1
|
Ramos Jesus F, Correia Passos F, Miranda Lopes Falcão M, Vincenzo Sarno Filho M, Neves da Silva IL, Santiago Moraes AC, Lima Costa Neves MC, Baccan GC. Immunosenescence and Inflammation in Chronic Obstructive Pulmonary Disease: A Systematic Review. J Clin Med 2024; 13:3449. [PMID: 38929978 PMCID: PMC11205253 DOI: 10.3390/jcm13123449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Background/Objectives: Chronic Obstructive Pulmonary Disease (COPD) is a disease of premature aging, characterized by airflow limitations in the lungs and systemic chronic inflammation. This systematic review aimed to provide a systematic overview of immunosenescence and inflammation in Chronic Obstructive Pulmonary Disease (COPD). Methods: The PubMed, Science Direct, Scopus, Cochrane Library, and Web of Science databases were searched for studies on markers of immunosenescence. Observational studies comparing patients with COPD to individuals without disease were evaluated, considering the following markers: inflammation and senescence in COPD, naïve, memory, and CD28null T cells, and telomere length in leukocytes. Results: A total of 15 studies were included, eight of which were rated as high quality. IL-6 production, telomere shortening, and the higher frequencies of CD28null T cells were more prominent findings in the COPD studies analyzed. Despite lung function severity being commonly investigated in the included studies, the importance of this clinical marker to immunosenescence remains inconclusive. Conclusions: The findings of this systematic review confirmed the presence of accelerated immunosenescence, in addition to systemic inflammation, in stable COPD patients. Further studies are necessary to more comprehensively evaluate the impact of immunosenescence on lung function in COPD.
Collapse
Affiliation(s)
- Fabíola Ramos Jesus
- Maternidade Climério de Oliveira (MCO/EBSERH), Universidade Federal da Bahia, Salvador 40055-150, Bahia, Brazil;
- Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador 40110-110, Bahia, Brazil
| | - Fabine Correia Passos
- Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador 40110-110, Bahia, Brazil
| | - Michelle Miranda Lopes Falcão
- Departamento de Saúde, Universidade Estadual de Feira de Santana, Avenida Transnordestina, s/n—Novo Horizonte, Feira de Santana 44036-900, Bahia, Brazil
| | - Marcelo Vincenzo Sarno Filho
- Unidade do Sistema Respiratório, Ambulatório Professor Francisco Magalhães Neto-Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador 40110-200, Bahia, Brazil
| | - Ingrid Lorena Neves da Silva
- Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador 40110-110, Bahia, Brazil
| | - Anna Clara Santiago Moraes
- Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador 40110-110, Bahia, Brazil
| | - Margarida Célia Lima Costa Neves
- Unidade do Sistema Respiratório, Ambulatório Professor Francisco Magalhães Neto-Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador 40110-200, Bahia, Brazil
| | - Gyselle Chrystina Baccan
- Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador 40110-110, Bahia, Brazil
| |
Collapse
|
2
|
Kritikaki E, Terzis G, Soundararajan M, Vogiatzis I, Simoes DC. Expression of intramuscular extracellular matrix proteins in vastus lateralis muscle fibres between atrophic and non-atrophic COPD. ERJ Open Res 2024; 10:00857-2023. [PMID: 38803416 PMCID: PMC11129643 DOI: 10.1183/23120541.00857-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/02/2024] [Indexed: 05/29/2024] Open
Abstract
Background Extracellular matrix (ECM) proteins are the major constituents of the muscle cell micro-environment, imparting instructive signalling, steering cell behaviour and controlling muscle regeneration. ECM remodelling is among the most affected signalling pathways in COPD and aged muscle. As a fraction of COPD patients present muscle atrophy, we questioned whether ECM composition would be altered in patients with peripheral muscle wasting (atrophic COPD) compared to those without muscle wasting (non-atrophic COPD). Methods A set of ECM molecules with known impact on myogenesis were quantified in vastus lateralis muscle biopsies from 29 COPD patients (forced expiratory volume in 1 s 55±12% predicted) using ELISA and real-time PCR. COPD patients were grouped to atrophic or non-atrophic based on fat-free mass index (<17 or ≥17 kg·m-2). Results Atrophic COPD patients presented a lower average vastus lateralis muscle fibre cross-sectional area (3872±258 μm2) compared to non-atrophic COPD (4509±198 μm2). Gene expression of ECM molecules was found significantly lower in atrophic COPD compared to non-atrophic COPD for collagen type I alpha 1 chain (COL1A1), fibronectin (FN1), tenascin C (TNC) and biglycan (BGN). In terms of protein levels, there were no significant differences between the two COPD cohorts for any of the ECM molecules tested. Conclusions Although atrophic COPD presented decreased contractile muscle tissue, the differences in ECM mRNA expression between atrophic and non-atrophic COPD were not translated at the protein level, potentially indicating an accumulation of long-lived ECM proteins and dysregulated proteostasis, as is typically observed during deconditioning and ageing.
Collapse
Affiliation(s)
- Efpraxia Kritikaki
- Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle upon Tyne, UK
| | - Gerasimos Terzis
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Meera Soundararajan
- Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle upon Tyne, UK
| | - Ioannis Vogiatzis
- Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle upon Tyne, UK
| | - Davina C.M. Simoes
- Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle upon Tyne, UK
| |
Collapse
|
3
|
Mou K, Chan SMH, Vlahos R. Musculoskeletal crosstalk in chronic obstructive pulmonary disease and comorbidities: Emerging roles and therapeutic potentials. Pharmacol Ther 2024; 257:108635. [PMID: 38508342 DOI: 10.1016/j.pharmthera.2024.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/13/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a multifaceted respiratory disorder characterized by progressive airflow limitation and systemic implications. It has become increasingly apparent that COPD exerts its influence far beyond the respiratory system, extending its impact to various organ systems. Among these, the musculoskeletal system emerges as a central player in both the pathogenesis and management of COPD and its associated comorbidities. Muscle dysfunction and osteoporosis are prevalent musculoskeletal disorders in COPD patients, leading to a substantial decline in exercise capacity and overall health. These manifestations are influenced by systemic inflammation, oxidative stress, and hormonal imbalances, all hallmarks of COPD. Recent research has uncovered an intricate interplay between COPD and musculoskeletal comorbidities, suggesting that muscle and bone tissues may cross-communicate through the release of signalling molecules, known as "myokines" and "osteokines". We explored this dynamic relationship, with a particular focus on the role of the immune system in mediating the cross-communication between muscle and bone in COPD. Moreover, we delved into existing and emerging therapeutic strategies for managing musculoskeletal disorders in COPD. It underscores the development of personalized treatment approaches that target both the respiratory and musculoskeletal aspects of COPD, offering the promise of improved well-being and quality of life for individuals grappling with this complex condition. This comprehensive review underscores the significance of recognizing the profound impact of COPD on the musculoskeletal system and its comorbidities. By unravelling the intricate connections between these systems and exploring innovative treatment avenues, we can aspire to enhance the overall care and outcomes for COPD patients, ultimately offering hope for improved health and well-being.
Collapse
Affiliation(s)
- Kevin Mou
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Stanley M H Chan
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ross Vlahos
- Centre for Respiratory Science and Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
4
|
Cui S, Ji H, Li L, Zhu H, Li X, Gong Y, Song Y, Hu L, Wu X. Effects and long-term outcomes of endurance versus resistance training as an adjunct to standard medication in patients with stable COPD: a multicenter randomized trial. BMC Pulm Med 2024; 24:196. [PMID: 38649893 PMCID: PMC11036716 DOI: 10.1186/s12890-024-03010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Comparisons between endurance training (ET) and resistance training (RT) have produced equivocal findings in chronic obstructive pulmonary disease (COPD) patients. The purpose of our study is to investigate the effectiveness and long-term outcomes of adding ET and RT to conventional medical treatment in patients with COPD. A secondary objective is to investigate the clinical improvements resulting from exercise training in patients with different disease severities. METHODS The study was a multicenter, prospective trial in people with stable COPD. The cohort was randomized to three groups: individualized medical treatment group (MT), MT + endurance training group (MT + ET) and MT + resistance training group (MT + RT). Exercise was performed 3 times weekly over a 12-week period. The endpoints of exercise capacity, health-related quality of life, COPD symptoms, lung function, and anxiety and depression questionnaires were re-evaluated at baseline, at the completion of the intervention and at 6 and 12-month follow-up. According to the COPD assessment tool offered by GOLD guidelines, patients were stratified into GOLD A and B groups and GOLD C and D groups for further subgroup analysis. RESULTS The intention-to-treat (ITT) population included 366 patients, 328 of them completed the study protocol over 12 months (the PP-population). There were no significant differences in the primary outcome, quality of life, between patients who underwent medical treatment (MT) alone, MT + endurance training (MT + ET), or MT + resistance training (MT + RT) at the completion of the intervention, 6-, or 12-month follow-up. Additionally, no significant differences were observed between MT, MT + RT, or MT + ET groups concerning the primary outcome, exercise capacity (3MWD), after initial 3 months of intervention. However, a small statistically significant difference was noted in favor of MT + ET compared to MT + RT at 12 months (ITT: Δ3MWD in ET vs RT = 5.53 m, 95% confidence interval: 0.87 to 13.84 m, P = 0.03) (PP: Δ3MWD in ET vs RT = 7.67 m, 95% confidence interval: 0.93 to 16.27 m, P = 0.04). For patients in the GOLD C and D groups, improvement in quality of life following ET or RT was significantly superior to medical intervention alone. Furthermore, upon completion of the exercise regimen, RT exhibited a greater improvement in anxiety compared to ET in these patients (ITT: ΔHAD-A at 3-month: RT = -1.63 ± 0.31 vs ET = -0.61 ± 0.33, p < 0.01) (PP: ΔHAD-A at 3-month: RT = -1.80 ± 0.36 vs ET = -0.75 ± 0.37, p < 0.01). CONCLUSIONS Our study presents evidence of the beneficial effects of ET and RT in combination with standard medical treatment, as well as the long-term effects over time after the intervention. While the statistically significant effect favoring ET over RT in terms of exercise capacity was observed, it should be interpreted cautiously. Patients in severe stages of COPD may derive greater benefits from either ET or RT and should be encouraged accordingly. These findings have implications for exercise prescription in patients with COPD. TRIAL REGISTRATION ChiCTR-INR-16009892 (17, Nov, 2016).
Collapse
Affiliation(s)
- Shilei Cui
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Feng Lin Rd, Shanghai, 200032, China
- Department of Pulmonary and Critical Care Medicine, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Haiying Ji
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Feng Lin Rd, Shanghai, 200032, China
- Shanghai Respiratory Research Institute, Shanghai, 200032, China
| | - Li Li
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Feng Lin Rd, Shanghai, 200032, China
- Shanghai Respiratory Research Institute, Shanghai, 200032, China
| | - Huili Zhu
- Department of Pulmonary and Critical Care Medicine, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Xiangyang Li
- Department of Pulmonary and Critical Care Medicine, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Ying Gong
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Feng Lin Rd, Shanghai, 200032, China
- Shanghai Respiratory Research Institute, Shanghai, 200032, China
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Feng Lin Rd, Shanghai, 200032, China.
- Shanghai Respiratory Research Institute, Shanghai, 200032, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200032, China.
| | - Lijuan Hu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Feng Lin Rd, Shanghai, 200032, China.
- Shanghai Respiratory Research Institute, Shanghai, 200032, China.
| | - Xu Wu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Feng Lin Rd, Shanghai, 200032, China.
- Shanghai Respiratory Research Institute, Shanghai, 200032, China.
| |
Collapse
|
5
|
Liu Y, Kong H, Cai H, Chen G, Chen H, Ruan W. Progression of the PI3K/Akt signaling pathway in chronic obstructive pulmonary disease. Front Pharmacol 2023; 14:1238782. [PMID: 37799975 PMCID: PMC10548138 DOI: 10.3389/fphar.2023.1238782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a chronic respiratory disease characterized by a slow progression and caused by the inhalation of harmful particulate matter. Cigarette smoke and air pollutants are the primary contributing factors. Currently, the pathogenesis of COPD remains incompletely understood. The PI3K/Akt signaling pathway has recently emerged as a critical regulator of inflammation and oxidative stress response in COPD, playing a pivotal role in the disease's progression and treatment. This paper reviews the association between the PI3K/Akt pathway and COPD, examines effective PI3K/Akt inhibitors and novel anti-COPD agents, aiming to identify new therapeutic targets for clinical intervention in this disease.
Collapse
Affiliation(s)
- Yanhui Liu
- Department of Clinical Pharmacy, Anhui Provincial Children’s Hospital, Hefei, Anhui, China
| | - Haobo Kong
- Department of Respiratory Intensive Care Unit, Anhui Chest Hospital, Hefei, Anhui, China
| | - Heping Cai
- Department of Clinical Pharmacy, Anhui Provincial Children’s Hospital, Hefei, Anhui, China
| | - Guanru Chen
- Department of Clinical Pharmacy, Anhui Provincial Children’s Hospital, Hefei, Anhui, China
| | - Huiying Chen
- Department of Clinical Pharmacy, Anhui Provincial Children’s Hospital, Hefei, Anhui, China
| | - Wenyi Ruan
- Department of Clinical Pharmacy, Anhui Provincial Children’s Hospital, Hefei, Anhui, China
| |
Collapse
|
6
|
Attaway AH, Bellar A, Welch N, Sekar J, Kumar A, Mishra S, Hatipoğlu U, McDonald M, Regan EA, Smith JD, Washko G, Estépar RSJ, Bazeley P, Zein J, Dasarathy S. Gene polymorphisms associated with heterogeneity and senescence characteristics of sarcopenia in chronic obstructive pulmonary disease. J Cachexia Sarcopenia Muscle 2023; 14:1083-1095. [PMID: 36856146 PMCID: PMC10067501 DOI: 10.1002/jcsm.13198] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Sarcopenia, or loss of skeletal muscle mass and decreased contractile strength, contributes to morbidity and mortality in patients with chronic obstructive pulmonary disease (COPD). The severity of sarcopenia in COPD is variable, and there are limited data to explain phenotype heterogeneity. Others have shown that COPD patients with sarcopenia have several hallmarks of cellular senescence, a potential mechanism of primary (age-related) sarcopenia. We tested if genetic contributors explain the variability in sarcopenic phenotype and accelerated senescence in COPD. METHODS To identify gene variants [single nucleotide polymorphisms (SNPs)] associated with sarcopenia in COPD, we performed a genome-wide association study (GWAS) of fat free mass index (FFMI) in 32 426 non-Hispanic White (NHW) UK Biobank participants with COPD. Several SNPs within the fat mass and obesity-associated (FTO) gene were associated with sarcopenia that were validated in an independent COPDGene cohort (n = 3656). Leucocyte telomere length quantified in the UK Biobank cohort was used as a marker of senescence. Experimental validation was done by genetic depletion of FTO in murine skeletal myotubes exposed to prolonged intermittent hypoxia or chronic hypoxia because hypoxia contributes to sarcopenia in COPD. Molecular biomarkers for senescence were also quantified with FTO depletion in murine myotubes. RESULTS Multiple SNPs located in the FTO gene were associated with sarcopenia in addition to novel SNPs both within and in proximity to the gene AC090771.2, which transcribes long non-coding RNA (lncRNA). To replicate our findings, we performed a GWAS of FFMI in NHW subjects from COPDGene. The SNP most significantly associated with FFMI was on chromosome (chr) 16, rs1558902A > T in the FTO gene (β = 0.151, SE = 0.021, P = 1.40 × 10-12 for UK Biobank |β= 0.220, SE = 0.041, P = 9.99 × 10-8 for COPDGene) and chr 18 SNP rs11664369C > T nearest to the AC090771.2 gene (β = 0.129, SE = 0.024, P = 4.64 × 10-8 for UK Biobank |β = 0.203, SE = 0.045, P = 6.38 × 10-6 for COPDGene). Lower handgrip strength, a measure of muscle strength, but not FFMI was associated with reduced telomere length in the UK Biobank. Experimentally, in vitro knockdown of FTO lowered myotube diameter and induced a senescence-associated molecular phenotype, which was worsened by prolonged intermittent hypoxia and chronic hypoxia. CONCLUSIONS Genetic polymorphisms of FTO and AC090771.2 were associated with sarcopenia in COPD in independent cohorts. Knockdown of FTO in murine myotubes caused a molecular phenotype consistent with senescence that was exacerbated by hypoxia, a common condition in COPD. Genetic variation may interact with hypoxia and contribute to variable severity of sarcopenia and skeletal muscle molecular senescence phenotype in COPD.
Collapse
Affiliation(s)
- Amy H. Attaway
- Department of Pulmonary MedicineCleveland ClinicClevelandOhioUSA
| | - Annette Bellar
- Department of Inflammation and ImmunityCleveland ClinicClevelandOhioUSA
| | - Nicole Welch
- Department of Inflammation and ImmunityCleveland ClinicClevelandOhioUSA
- Department of Gastroenterology and HepatologyCleveland ClinicClevelandOhioUSA
| | - Jinendiran Sekar
- Department of Gastroenterology and HepatologyCleveland ClinicClevelandOhioUSA
| | - Avinash Kumar
- Department of Gastroenterology and HepatologyCleveland ClinicClevelandOhioUSA
| | - Saurabh Mishra
- Department of Gastroenterology and HepatologyCleveland ClinicClevelandOhioUSA
| | - Umur Hatipoğlu
- Department of Pulmonary MedicineCleveland ClinicClevelandOhioUSA
| | - Merry‐Lynn McDonald
- Department of Medicine, Division of Pulmonary, Allergy, & Critical Care MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Elizabeth A. Regan
- Department of Medicine, Division of RheumatologyNational Jewish HealthDenverColoradoUSA
| | - Jonathan D. Smith
- Cardiovascular and Metabolic SciencesCleveland ClinicClevelandOhioUSA
| | - George Washko
- Department of PulmonaryBrigham and Women's HospitalBostonMassachusettsUSA
| | | | - Peter Bazeley
- Quantitative Health SciencesCleveland ClinicClevelandOhioUSA
| | - Joe Zein
- Department of Pulmonary MedicineCleveland ClinicClevelandOhioUSA
- Department of Inflammation and ImmunityCleveland ClinicClevelandOhioUSA
| | - Srinivasan Dasarathy
- Department of Inflammation and ImmunityCleveland ClinicClevelandOhioUSA
- Department of Gastroenterology and HepatologyCleveland ClinicClevelandOhioUSA
| |
Collapse
|
7
|
Lakhdar R, Mumby S, Abubakar-Waziri H, Porter A, Adcock IM, Chung KF. Lung toxicity of particulates and gaseous pollutants using ex-vivo airway epithelial cell culture systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119323. [PMID: 35447256 DOI: 10.1016/j.envpol.2022.119323] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Air pollution consists of a multi-faceted mix of gases and ambient particulate matter (PM) with diverse organic and non-organic chemical components that contribute to increasing morbidity and mortality worldwide. In particular, epidemiological and clinical studies indicate that respiratory health is adversely affected by exposure to air pollution by both causing and worsening (exacerbating) diseases such as chronic obstructive pulmonary disease (COPD), asthma, interstitial pulmonary fibrosis and lung cancer. The molecular mechanisms of air pollution-induced pulmonary toxicity have been evaluated with regards to different types of PM of various sizes and concentrations with single and multiple exposures over different time periods. These data provide a plausible interrelationship between cellular toxicity and the activation of multiple biological processes including proinflammatory responses, oxidative stress, mitochondrial oxidative damage, autophagy, apoptosis, cell genotoxicity, cellular senescence and epithelial-mesenchymal transition. However, these molecular changes have been studied predominantly in cell lines rather than in primary bronchial or nasal cells from healthy subjects or those isolated from patients with airways disease. In addition, they have been conducted under different cell culture conditions and generally in submerged culture rather than the more relevant air-liquid interface culture and with a variety of air pollutant exposure protocols. Cell types may respond differentially to pollution delivered as an aerosol rather than being bathed in media containing agglomerations of particles. As a result, the actual pathophysiological pathways activated by different PMs in primary cells from the airways of healthy and asthmatic subjects remains unclear. This review summarises the literature on the different methodologies utilised in studying the impact of submicron-sized pollutants on cells derived from the respiratory tract with an emphasis on data obtained from primary human cell. We highlight the critical underlying molecular mechanisms that may be important in driving disease processes in response to air pollution in vivo.
Collapse
Affiliation(s)
- Ramzi Lakhdar
- National Heart and Lung Institute and *Department of Materials, Imperial College London, London, SW3 6LY, United Kingdom.
| | - Sharon Mumby
- National Heart and Lung Institute and *Department of Materials, Imperial College London, London, SW3 6LY, United Kingdom.
| | - Hisham Abubakar-Waziri
- National Heart and Lung Institute and *Department of Materials, Imperial College London, London, SW3 6LY, United Kingdom.
| | - Alexandra Porter
- National Heart and Lung Institute and *Department of Materials, Imperial College London, London, SW3 6LY, United Kingdom.
| | - Ian M Adcock
- National Heart and Lung Institute and *Department of Materials, Imperial College London, London, SW3 6LY, United Kingdom.
| | - Kian Fan Chung
- National Heart and Lung Institute and *Department of Materials, Imperial College London, London, SW3 6LY, United Kingdom.
| |
Collapse
|
8
|
Taivassalo T, Hepple RT. Integrating Mechanisms of Exacerbated Atrophy and Other Adverse Skeletal Muscle Impact in COPD. Front Physiol 2022; 13:861617. [PMID: 35721564 PMCID: PMC9203961 DOI: 10.3389/fphys.2022.861617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
The normal decline in skeletal muscle mass that occurs with aging is exacerbated in patients with chronic obstructive pulmonary disease (COPD) and contributes to poor health outcomes, including a greater risk of death. There has been controversy about the causes of this exacerbated muscle atrophy, with considerable debate about the degree to which it reflects the very sedentary nature of COPD patients vs. being precipitated by various aspects of the COPD pathophysiology and its most frequent proximate cause, long-term smoking. Consistent with the latter view, recent evidence suggests that exacerbated aging muscle loss with COPD is likely initiated by decades of smoking-induced stress on the neuromuscular junction that predisposes patients to premature failure of muscle reinnervation capacity, accompanied by various alterations in mitochondrial function. Superimposed upon this are various aspects of COPD pathophysiology, such as hypercapnia, hypoxia, and inflammation, that can also contribute to muscle atrophy. This review will summarize the available knowledge concerning the mechanisms contributing to exacerbated aging muscle affect in COPD, consider the potential role of comorbidities using the specific example of chronic kidney disease, and identify emerging molecular mechanisms of muscle impairment, including mitochondrial permeability transition as a mechanism of muscle atrophy, and chronic activation of the aryl hydrocarbon receptor in driving COPD muscle pathophysiology.
Collapse
Affiliation(s)
- Tanja Taivassalo
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Russell T. Hepple
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
- *Correspondence: Russell T. Hepple,
| |
Collapse
|
9
|
Zhang XY, Li W, Zhang JR, Li CY, Zhang J, Lv XJ. Roles of sirtuin family members in chronic obstructive pulmonary disease. Respir Res 2022; 23:66. [PMID: 35313881 PMCID: PMC8939123 DOI: 10.1186/s12931-022-01986-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 03/14/2022] [Indexed: 12/11/2022] Open
Abstract
The globally increasing annual incidence of chronic obstructive pulmonary disease (COPD), a common chronic disease, poses a serious risk to public health. Although the exact mechanism underlying the pathogenesis of COPD remains unclear, a large number of studies have shown that its pathophysiology and disease course are closely related to oxidative stress, inflammation, apoptosis, autophagy, and aging. The key players involved in COPD include the sirtuin family of NAD-dependent deacetylases that comprise seven members (SIRT1-7) in mammals. Sirtuins play an important role in metabolic diseases, cell cycle control, proliferation, apoptosis, and senescence. Owing to differences in subcellular localization, sirtuins exhibit anisotropy. In this narrative review, we discuss the roles and molecular pathways of each member of the sirtuin family involved in COPD to provide novel insights into the prevention and treatment of COPD and how sirtuins may serve as adjuvants for COPD treatment.
Collapse
Affiliation(s)
- Xi-Yue Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jin-Rong Zhang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Chun-Yan Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jie Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Xue-Jiao Lv
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
10
|
Tuttle CS, Luesken SW, Waaijer ME, Maier AB. Senescence in tissue samples of humans with age-related diseases: A systematic review. Ageing Res Rev 2021; 68:101334. [PMID: 33819674 DOI: 10.1016/j.arr.2021.101334] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/03/2021] [Accepted: 03/20/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Higher numbers of senescent cells have been implicated in age-related disease pathologies. However, whether different diseases have different senescent phenotypes is unknown. Here we provide a systematic overview of the current available evidence of senescent cells in age-related diseases pathologies in humans and the markers currently used to detect senescence levels in humans. METHODS PubMed, Web of Science and EMBASE were systematically searched from inception to the 29th of September 2019, using keywords related to 'senescence', 'age-related diseases' and 'biopsies'. RESULTS In total 12,590 articles were retrieved of which 103 articles were included in this review. The role of senescence in age-related disease has been assessed in 9 different human organ system and 27 different age-related diseases of which heart (27/103) and the respiratory systems (18/103) are the most investigated. Overall, 27 different markers of senescence have been used to determine cellular senescence and the cell cycle regulator p16ink4a is most often used (23/27 age-related pathologies). CONCLUSION This review demonstrates that a higher expression of senescence markers are observed within disease pathologies. However, not all markers to detect senescence have been assessed in all tissue types.
Collapse
|
11
|
Thirupathi A, Scarparo S, Silva PL, Marqueze LF, Vasconcelos FTF, Nagashima S, Cunha EBB, de Noronha L, Silveira PCL, Nesi RT, Gu Y, Pinho RA. Physical Exercise-Mediated Changes in Redox Profile Contribute to Muscle Remodeling After Passive Hand-Rolled Cornhusk Cigarette Smoke Exposure. Front Physiol 2020; 11:590962. [PMID: 33281621 PMCID: PMC7705113 DOI: 10.3389/fphys.2020.590962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
Consumption of non-traditional cigarettes has increased considerably worldwide, and they can induce skeletal muscle dysfunction. Physical exercise has been demonstrated to be important for prevention and treatment of smoking-related diseases. Therfore, the aim of this study was to investigate the effects of combined physical exercise (aerobic plus resistance exercise) on muscle histoarchitecture and oxidative stress in the animals exposed chronically to smoke from hand-rolled cornhusk cigarette (HRCC). Male Swiss mice were exposed to ambient air or passively to the smoke of 12 cigarettes over three daily sessions (four cigarettes per session) for 30 consecutive days with or without combined physical training. 48 h after the last training session, total leukocyte count was measured in bronchoalveolar lavage fluid (BALF), and the quadriceps were removed for histological/immunohistochemical analysis and measurement of oxidative stress parameters. The effects of HRCC on the number of leukocytes in BALF, muscle fiber diameter, central nuclei, and nuclear factor kappa B (NF-κB) were reverted after combined physical training. In addition, increased myogenic factor 5, tumor necrosis factor alpha (TNFα), reduced transforming growth factor beta (TGF-β), and nitrate levels were observed after physical training. However, the reduction in superoxide dismutase and glutathione/glutathione oxidized ratio induced by HRCC was not affected by the training program. These results suggest the important changes in the skeletal muscle brought about by HRCC-induced alteration in the muscle redox profile. In addition, combined physical exercise contributes to remodeling without disrupting muscle morphology.
Collapse
Affiliation(s)
| | - Silvia Scarparo
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Paulo L Silva
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Luis F Marqueze
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Franciane T F Vasconcelos
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Seigo Nagashima
- Laboratory of Experimental Pathology, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Eduardo B B Cunha
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Lúcia de Noronha
- Laboratory of Experimental Pathology, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Paulo C L Silveira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Renata T Nesi
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Ricardo A Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| |
Collapse
|
12
|
Gea J, Ausín P, Martínez-Llorens JM, Barreiro E. Respiratory muscle senescence in ageing and chronic lung diseases. Eur Respir Rev 2020; 29:29/157/200087. [PMID: 32943414 DOI: 10.1183/16000617.0087-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/09/2020] [Indexed: 12/28/2022] Open
Abstract
Ageing is a progressive condition that usually leads to the loss of physiological properties. This process is also present in respiratory muscles, which are affected by both senescent changes occurring in the whole organism and those that are more specific for muscles. The mechanisms of the latter changes include oxidative stress, decrease in neurotrophic factors and DNA abnormalities. Ageing normally coexists with comorbidities, including respiratory diseases, which further deteriorate the structure and function of respiratory muscles. In this context, changes intrinsic to ageing become enhanced by more specific factors such as the impairment in lung mechanics and gas exchange, exacerbations and hypoxia. Hypoxia in particular has a direct effect on muscles, mainly through the expression of inducible factors (hypoxic-inducible factor), and can result in oxidative stress and changes in DNA, decrease in mitochondrial biogenesis and defects in the tissue repair mechanisms. Intense exercise can also cause damage in respiratory muscles of elderly respiratory patients, but this can be followed by tissue repair and remodelling. However, ageing interferes with muscle repair by tampering with the function of satellite cells, mainly due to oxidative stress, DNA damage and epigenetic mechanisms. In addition to the normal process of ageing, stress-induced premature senescence can also occur, involving changes in the expression of multiple genes but without modifications in telomere length.
Collapse
Affiliation(s)
- Joaquim Gea
- Dept of Respiratory Medicine, Hospital del Mar - IMIM, DCEXS, Universitat Pompeu Fabra, CIBERES, ISCIII, Barcelona Respiratory Network, Barcelona, Spain
| | - Pilar Ausín
- Dept of Respiratory Medicine, Hospital del Mar - IMIM, DCEXS, Universitat Pompeu Fabra, CIBERES, ISCIII, Barcelona Respiratory Network, Barcelona, Spain
| | - Juana Ma Martínez-Llorens
- Dept of Respiratory Medicine, Hospital del Mar - IMIM, DCEXS, Universitat Pompeu Fabra, CIBERES, ISCIII, Barcelona Respiratory Network, Barcelona, Spain
| | - Esther Barreiro
- Dept of Respiratory Medicine, Hospital del Mar - IMIM, DCEXS, Universitat Pompeu Fabra, CIBERES, ISCIII, Barcelona Respiratory Network, Barcelona, Spain
| |
Collapse
|
13
|
Augustin IML, Spruit MA, Franssen FME, Gaffron S, van Merode F, Wouters EFM. Incorporating Comprehensive Assessment Parameters to Better Characterize and Plan Rehabilitation for Persons with Chronic Obstructive Pulmonary Disease. J Am Med Dir Assoc 2020; 21:1986-1991.e3. [PMID: 32723539 DOI: 10.1016/j.jamda.2020.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The current management of chronic obstructive pulmonary disease (COPD) largely ignores its heterogeneous pulmonary and extrapulmonary manifestations in the individual patient. This study aimed to identify clusters of patients with COPD based on a thorough traits assessment. DESIGN An observational, prospective, single-center study. SETTING AND PARTICIPANTS Patients with COPD referred by chest physicians for a comprehensive pulmonary rehabilitation program to CIRO (Horn, the Netherlands) were eligible to participate. CIRO is a specialized pulmonary rehabilitation center in the southern part of the Netherlands for patients with complex underlying respiratory diseases. METHODS Clinically stable patients with COPD underwent a comprehensive assessment, including pulmonary traits (airflow limitation, static hyperinflation, gas transfer, respiratory pressures, and arterial blood gases), extrapulmonary functional traits, and health status (quadriceps muscle strength, physical functioning, body composition, comorbidities, symptoms perception, and social and emotional functioning). Clusters were generated using the SOM-Ward Cluster algorithm, a hybrid algorithm that applies the classical hierarchical method of Ward on top of the self-organizing map topology. RESULTS Based on the abovementioned attributes of 518 patients with mild to very severe COPD (44% women, age 64.1 ± 9.1 years, forced expiratory volume in the first second 48.6% ± 20.0% of predicted), 7 clusters were identified. Clusters had unique patterns differing in demographics, pulmonary, extrapulmonary functional, and behavioral traits and/or health status. CONCLUSION AND IMPLICATIONS The tremendous heterogeneity in pulmonary, extrapulmonary functional and behavioral traits, and health status in patients with COPD supports the need for an individual comprehensive assessment and a goal-directed personalized management strategy.
Collapse
Affiliation(s)
- Ingrid M L Augustin
- CIRO+, Department of Research & Development, Horn, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands.
| | - Martijn A Spruit
- CIRO+, Department of Research & Development, Horn, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands; Department of Respiratory Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Frits M E Franssen
- CIRO+, Department of Research & Development, Horn, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands; Department of Respiratory Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | | | - Frits van Merode
- School for Public Health and Primary Care, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Emiel F M Wouters
- CIRO+, Department of Research & Development, Horn, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands; Ludwig Boltzman Institute for Lung Health, Vienna, Austria
| |
Collapse
|
14
|
Fries GR, Zamzow MJ, Andrews T, Pink O, Scaini G, Quevedo J. Accelerated aging in bipolar disorder: A comprehensive review of molecular findings and their clinical implications. Neurosci Biobehav Rev 2020; 112:107-116. [DOI: 10.1016/j.neubiorev.2020.01.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/11/2020] [Accepted: 01/29/2020] [Indexed: 01/08/2023]
|
15
|
Grönholdt‐Klein M, Altun M, Becklén M, Dickman Kahm E, Fahlström A, Rullman E, Ulfhake B. Muscle atrophy and regeneration associated with behavioural loss and recovery of function after sciatic nerve crush. Acta Physiol (Oxf) 2019; 227:e13335. [PMID: 31199566 DOI: 10.1111/apha.13335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022]
Abstract
AIM To resolve timing and coordination of denervation atrophy and the re-innervation recovery process to discern correlations indicative of common programs governing these processes. METHODS Female Sprague-Dawley (SD) rats had a unilateral sciatic nerve crush. Based on longitudinal behavioural observations, the triceps surae muscle was analysed at different time points post-lesion. RESULTS Crush results in a loss of muscle function and mass (-30%) followed by a recovery to almost pre-lesion status at 30 days post-crush (dpc). There was no loss of fibres nor any significant change in the number of nuclei per fibre but a shift in fibres expressing myosins I and II that reverted back to control levels at 30 dpc. A residual was the persistence of hybrid fibres. Early on a CHNR -ε to -γ switch and a re-expression of embryonic MyHC showed as signs of denervation. Foxo1, Smad3, Fbxo32 and Trim63 transcripts were upregulated but not Myostatin, InhibinA and ActivinR2B. Combined this suggests that the mechanism instigating atrophy provides a selectivity of pathway(s) activated. The myogenic differentiation factors (MDFs: Myog, Myod1 and Myf6) were upregulated early on suggesting a role also in the initial atrophy. The regulation of these transcripts returned towards baseline at 30 dpc. The examined genes showed a strong baseline covariance in transcript levels which dissolved in the response to crush driven mainly by the MDFs. At 30 dpc the naïve expression pattern was re-established. CONCLUSION Peripheral nerve crush offers an excellent model to assess and interfere with muscle adaptions to denervation and re-innervation.
Collapse
Affiliation(s)
| | - Mikael Altun
- Department of Laboratory Medicine Karolinska Institutet Huddinge Sweden
| | - Meneca Becklén
- Department of Neuroscience Karolinska Institutet Stockholm Sweden
| | | | - Andreas Fahlström
- Department of Neuroscience Karolinska Institutet Stockholm Sweden
- Department of Neuroscience, Neurosurgery Uppsala University Uppsala Sweden
| | - Eric Rullman
- Department of Laboratory Medicine Karolinska Institutet Huddinge Sweden
| | - Brun Ulfhake
- Department of Neuroscience Karolinska Institutet Stockholm Sweden
| |
Collapse
|
16
|
van Eeden SF, Hogg JC. Immune-Modulation in Chronic Obstructive Pulmonary Disease: Current Concepts and Future Strategies. Respiration 2019; 99:550-565. [PMID: 31480060 DOI: 10.1159/000502261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 11/19/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is caused by the chronic inhalation of toxic particles and gases that are primarily but not exclusively derived from cigarette smoke that may be either actively or passively inhaled, which initiates a persistent innate and adaptive immune response in the lung. This immune response is associated with an aberrant tissue repair and remodeling process that results in varying degrees of chronic inflammation with excess production of mucus in the central airways and permanent destruction of the smaller conducting airways and gas exchanging surface in the peripheral lung. Currently, the primary aims of treatment in COPD are bronchodilation (inhaled short- and long-acting β-agonist and antimuscarinic therapies), to control symptoms and nonspecific broad-acting anti-inflammatory agents (inhaled and oral corticosteroids, phosphor-di-esterase inhibitors, and macrolides). That provide symptomatic relief but have little or no impact on either disease progression or mortality. As our understanding of the immune pathogenesis of the COPD improves, available immune modulation therapies have the potential to alter or interfere with damaging immune pathways, thereby slowing relentless progression of lung tissue destruction. The purpose of this brief review is to discuss our current understanding of the immune pathogenesis of both the airways and parenchymal injury as well as the dysfunctional tissue repair process to propose immune modulating interventions in an attempt to stabilize or return these pathological changes to their normal state. The ultimate goal of the immune modulation therapy is to improve both morbidity and mortality associated with COPD.
Collapse
Affiliation(s)
- Stephan F van Eeden
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada, .,Pacific Lung Health Centre, St. Paul's Hospital, Vancouver, British Columbia, Canada,
| | - James C Hogg
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Yoon YS, Jin M, Sin DD. Accelerated lung aging and chronic obstructive pulmonary disease. Expert Rev Respir Med 2019; 13:369-380. [PMID: 30735057 DOI: 10.1080/17476348.2019.1580576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The prevalence of chronic obstructive pulmonary disease (COPD) increases exponentially with aging. Its pathogenesis, however, is not well known and aside from smoking cessation, there are no disease-modifying treatments for this disease. Areas covered: COPD is associated with accelerating aging and aging-related diseases. In this review, we will discuss the hallmarks of aging including genomic instability, telomere attrition, epigenetic alteration, loss of proteostasis, mitochondrial dysfunction, deregulated nutrient sensing, cellular senescence, stem cell exhaustion, and altered intercellular communication, which may be involved in COPD pathogenesis. Expert commentary: COPD and the aging process share similar molecular and cellular changes. Aging-related molecular pathways may represent novel therapeutic targets and biomarkers for COPD.
Collapse
Affiliation(s)
- Young Soon Yoon
- a Centre for Heart and Lung Innovation , St. Paul's Hospital & University of British Columbia , Vancouver , BC , Canada.,b Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine , Dongguk University Ilsan Hospital , Goyang , South Korea
| | - Minhee Jin
- a Centre for Heart and Lung Innovation , St. Paul's Hospital & University of British Columbia , Vancouver , BC , Canada
| | - Don D Sin
- a Centre for Heart and Lung Innovation , St. Paul's Hospital & University of British Columbia , Vancouver , BC , Canada.,c Division of Respiratory Medicine (Department of Medicine) , University of British Columbia , Vancouver , BC , Canada
| |
Collapse
|