1
|
Dharmage SC, Faner R, Agustí A. Treatable traits in pre-COPD: Time to extend the treatable traits paradigm beyond established disease. Respirology 2024; 29:551-562. [PMID: 38862131 DOI: 10.1111/resp.14760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024]
Abstract
To date, the treatable traits (TTs) approach has been applied in the context of managing diagnosed diseases. TTs are clinical characteristics and risk factors that can be identified clinically and/or biologically, and that merit treatment if present. There has been an exponential increase in the uptake of this approach by both researchers and clinicians. Realizing the potential of the TTs approach to pre-clinical disease, this expert review proposes that it is timely to consider acting on TTs present before a clinical diagnosis is made, which might help to prevent development of the full disease. Such an approach is ideal for diseases where there is a long pre-clinical phase, such as in chronic obstructive pulmonary disease (COPD). The term 'pre-COPD' has been recently proposed to identify patients with respiratory symptoms and/or structural or functional abnormalities without airflow limitation. They may eventually develop airflow limitation with time but patients with pre-COPD are likely to have traits that are already treatable. This review first outlines the contribution of recently generated knowledge into lifetime lung function trajectories and the conceptual framework of 'GETomics' to the field of pre-COPD. GETomics is a dynamic and cumulative model of interactions between genes and the environment throughout the lifetime that integrates information from multi-omics to understand aetiology and mechanisms of diseases. This review then discusses the current evidence on potential TTs in pre-COPD patients and makes recommendations for practice and future research. At a broader level, this review proposes that introducing the TTs in pre-COPD may help reenergize the preventive approaches to health and diseases.
Collapse
Affiliation(s)
- Shyamali C Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Rosa Faner
- Universitat de Barcelona, Biomedicine Department. Immunology Unit, Barcelona, Spain
- Fundació Clinic per a la Recerca Biomedica (FCRB-IDIBAPS), Institut Investigacions Biomediques, Barcelona, Spain
- Consorcio Investigacion Biomedica en Red (CIBER) ENfermedades Respiratorias, Barcelona, Spain
| | - Alvar Agustí
- Fundació Clinic per a la Recerca Biomedica (FCRB-IDIBAPS), Institut Investigacions Biomediques, Barcelona, Spain
- Consorcio Investigacion Biomedica en Red (CIBER) ENfermedades Respiratorias, Barcelona, Spain
- Cathedra Salud Respiratoria, Department of Medicine, University of Barcelona, Barcelona, Spain
- Pulmonary Division, Respiratory Institute, Clinic Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Amri O, Madore AM, Boucher-Lafleur AM, Laprise C. Genomic analysis of severe COVID-19 considering or not asthma comorbidity: GWAS insights from the BQC19 cohort. BMC Genomics 2024; 25:482. [PMID: 38750426 PMCID: PMC11097529 DOI: 10.1186/s12864-024-10342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND The severity of COVID-19 is influenced by various factors including the presence of respiratory diseases. Studies have indicated a potential relationship between asthma and COVID-19 severity. OBJECTIVE This study aimed to conduct a genome-wide association study (GWAS) to identify genetic and clinical variants associated with the severity of COVID-19, both among patients with and without asthma. METHODS We analyzed data from 2131 samples sourced from the Biobanque québécoise de la COVID-19 (BQC19), with 1499 samples from patients who tested positive for COVID-19. Among these, 1110 exhibited mild-to-moderate symptoms, 389 had severe symptoms, and 58 had asthma. We conducted a comparative analysis of clinical data from individuals in these three groups and GWAS using a logistic regression model. Phenotypic data analysis resulted in the refined covariates integrated into logistic models for genetic studies. RESULTS Considering a significance threshold of 1 × 10-6, seven genetic variants were associated with severe COVID-19. These variants were located proximal to five genes: sodium voltage-gated channel alpha subunit 1 (SCN10A), desmoplakin (DSP), RP1 axonemal microtubule associated (RP1), IGF like family member 1 (IGFL1), and docking protein 5 (DOK5). The GWAS comparing individuals with severe COVID-19 with asthma to those without asthma revealed four genetic variants in transmembrane protein with EGF like and two follistatin like domains 2 (TMEFF2) and huntingtin interacting protein-1 (HIP1) genes. CONCLUSION This study provides significant insights into the genetic profiles of patients with severe forms of the disease, whether accompanied by asthma or not. These findings enhance our comprehension of the genetic factors that affect COVID-19 severity. KEY MESSAGES Seven genetic variants were associated with the severe form of COVID-19; Four genetic variants were associated with the severe form of COVID-19 in individuals with comorbid asthma; These findings help define the genetic component of the severe form of COVID-19 in relation to asthma as a comorbidity.
Collapse
Affiliation(s)
- Omayma Amri
- Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Saguenay, Québec, G7H 2B1, Canada
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec, G7H 2B1, Canada
| | - Anne-Marie Madore
- Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Saguenay, Québec, G7H 2B1, Canada
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec, G7H 2B1, Canada
| | - Anne-Marie Boucher-Lafleur
- Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Saguenay, Québec, G7H 2B1, Canada
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec, G7H 2B1, Canada
| | - Catherine Laprise
- Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Saguenay, Québec, G7H 2B1, Canada.
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec, G7H 2B1, Canada.
- Centre de recherche du Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Saguenay, Québec, G7H 7K9, Canada.
| |
Collapse
|
3
|
Vameghestahbanati M, Kirby M, Maltais F, Jensen D, Doiron D, Tan WC, Bourbeau J, Smith BM. Dysanapsis and the Spirometric Response to Inhaled Bronchodilators. Am J Respir Crit Care Med 2021; 204:997-1001. [PMID: 34265233 PMCID: PMC8534630 DOI: 10.1164/rccm.202107-1574le] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | | | | | | | - Wan C Tan
- University of British Columbia Vancouver, British Columbia, Canada
| | | | - Benjamin M Smith
- McGill University Montreal, Quebec, Canada
- Columbia University New York, New York
| |
Collapse
|
4
|
Matera MG, Page CP, Calzetta L, Rogliani P, Cazzola M. Pharmacology and Therapeutics of Bronchodilators Revisited. Pharmacol Rev 2020; 72:218-252. [PMID: 31848208 DOI: 10.1124/pr.119.018150] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bronchodilators remain the cornerstone of the treatment of airway disorders such as asthma and chronic obstructive pulmonary disease (COPD). There is therefore considerable interest in understanding how to optimize the use of our existing classes of bronchodilator and in identifying novel classes of bronchodilator drugs. However, new classes of bronchodilator have proved challenging to develop because many of these have no better efficacy than existing classes of bronchodilator and often have unacceptable safety profiles. Recent research has shown that optimization of bronchodilation occurs when both arms of the autonomic nervous system are affected through antagonism of muscarinic receptors to reduce the influence of parasympathetic innervation of the lung and through stimulation of β 2-adrenoceptors (β 2-ARs) on airway smooth muscle with β 2-AR-selective agonists to mimic the sympathetic influence on the lung. This is currently achieved by use of fixed-dose combinations of inhaled long-acting β 2-adrenoceptor agonists (LABAs) and long-acting muscarinic acetylcholine receptor antagonists (LAMAs). Due to the distinct mechanisms of action of LAMAs and LABAs, the additive/synergistic effects of using these drug classes together has been extensively investigated. More recently, so-called "triple inhalers" containing fixed-dose combinations of both classes of bronchodilator (dual bronchodilation) and an inhaled corticosteroid in the same inhaler have been developed. Furthermore, a number of so-called "bifunctional drugs" having two different primary pharmacological actions in the same molecule are under development. This review discusses recent advancements in knowledge on bronchodilators and bifunctional drugs for the treatment of asthma and COPD. SIGNIFICANCE STATEMENT: Since our last review in 2012, there has been considerable research to identify novel classes of bronchodilator drugs, to further understand how to optimize the use of the existing classes of bronchodilator, and to better understand the role of bifunctional drugs in the treatment of asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- M G Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - C P Page
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - L Calzetta
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - P Rogliani
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - M Cazzola
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| |
Collapse
|
5
|
Identification of novel biomarkers affecting the metastasis of colorectal cancer through bioinformatics analysis and validation through qRT-PCR. Cancer Cell Int 2020; 20:105. [PMID: 32256214 PMCID: PMC7106634 DOI: 10.1186/s12935-020-01180-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Background Tumor progression and distant metastasis are the main causes of deaths in colorectal cancer (CRC) patients, and the molecular mechanisms in CRC metastasis have not been completely discovered. Methods We identified differentially expressed genes (DEGs) and lncRNAs (DELs) of CRC from The Cancer Genome Atlas (TCGA) database. Then we conducted the weighted gene co-expression network analysis (WGCNA) to investigate co-expression modules related with CRC metastasis. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, DEG-DEL co-expression network and survival analyses of significant modules were also conducted. Finally, the expressions of selected biomarkers were validated in cell lines by quantitative real-time PCR (qRT-PCR). Results 2032 DEGs and 487 DELs were involved the construction of WGCNA network, and greenyellow, turquoise and brown module were identified to have more significant correlation with CRC metastasis. GO and KEGG pathway analysis of these three modules have proven that the functions of DEGs were closely involved in many important processes in cancer pathogenesis. Through the DEG-DEL co-expression network, 12 DEGs and 2 DELs were considered as hub nodes. Besides, survival analysis showed that 30 DEGs were associated with the overall survival of CRC. Then 10 candidate biomarkers were chosen for validation and the expression of CA2, CHP2, SULT1B1, MOGAT2 and C1orf115 were significantly decreased in CRC cell lines when compared to normal human colonic epithelial cells, which were consistent with the results of differential expression analysis. Especially, low expression of SULT1B1, MOGAT2 and C1orf115 were closely correlated with poorer survival of CRC. Conclusion This study identified 5 genes as new biomarkers affecting the metastasis of CRC. Besides, SULT1B1, MOGAT2 and C1orf115 might be implicated in the prognosis of CRC patients.
Collapse
|
6
|
Jia R, Zhao XF. MicroRNA-497 functions as an inflammatory suppressor via targeting DDX3Y and modulating toll-like receptor 4/NF-κB in cigarette smoke extract-stimulated human bronchial epithelial cells. J Gene Med 2019; 22:e3137. [PMID: 31696986 DOI: 10.1002/jgm.3137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND We aimed to investigate the biological effect of miR-497 in cigarette smoke extract (CSE)-damaged human bronchial epithelial (HBE) cells and the underlying molecular mechanism. METHODS MiR-497 mimic was transfected into HBE cells to up-regulate miR-497 expression. Cigarette smoke extract (CSE, 20 μg/mL) was utilized to treat HBE cells to form the injury model. Cell proliferation and apoptosis were detected by CCK8 and flow cytometry assays. DDX3Y mRNA expression was determined by a quantitative reverse transcriptase-polymerase chain reaction. The interaction between miR-497 and DDX3Y was verified by a luciferase reporter assay. Protein expression levels were tested by western blotting. RESULTS CSE treatment decreased miR-497 level in HBE cells. CSE exposure restrained cell proliferation, promoted cell apoptosis and enhanced the relative expression of TLR4 and p-NF-κB p65. DDX3Y was predicted as a target of miR-497. The mRNA and protein expression of DDX3Y was negatively modulated by miR-497 in CSE-injured HBE cells. Up-regulation of miR-497 by miR-497 mimic increased cell proliferation and reduced cell apoptosis in CSE-treated HBE cells, which were rescued by DDX3Y high expression in CSE-treated HBE cells. Consistently, Bcl-2 protein level was heightened, whereas Bax and actived caspase-3/9 protein levels were decreased by miR-497 mimic in CSE-stimulated HBE cells, which was reversed by DDX3Y over-expression in CSE-stimulated HBE cells. The relative expression of TLR4 and p-NF-κB p65 was decreased by miR-497 mimic, whereas they were rescued by DDX3Y over-expression in CSE-damaged HBE cells. CONCLUSIONS The results of the present study demonstrate that up-regulation of miR-497 exhibits a protective effect on CSE-damaged HBE cells, which might be achieved by targeting DDX3Y and regulating the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Rong Jia
- Department of Geriatrics, Lianyungang Second People's Hospital, Lianyungang, Jiangsu, China
| | - Xiao-Fei Zhao
- Department of Geriatrics, Lianyungang Second People's Hospital, Lianyungang, Jiangsu, China
| |
Collapse
|
7
|
Díaz López JM, Giran González B, Alcázar-Navarrete B. Personalized Medicine in Chronic Obstructive Pulmonary Disease: How Close Are We? Arch Bronconeumol 2019; 56:420-421. [PMID: 31722826 DOI: 10.1016/j.arbres.2019.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/01/2019] [Accepted: 09/10/2019] [Indexed: 01/20/2023]
Affiliation(s)
| | | | - Bernardino Alcázar-Navarrete
- AIG de Medicina, Hospital de Alta Resolución de Loja, Agencia Sanitaria Hospital de Poniente, Granada, España; CIBERES, Instituto de Salud Carlos III, Madrid, España.
| |
Collapse
|
8
|
Lopez-Campos JL, Centanni S. Current Approaches for Phenotyping as a Target for Precision Medicine in COPD Management. COPD 2018; 15:108-117. [PMID: 29558165 DOI: 10.1080/15412555.2018.1443064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The study of airway diseases continues to present several challenges for modern medicine. The different disease presentations with variables and overlapping features may result in a real challenge for the clinician. In this context, the concept of precision medicine has started to emerge in order to give answers to some of these challenges from a diagnostic and therapeutic point of view. The main reasons to target for precision medicine in chronic obstructive pulmonary disease (COPD) include that there is variability in the clinical presentation, there is no correlation between the different clinical variables at the patient level, there are a number of relevant clinical variables associated with outcomes, we do have specific therapies for specific patient types, and that there is variability in the clinical response to different therapies. To bring precision medicine into clinical practice several approaches have been used, including the use of independent variables to identify subjects, the use of multidimensional indexes, the so-called clinical phenotypes, and the approximation by the so-called treatable traits. All these approaches have their strengths and weaknesses which are reviewed in the present document. Although there is no universally accepted proposal, the available initiatives provide us with a framework on which to start working and move toward precision medicine in COPD, with the ultimate goal of bringing the best possible medicine to each patient in particular.
Collapse
Affiliation(s)
- Jose Luis Lopez-Campos
- a Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla , Seville , Spain.,b Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III , Madrid , Spain
| | - Stefano Centanni
- c Respiratory Unit, ASST Santi Paolo e Carlo, San Paolo Hospital, Department of Health Sciences , Università degli Studi di Milano , Milan , Italy
| |
Collapse
|