology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Abedin Vakili
- Research Center and Department of Physiology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
25
|
Szilasi ME, Pak K, Kardos L, Varga VE, Seres I, Mikaczo A, Fodor A, Szilasi M, Tajti G, Papp C, Gesztelyi R, Zsuga J. The Alteration of Irisin-Brain-Derived Neurotrophic Factor Axis Parallels Severity of Distress Disorder in Bronchial Asthma Patients. Front Neurosci 2017; 11:653. [PMID: 29217995 PMCID: PMC5703837 DOI: 10.3389/fnins.2017.00653] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/09/2017] [Indexed: 01/27/2023] Open
Abstract
Distress disorder (a collective term for generalized anxiety disorder and major depressive disorder) is a well-known co-morbidity of bronchial asthma. The irisin-brain-derived neurotrophic factor (BDNF) axis is a pathway that influences several neurobehavioral mechanisms involved in the pathogenesis of distress disorder. Thus, the aim of the present study was to quantify the serum irisin and BDNF concentrations in order to investigate the possible link between the irisin/BDNF axis and distress disorder in an asthma patient cohort. Data of 167 therapy-controlled asthma patients were analyzed. Demographic, anthropometric, and anamnestic data were collected, routine laboratory parameters supplemented with serum irisin and BDNF levels were determined, pulmonary function test was performed using whole-body plethysmography, and quality of life was quantified by means of the St. George's Respiratory Questionnaire (SGRQ). Correlation analysis as well as simple and multiple linear regression were used to assess the relationship between the irisin level and the Impacts score of SGRQ, which latter is indicative of the presence and severity of distress disorder. We have found a significant, positive linear relationship between the Impacts score and the reciprocal of irisin level. This association was stronger in patients whose BDNF level was higher, and it was weaker (and statistically non-significant) in patients whose BDNF level was lower. Our results indicate that higher serum irisin level together with higher serum BDNF level are associated with milder (or no) distress disorder. This finding suggests that alteration of the irisin/BDNF axis influences the presence and severity of distress disorder in asthma patients.
Collapse
Affiliation(s)
- Magdolna E Szilasi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztian Pak
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Kardos
- Institute of Clinical Pharmacology, Infectious Diseases and Allergology, Kenezy Gyula Teaching County Hospital and Outpatient Clinic, University of Debrecen, Debrecen, Hungary
| | - Viktoria E Varga
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ildiko Seres
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Angela Mikaczo
- Department of Pulmonology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Fodor
- Department of Pulmonology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Maria Szilasi
- Department of Pulmonology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabor Tajti
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Csaba Papp
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Zsuga
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| |
Collapse
|