1
|
Yin Y, Wang Y, Liu Y, Wang F, Wang Z. Evidence construction of Jinshuibao capsules against stable chronic obstructive pulmonary disease: A systematic review and network pharmacology. Heliyon 2024; 10:e34572. [PMID: 39082031 PMCID: PMC11284407 DOI: 10.1016/j.heliyon.2024.e34572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
Background Jinshuibao capsules has been utilized in treating stable chronic obstructive pulmonary disease (COPD) for a long time. While the evidence-based evidence and network pharmacology to clarify the therapeutic efficacy and pharmacological mechanisms of Jinshuibao capsules have remained elusive. Objectives Integrating evidence-based medicine and network pharmacology to explain the therapeutic efficacy and pharmacological mechanisms of Jinshuibao capsules for stable COPD. Methods Cochrane Library, Web of Science, EMBASE, PubMed, China National Knowledge Infrastructure (CNKI), Wanfang Data Knowledge Service Platform, VIP Information Resource Integration Service Platform (CQVIP), and China Biomedicine (SinoMed) databases were searched. Studies were selected according to the inclusion and exclusion criteria. Statistical analysis was performed using the RevMan 5.3 software (Cochrane, London, UK). In network pharmacology, components of Jinshuibao capsules were screened, stable COPD-related genes were then identified and the 'component-target-pathway' network constructed. Results Meta-analysis revealed that Jinshuibao capsules exerts therapeutic effects on stable COPD by increasing the levels of FEV1% pred, FEV1/FVC ratio, FEV1, FVC, and PaO2 while decreasing the level of PaCO2. In addition, Jinshuibao capsules could effectively increase the levels of CD3+, CD4+/CD8+ ratio, Th17/Treg ratio, and SOD while reduce the levels of IL-8 and TNF-α. Network pharmacology identified 22 active compounds and 419 intersection gene targets. AKT1, SRC, MAPK1, STAT3, and MAPK3 were top 5 key target proteins. Besides, 20 potential pathways of Jinshuibao capsules on stable COPD were identified, like endocrine resistance, AGE-RAGE signaling pathway in diabetic complications, and chemical carcinogenesis-receptor activation. Conclusion Jinshuibao capsules could positively influence patients with stable COPD, while the efficacy and safety of Jinshuibao capsules in the treatment of COPD could not be reliably confirmed. These findings suggest that Jinshuibao capsules exerts effect on stable COPD through multi-target, multi-component and multi-pathway mechanism. Future studies may explore the active components of Jinshuibao capsules.
Collapse
Affiliation(s)
| | | | | | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610075, China
| |
Collapse
|
2
|
Li H, Wang R, Wei X, Zhang C, Pei W, Zhang X, Yang Z, Li Z, Zhang Y, Shi Y, Wang Y, Wang X. GSTP1 rs4147581 C>G and NLRP3 rs3806265 T>C as Risk Factors for Chronic Obstructive Pulmonary Disease: A Case-Control Study. Int J Chron Obstruct Pulmon Dis 2024; 19:489-500. [PMID: 38410140 PMCID: PMC10896110 DOI: 10.2147/copd.s445680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/31/2024] [Indexed: 02/28/2024] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a chronic respiratory ailment influenced by a blend of genetic and environmental factors. Inflammatory response and an imbalance in oxidative-antioxidant mechanisms constitute the primary pathogenesis of COPD. Glutathione S-transferase P1(GSTP1) plays a pivotal role as an antioxidant enzyme in regulating oxidative-antioxidant responses in the pulmonary system. The activation of the NOD-like receptor thermal protein domain (NLRP3) inflammatory vesicle can trigger an inflammatory response. Several investigations have implicated GSTP1 and NLRP3 in the progression of COPD; nonetheless, there remains debate regarding this mechanism. Methods Employing a case-control study design, 312 individuals diagnosed with COPD and 314 healthy controls were recruited from Gansu Province to evaluate the correlation between GSTP1 (rs4147581C>G and rs1695A>G) and NLRP3 (rs3806265T>C and rs10754558G>C) polymorphisms and the susceptibility to COPD. Results The presence of the GSTP1 rs4147581G allele substantially elevated the susceptibility to COPD (CGvs.CC:OR=3.11,95% CI=1.961-4.935, P<0.001;GGvs.CC:OR=2.065,95% CI=1.273-3.350, P=0.003; CG+GGvs.CC:OR=2.594,95% CI=1.718-3.916, P<0.001). Similarly, the NLRP3rs3806265T allele significantly increased the susceptibility to COPD (TC:TT:OR=0.432,95% CI=0.296-0.630; TC+CCvs.TT:OR=2.132,95% CI=1.479-3.074, P<0.001). However, no statistically significant association was discerned between the rs1695A>G and rs10754558G>C polymorphisms and COPD susceptibility (P>0.05). Conclusion In summary, this study ascertained that the GSTP1 rs4147581C>G polymorphism is associated with increased COPD susceptibility, with the G allele elevating the risk of COPD. Similarly, the NLRP3 rs3806265T>C polymorphism is linked to elevated COPD susceptibility, with the T allele heightening the risk of COPD.
Collapse
Affiliation(s)
- Honge Li
- Institute of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, People’s Republic of China
| | - Raorao Wang
- Institute of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, People’s Republic of China
| | - Xueyan Wei
- Institute of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, People’s Republic of China
| | - Chunyan Zhang
- Institute of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, People’s Republic of China
| | - Wenhui Pei
- Institute of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, People’s Republic of China
| | - Xuhui Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, People’s Republic of China
| | - Zhen Yang
- Institute of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, People’s Republic of China
| | - Zhi Li
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Institute of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Yuhuan Zhang
- Institute of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, People’s Republic of China
| | - Yanli Shi
- Institute of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, People’s Republic of China
| | - Yunchao Wang
- Institute of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, People’s Republic of China
| | - Xinhua Wang
- Institute of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, People’s Republic of China
| |
Collapse
|
3
|
Farag A, Abass W, Qassem H. Evaluation of the antioxidant and anti-inflammatory effect of sublingual glutathione on COPD patients. J Med Life 2023; 16:1796-1801. [PMID: 38585534 PMCID: PMC10994624 DOI: 10.25122/jml-2023-0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/09/2023] [Indexed: 04/09/2024] Open
Abstract
Glutathione (GSH) is a potent antioxidant and anti-inflammatory, proven effective in reducing treatment duration, prescribed doses, and hospitalization for several diseases. This study assessed the therapeutic response of chronic obstructive pulmonary disease (COPD) patients by measuring oxidative superoxide dismutase (SOD3), glutathione peroxidase 1 (GPX1), and inflammatory biomarkers such as tumor necrosis factor-alpha (TNF-α) and Interleukin-8 (IL-8) after sublingual administration of glutathione supplements. A cohort of 50 COPD individuals was involved and divided into two groups of 25 each. The first group received conventional therapy involving the administration of formoterol fumarate (12 µg inhaler) twice daily. The second group received the conventional treatment alongside sublingual glutathione (300 mg twice daily) for two months. The levels of serum IL-8, TNF-α, SOD3, and GPX1 were assessed before therapy, as well as at one and two months after treatment, in both cohorts. Both groups exhibited a notable reduction in the inflammatory mediators IL-8 and TNF-α when compared to their respective pre-treatment levels (P value <0.05). However, it is worth noting that the observed difference between the groups was not statistically significant (P value >0.05). The levels of SOD3 and GPX1 exhibited a substantial rise in both groups; however, they were found to be greater in group 2 compared to group 1 (P value >0.05). The administration of glutathione resulted in enhanced levels of antioxidant biomarkers among individuals diagnosed with COPD, accompanied by a minor and statistically insignificant decrease in the levels of the anti-inflammatory mediators IL-8 and TNF-alpha.
Collapse
Affiliation(s)
- Ali Farag
- Department of Clinical Pharmacy, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Wassan Abass
- Department of Clinical Pharmacy, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Hyder Qassem
- Department of Medicine, College of Medicine, Maysan University, Maysan, Iraq
| |
Collapse
|
4
|
Sosnik A, Zlotver I, Peled E. Galactomannan- graft-poly(methyl methacrylate) nanoparticles induce an anti-inflammatory phenotype in human macrophages. J Mater Chem B 2023; 11:8471-8483. [PMID: 37587844 DOI: 10.1039/d3tb01397a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Macrophages are immune cells that can be activated into either pro-inflammatory M1 or anti-inflammatory M2 phenotypes. Attempts to modulate macrophage phenotype using drugs have been limited by targeting issues and systemic toxicity. This study investigates the effect of drug-free self-assembled hydrolyzed galactomannan-poly(methyl methacrylate) (hGM-g-PMMA) nanoparticles on the activation of the human monocyte-derived macrophage THP-1 cell line. Nanoparticles are cell compatible and are taken up by macrophages. RNA-sequencing analysis of cells exposed to NPs reveal the upregulation of seven metallothionein genes. Additionally, the secretion of pro-inflammatory and anti-inflammatory cytokines upon exposure of unpolarized macrophages and M1-like cells obtained by activation with lipopolysaccharide + interferon-γ to the NPs is reduced and increased, respectively. Finally, nanoparticle-treated macrophages promote fibroblast migration in vitro. Overall, results demonstrate that hGM-g-PMMA nanoparticles induce the release of anti-inflammatory cytokines by THP-1 macrophages, which could pave the way for their application in the therapy of different inflammatory conditions, especially by local delivery.
Collapse
Affiliation(s)
- Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City, 3200003 Haifa, Israel.
| | - Ivan Zlotver
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City, 3200003 Haifa, Israel.
| | - Ella Peled
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City, 3200003 Haifa, Israel.
| |
Collapse
|
5
|
Hoffman TR, Emsley SA, Douglas JC, Reed KR, Esquivel AR, Koyack MJ, Paddock BE, Videau P. Assessing Curcumin Uptake and Clearance and Their Influence on Superoxide Dismutase Activity in Drosophila melanogaster. BIOTECH 2023; 12:58. [PMID: 37754202 PMCID: PMC10526445 DOI: 10.3390/biotech12030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
While normal levels of reactive oxygen and nitrogen species (RONS) are required for proper organismal function, increased levels result in oxidative stress. Oxidative stress may be managed via the scavenging activities of antioxidants (e.g., curcumin) and the action of enzymes, including superoxide dismutase (SOD). In this work, the uptake and clearance of dietary curcuminoids (consisting of curcumin, demethoxycurcumin, and bisdemethoxycurcumin) was assessed in Drosophila melanogaster larvae following chronic or acute exposure. High levels of curcuminoid uptake and loss were observed within a few hours and leveled off within eight hours post treatment onset. The addition or removal of curcuminoids from media resulted in corresponding changes in SOD activity, and the involvement of each of the three SOD genes was assessed for their contribution to total SOD activity. Taken together, these data provide insight into the uptake and clearance dynamics of curcuminoids and indicate that, while SOD activity generally increases following curcuminoid treatment, the individual SOD genes appear to contribute differently to this response.
Collapse
Affiliation(s)
- Tammy R. Hoffman
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Sarah A. Emsley
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Jenna C. Douglas
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Kaela R. Reed
- Department of Chemistry, Southern Oregon University, Ashland, OR 97520, USA
| | - Abigail R. Esquivel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Marc J. Koyack
- School of Arts and Sciences, Gwynedd Mercy University, Gwynedd Valley, PA 19437, USA
| | - Brie E. Paddock
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| |
Collapse
|
6
|
Wang X, Wright Z, Wang J, Roy S, Fass R, Song G. Elucidating the Link: Chronic Obstructive Pulmonary Disease and the Complex Interplay of Gastroesophageal Reflux Disease and Reflux-Related Complications. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1270. [PMID: 37512081 PMCID: PMC10384576 DOI: 10.3390/medicina59071270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/17/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
Background and Objective: Presenting chronic obstructive pulmonary disease (COPD) patients frequently report concurrent symptoms of gastroesophageal reflux disease (GERD). Few studies have shown a correlation between GERD and COPD. We aimed to examine the correlation between GERD and COPD as well as secondary related reflux complications, such as esophageal stricture, esophageal cancer, and Barrett's esophagus. Methods: This population-based analysis included 7,159,694 patients. Patients diagnosed with GERD with and without COPD were compared to those without GERD. The enrollment of COPD included centrilobular and panlobular emphysema and chronic bronchitis. Risk factors of COPD or GERD were used for adjustment. Bivariate analyses were performed using the chi-squared test or Fisher exact test (2-tailed) for categorical variables as appropriate to assess the differences in the groups. Results: Our results showed that COPD patients had a significantly higher incidence of GERD compared to those without COPD (27.8% vs. 14.1%, p < 0.01). After adjustment of demographics and risk factors, COPD patients had a 1.407 times higher risk of developing non-erosive esophagitis (p < 0.01), 1.165 higher risk of erosive esophagitis (p < 0.01), 1.399 times higher risk of esophageal stricture (p < 0.01), 1.354 times higher risk of Barrett's esophagus without dysplasia (p < 0.01), 1.327 times higher risk of Barrett's esophagus with dysplasia, as well as 1.235 times higher risk of esophageal cancer than those without COPD. Conclusions: Based on the evidence from this study, there are sufficient data to provide convincing evidence of an association between COPD and GERD and its secondary reflux-related complications.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Internal Medicine Residency Program, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Zachary Wright
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Jiayan Wang
- Internal Medicine Residency Program, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Stephen Roy
- Internal Medicine Residency Program, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Ronnie Fass
- Department of Gastroenterology and Hepatology, Metrohealth Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gengqing Song
- Department of Gastroenterology and Hepatology, Metrohealth Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Yang Q, Huang W, Yin D, Zhang L, Gao Y, Tong J, Li Z. EPHX1 and GSTP1 polymorphisms are associated with COPD risk: a systematic review and meta-analysis. Front Genet 2023; 14:1128985. [PMID: 37284064 PMCID: PMC10239837 DOI: 10.3389/fgene.2023.1128985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Background: Chronic obstructive pulmonary disease (COPD) affects approximately 400 million people worldwide and is associated with high mortality and morbidity. The effect of EPHX1 and GSTP1 gene polymorphisms on COPD risk has not been fully characterized. Objective: To investigate the association of EPHX1 and GSTP1 gene polymorphisms with COPD risk. Methods: A systematic search was conducted on 9 databases to identify studies published in English and Chinese. The analysis was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting guidelines (PRISMA). The pooled OR and 95% CI were calculated to evaluate the association of EPHX1 and GSTP1 gene polymorphisms with COPD risk. The I2 test, Q test, Egger's test, and Begg's test were conducted to determine the level of heterogeneity and publication bias of the included studies. Results: In total, 857 articles were retrieved, among which 59 met the inclusion criteria. The EPHX1 rs1051740 polymorphism (homozygote, heterozygote, dominant, recessives, and allele model) was significantly associated with high risk of COPD risk. Subgroup analysis revealed that the EPHX1 rs1051740 polymorphism was significantly associated with COPD risk among Asians (homozygote, heterozygote, dominant, and allele model) and Caucasians (homozygote, dominant, recessives, and allele model). The EPHX1 rs2234922 polymorphism (heterozygote, dominant, and allele model) was significantly associated with a low risk of COPD. Subgroup analysis showed that the EPHX1 rs2234922 polymorphism (heterozygote, dominant, and allele model) was significantly associated with COPD risk among Asians. The GSTP1 rs1695 polymorphism (homozygote and recessives model) was significantly associated with COPD risk. Subgroup analysis showed that the GSTP1 rs1695 polymorphism (homozygote and recessives model) was significantly associated with COPD risk among Caucasians. The GSTP1 rs1138272 polymorphism (heterozygote and dominant model) was significantly associated with COPD risk. Subgroup analysis suggested that the GSTP1 rs1138272 polymorphism (heterozygote, dominant, and allele model) was significantly associated with COPD risk among Caucasians. Conclusion: The C allele in EPHX1 rs1051740 among Asians and the CC genotype among Caucasians may be risk factors for COPD. However, the GA genotype in EPHX1 rs2234922 may be a protective factor against COPD in Asians. The GG genotype in GSTP1 rs1695 and the TC genotype in GSTP1 rs1138272 may be risk factors for COPD, especially among Caucasians.
Collapse
Affiliation(s)
- Qinjun Yang
- Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin’An Medicine, Ministry of Education, Hefei, China
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Wanqiu Huang
- Anhui University of Chinese Medicine, Hefei, China
| | - Dandan Yin
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lu Zhang
- Anhui University of Chinese Medicine, Hefei, China
| | - Yating Gao
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jiabing Tong
- Anhui University of Chinese Medicine, Hefei, China
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Anhui Provincial Department of Education, Hefei, China
| | - Zegeng Li
- Anhui University of Chinese Medicine, Hefei, China
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Anhui Provincial Department of Education, Hefei, China
| |
Collapse
|
8
|
Hou Z, Yuan Z, Wang H, Chang K, Gao Y. SMAD4 rs10502913 is Significantly Associated with Chronic Obstructive Pulmonary Disease in a Chinese Han Population: A Case-Control Study. Int J Chron Obstruct Pulmon Dis 2022; 17:1623-1631. [PMID: 35898699 PMCID: PMC9309323 DOI: 10.2147/copd.s362467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Background COPD is a respiratory disease caused by a combination of genetic and environmental factors. Polymorphism, as a genetic factor, can affect the susceptibility of the disease of COPD. In this study, we assessed the relationship between the polymorphisms of three genes and COPD risk in a Chinese Han population. Patients and Methods A total of 376 patients diagnosed with COPD and 284 control subjects were enrolled in this study. Multivariate logistic regression analysis was used to analyze the association between three polymorphisms (SMAD4 rs10502913, IL-4 rs2070874, HSPA1L rs2227956) and COPD susceptibility. Results The SMAD4 rs10502913 GG and AG genotype significantly increased COPD risk (adjusted OR = 2.235, 95% CI 1.198–4.104; adjusted OR = 2.218, 95% CI 1.204–4.151, respectively) compared with the AA genotype. In the stratification analyses, the GG genotype significantly increased the risk of COPD in subjects aged 60 and over (adjusted OR = 2.519, 95% CI 1.266–5.015) and with a smoking history of less than 30 years (p=0.009; adjusted OR = 3.751; 95% CI 1.398–10.062). This increased risk was more pronounced in the group of GOLD I and GOLD II (adjusted OR = 3.628, 95% CI 1.022–12.885; adjusted OR = 2.394, 95% CI 1.004–5.710, respectively). In addition, AG genotype was associated with an increased COPD risk in subjects aged 60 and over (adjusted OR = 2.599, 95% CI 1.304–5.176) and in smokers (p=0.021; adjusted OR = 2.269; 95% CI 1.132–4.548). This increased risk was more obvious in the group of GOLD III COPD (p=0.047; adjusted OR = 2.532; 95% CI 1.012–6.336). Conclusion Our present study indicated that the genotype GG and AG of SMAD4 rs10502913 are associated with an increased risk of COPD in a Chinese Han population. Further validation studies with large-scale populations are needed to confirm our findings.
Collapse
Affiliation(s)
- Zhifei Hou
- Department of Pulmonary and Critical Care Medicine, Sinopharm Tongmei General Hospital, Datong, People's Republic of China.,China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhihui Yuan
- Department of Emergency, Chinese PLA General Hospital -Fourth Medical Center, Beijing, People's Republic of China
| | - Hao Wang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Kang Chang
- China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, People's Republic of China
| | - Yong Gao
- Department of Pulmonary and Critical Care Medicine, Sinopharm Tongmei General Hospital, Datong, People's Republic of China
| |
Collapse
|
9
|
Jarenbäck L, Frantz S, Weidner J, Ankerst J, Nihlén U, Bjermer L, Wollmer P, Tufvesson E. Single-nucleotide polymorphisms in the sulfatase-modifying factor 1 gene are associated with lung function and COPD. ERJ Open Res 2022; 8:00668-2021. [PMID: 35586453 PMCID: PMC9108960 DOI: 10.1183/23120541.00668-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/17/2022] [Indexed: 11/05/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in various genes have been shown to associate with COPD, suggesting a role in disease pathogenesis. Sulfatase modifying factor (SUMF1) is a key modifier in connective tissue remodelling, and we have shown previously that several SNPs in SUMF1 are associated with COPD. The aim of this study was to investigate the association between SUMF1 SNPs and advanced lung function characteristics. Never-, former and current smokers with (n=154) or without (n=405) COPD were genotyped for 21 SNPs in SUMF1 and underwent spirometry, body plethysmography, diffusing capacity of the lung for carbon monoxide (D LCO) measurement and impulse oscillometry. Four SNPs (rs793391, rs12634248, rs2819590 and rs304092) showed a significantly decreased odds ratio of having COPD when heterozygous for the variance allele, together with a lower forced expiratory volume in 1 s (FEV1) and FEV1/forced vital capacity (FVC) ratio and an impaired peripheral resistance and reactance. Moreover, individuals homozygous for the variance allele of rs3864051 exhibited a strong association to COPD, a lower FEV1/FVC, FEV1 and D LCO, and an impaired peripheral resistance and reactance. Other SNPs (rs4685744, rs2819562, rs2819561 and rs11915920) were instead associated with impaired lung volumes and exhibited a lower FVC, total lung capacity and alveolar volume, in individuals having the variance allele. Several SNPs in the SUMF1 gene are shown to be associated with COPD and impaired lung function. These genetic variants of SUMF1 may cause a deficient sulfation balance in the extracellular matrix of the lung tissue, thereby contributing to the development of COPD.
Collapse
Affiliation(s)
- Linnea Jarenbäck
- Dept of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | - Sophia Frantz
- Dept of Translational Science, Clinical Physiology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Julie Weidner
- Dept of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | - Jaro Ankerst
- Dept of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | - Ulf Nihlén
- Dept of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | - Leif Bjermer
- Dept of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | - Per Wollmer
- Dept of Translational Science, Clinical Physiology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Ellen Tufvesson
- Dept of Clinical Sciences Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Barnes PJ. Oxidative Stress in Chronic Obstructive Pulmonary Disease. Antioxidants (Basel) 2022; 11:antiox11050965. [PMID: 35624831 PMCID: PMC9138026 DOI: 10.3390/antiox11050965] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 12/16/2022] Open
Abstract
There is a marked increase in oxidative stress in the lungs of patients with COPD, as measured by increased exhaled 8-isoprostane, ethane, and hydrogen peroxide in the breath. The lung may be exposed to exogenous oxidative stress from cigarette smoking and indoor or outdoor air pollution and to endogenous oxidative stress from reactive oxygen species released from activated inflammatory cells, particularly neutrophils and macrophages, in the lungs. Oxidative stress in COPD may be amplified by a reduction in endogenous antioxidants and poor intake of dietary antioxidants. Oxidative stress is a major driving mechanism of COPD through the induction of chronic inflammation, induction of cellular senescence and impaired autophagy, reduced DNA repair, increased autoimmunity, increased mucus secretion, and impaired anti-inflammatory response to corticosteroids. Oxidative stress, therefore, drives the pathology of COPD and may increase disease progression, amplify exacerbations, and increase comorbidities through systemic oxidative stress. This suggests that antioxidants may be effective as disease-modifying treatments. Unfortunately, thiol-based antioxidants, such as N-acetylcysteine, have been poorly effective, as they are inactivated by oxidative stress in the lungs, so there is a search for more effective and safer antioxidants. New antioxidants in development include mitochondria-targeted antioxidants, NOX inhibitors, and activators of the transcription factor Nrf2, which regulates several antioxidant genes.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College London, London SW5 9LH, UK
| |
Collapse
|
11
|
Heme Oxygenase-1: An Anti-Inflammatory Effector in Cardiovascular, Lung, and Related Metabolic Disorders. Antioxidants (Basel) 2022; 11:antiox11030555. [PMID: 35326205 PMCID: PMC8944973 DOI: 10.3390/antiox11030555] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
The heme oxygenase (HO) enzyme system catabolizes heme to carbon monoxide (CO), ferrous iron, and biliverdin-IXα (BV), which is reduced to bilirubin-IXα (BR) by biliverdin reductase (BVR). HO activity is represented by two distinct isozymes, the inducible form, HO-1, and a constitutive form, HO-2, encoded by distinct genes (HMOX1, HMOX2, respectively). HO-1 responds to transcriptional activation in response to a wide variety of chemical and physical stimuli, including its natural substrate heme, oxidants, and phytochemical antioxidants. The expression of HO-1 is regulated by NF-E2-related factor-2 and counter-regulated by Bach-1, in a heme-sensitive manner. Additionally, HMOX1 promoter polymorphisms have been associated with human disease. The induction of HO-1 can confer protection in inflammatory conditions through removal of heme, a pro-oxidant and potential catalyst of lipid peroxidation, whereas iron released from HO activity may trigger ferritin synthesis or ferroptosis. The production of heme-derived reaction products (i.e., BV, BR) may contribute to HO-dependent cytoprotection via antioxidant and immunomodulatory effects. Additionally, BVR and BR have newly recognized roles in lipid regulation. CO may alter mitochondrial function leading to modulation of downstream signaling pathways that culminate in anti-apoptotic, anti-inflammatory, anti-proliferative and immunomodulatory effects. This review will present evidence for beneficial effects of HO-1 and its reaction products in human diseases, including cardiovascular disease (CVD), metabolic conditions, including diabetes and obesity, as well as acute and chronic diseases of the liver, kidney, or lung. Strategies targeting the HO-1 pathway, including genetic or chemical modulation of HO-1 expression, or application of BR, CO gas, or CO donor compounds show therapeutic potential in inflammatory conditions, including organ ischemia/reperfusion injury. Evidence from human studies indicate that HO-1 expression may represent a biomarker of oxidative stress in various clinical conditions, while increases in serum BR levels have been correlated inversely to risk of CVD and metabolic disease. Ongoing human clinical trials investigate the potential of CO as a therapeutic in human disease.
Collapse
|
12
|
Chen ZY, Lin YM, Wu JH, Zhang XQ, Zhang Y, Xie WX, Chu SQ, Li Y. Effect of doxofylline on pulmonary inflammatory response and oxidative stress during mechanical ventilation in rats with COPD. BMC Pulm Med 2022; 22:66. [PMID: 35177065 PMCID: PMC8851859 DOI: 10.1186/s12890-022-01859-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/01/2022] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE To evaluate the effects of doxofylline on inflammatory responses and oxidative stress during mechanical ventilation in rats with chronic obstructive pulmonary disease (COPD). METHODS Eight-week-old male Sprague Dawley rats were selected, and the COPD rat model was constructed. The rats were randomly divided into a model group (group M), a model + normal saline group (group N), a doxofylline group (group D), and a control group fed with conventional chow and given normal oxygen supply (group C) (n = 12 in each group). Tracheal intubation and mechanical ventilation were conducted in the rats in each group after anesthesia. A real-time intravenous infusion with 50 mg/kg of doxofylline was conducted in group D, and there was no drug intervention in groups C, N and M. Pathological manifestations of the pulmonary tissues were observed and compared among the groups. And some indicators were evaluated. RESULTS (1) The pulmonary tissues of the rats in groups M, N, and D exhibited typical pathological histological changes of COPD. (2) Groups M, N, and D showed increased Ppeak, PaCO2, total white blood cell count in BALF, and IL-8, TNF-α, and MDA levels in the pulmonary tissue and BALF, and decreased PaO2 and IL-10 and SOD levels, compared with group C. (3). Group D showed decreased Ppeak, PaCO2, total white blood cell count in BALF, and IL-8, TNF-α, and MDA levels in the pulmonary tissue, and increased PaO2 and IL-10 and SOD levels, compared with group N or M. CONCLUSION Doxofylline was shown to improve ventilation and air exchange during mechanical ventilation in rats with COPD, reduce the inflammatory response and oxidative stress, and mitigate the degree of pulmonary tissue injury.
Collapse
Affiliation(s)
- Zhi-Yuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 950 of Donghai Street, Fengze District, Quanzhou, 362000, China
| | - Yu-Mei Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 950 of Donghai Street, Fengze District, Quanzhou, 362000, China
| | - Jian-Hua Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 950 of Donghai Street, Fengze District, Quanzhou, 362000, China
| | - Xiao-Qi Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 950 of Donghai Street, Fengze District, Quanzhou, 362000, China
| | - Yi Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 950 of Donghai Street, Fengze District, Quanzhou, 362000, China
| | - Wen-Xi Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 950 of Donghai Street, Fengze District, Quanzhou, 362000, China.
| | - Shu-Qiang Chu
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Yan Li
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 950 of Donghai Street, Fengze District, Quanzhou, 362000, China.
| |
Collapse
|
13
|
Ma LL, Sun L, Wang YX, Sun BH, Li YF, Jin YL. Association between HO‑1 gene promoter polymorphisms and diseases (Review). Mol Med Rep 2021; 25:29. [PMID: 34841438 PMCID: PMC8669660 DOI: 10.3892/mmr.2021.12545] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/11/2021] [Indexed: 12/21/2022] Open
Abstract
Heme oxygenase‑1 (HO‑1) is an inducible cytoprotective enzyme that degrades heme into free iron, carbon monoxide and biliverdin, which is then rapidly converted into bilirubin. These degradation products serve an important role in the regulation of inflammation, oxidative stress and apoptosis. While the expression level of HO‑1 is typically low in most cells, it may be highly expressed when induced by a variety of stimulating factors, a process that contributes to the regulation of cell homeostasis. In the 5'‑non‑coding region of the HO‑1 gene, there are two polymorphic sites, namely the (GT)n dinucleotide and T(‑413)A single nucleotide polymorphism sites, which regulate the transcriptional activity of HO‑1. These polymorphisms have been shown to be closely associated with the occurrence and progression of numerous diseases, including cardiovascular, pulmonary, liver and kidney, various types of cancer and viral diseases. The present article reviews the progress that has been made in research on the association between the two types of polymorphisms and these diseases, which is expected to provide novel strategies for the diagnosis, treatment and prognosis of various diseases.
Collapse
Affiliation(s)
- Lin-Lin Ma
- School of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, P.R. China
| | - Lei Sun
- School of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, P.R. China
| | - Yu-Xi Wang
- School of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, P.R. China
| | - Bai-He Sun
- School of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, P.R. China
| | - Yan-Fei Li
- School of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, P.R. China
| | - Yue-Ling Jin
- Management Department of Scientific Research, Shanghai Science and Technology Museum, Shanghai 200127, P.R. China
| |
Collapse
|
14
|
Costa Silva RCM, Correa LHT. Heme Oxygenase 1 in Vertebrates: Friend and Foe. Cell Biochem Biophys 2021; 80:97-113. [PMID: 34800278 DOI: 10.1007/s12013-021-01047-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
HO-1 is the inducible form of the enzyme heme-oxygenase. HO-1 catalyzes heme breakdown, reducing the levels of this important oxidant molecule and generating antioxidant, anti-inflammatory, and anti-apoptotic byproducts. Thus, HO-1 has been described as an important stress response mechanism during both physiologic and pathological processes. Interestingly, some findings are demonstrating that uncontrolled levels of HO-1 byproducts can be associated with cell death and tissue destruction as well. Furthermore, HO-1 can be located in the nucleus, influencing gene transcription, cellular proliferation, and DNA repair. Here, we will discuss several studies that approach HO-1 effects as a protective or detrimental mechanism in different pathological conditions. In this sense, as the major organs of vertebrates will deal specifically with distinct types of stresses, we discuss the HO-1 role in each of them, exposing the contradictions associated with HO-1 expression after different insults and circumstances.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Leonardo Holanda Travassos Correa
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Wu J, Li S, Li C, Cui L, Ma J, Hui Y. The non-canonical effects of heme oxygenase-1, a classical fighter against oxidative stress. Redox Biol 2021; 47:102170. [PMID: 34688156 PMCID: PMC8577501 DOI: 10.1016/j.redox.2021.102170] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 12/30/2022] Open
Abstract
The role of heme oxygenase-1 in resisting oxidative stress and cell protection has always been a hot research topic. With the continuous deepening of research, in addition to directly regulating redox by catalyzing the degradation of heme, HO-1 protein also participates in the gene expression level in a great diversity of methods, thereby initiating cell defense. Particularly the non-canonical nuclear-localized HO-1 and HO-1 protein interactions play the role of a warrior against oxidative stress. Besides, HO-1 may be a promising marker for disease prediction and detection in many clinical trials. Especially for malignant diseases, there may be new advances in the treatment of HO-1 by regulating abnormal ROS and metabolic signaling. The purpose of this review is to systematically sort out and describe several aspects of research to facilitate further detailed mechanism research and clinical application promotion in the future. The different subcellular localizations ofHO-1 implies that it has special functions. Nuclear HO-1 plays an indispensable role in gene regulation and other aspects. The interactions between HO-1 and others provide the possibility to participate in vital physiological processes. HO-1 may become a potential disease assessment marker.
Collapse
Affiliation(s)
- Jiajia Wu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Siyu Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Cheng Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Liying Cui
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Jiajia Ma
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Yang Hui
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China; Basic Medical Institute of Heilongjiang Medical Science Academy, PR China; Translational Medicine Center of Northern China, PR China.
| |
Collapse
|
16
|
Cellular senescence-an aging hallmark in chronic obstructive pulmonary disease pathogenesis. Respir Investig 2021; 60:33-44. [PMID: 34649812 DOI: 10.1016/j.resinv.2021.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/12/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Chronic obstructive pulmonary disease (COPD),1 a representative aging-related pulmonary disorder, is mainly caused by cigarette smoke (CS) exposure. Age is one of the most important risk factors for COPD development, and increased cellular senescence in tissues and organs is a component of aging. CS exposure can induce cellular senescence, as characterized by irreversible growth arrest and aberrant cytokine secretion of the senescence-associated secretory phenotype; thus, accumulation of senescent cells is widely implicated in COPD pathogenesis. CS-induced oxidative modifications to cellular components may be causally linked to accelerated cellular senescence, especially during accumulation of damaged macromolecules. Autophagy is a conserved mechanism whereby cytoplasmic components are sent for lysosomal degradation to maintain proteostasis. Autophagy diminishes with age, and loss of proteostasis is one of the hallmarks of aging. We have reported the involvement of insufficient autophagy in regulating CS-induced cellular senescence with respect to COPD pathogenesis. However, the role of autophagy in COPD pathogenesis can vary based on levels of cell stress and type of selective autophagy because excessive activation of autophagy can be responsible for inducing regulated cell death. Senotherapies targeting cellular senescence may be effective COPD treatments. Autophagy activation could be a promising sonotherapeutic approach, but the optimal modality of autophagy activation should be examined in future studies.
Collapse
|
17
|
Campbell NK, Fitzgerald HK, Dunne A. Regulation of inflammation by the antioxidant haem oxygenase 1. Nat Rev Immunol 2021; 21:411-425. [PMID: 33514947 DOI: 10.1038/s41577-020-00491-x] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 01/30/2023]
Abstract
Haem oxygenase 1 (HO-1), an inducible enzyme responsible for the breakdown of haem, is primarily considered an antioxidant, and has long been overlooked by immunologists. However, research over the past two decades in particular has demonstrated that HO-1 also exhibits numerous anti-inflammatory properties. These emerging immunomodulatory functions have made HO-1 an appealing target for treatment of diseases characterized by high levels of chronic inflammation. In this Review, we present an introduction to HO-1 for immunologists, including an overview of its roles in iron metabolism and antioxidant defence, and the factors which regulate its expression. We discuss the impact of HO-1 induction in specific immune cell populations and provide new insights into the immunomodulation that accompanies haem catabolism, including its relationship to immunometabolism. Furthermore, we highlight the therapeutic potential of HO-1 induction to treat chronic inflammatory and autoimmune diseases, and the issues faced when trying to translate such therapies to the clinic. Finally, we examine a number of alternative, safer strategies that are under investigation to harness the therapeutic potential of HO-1, including the use of phytochemicals, novel HO-1 inducers and carbon monoxide-based therapies.
Collapse
Affiliation(s)
- Nicole K Campbell
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland. .,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia. .,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia.
| | - Hannah K Fitzgerald
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Li X, Zhou G, Tian X, Chen F, Li G, Ding Y. The polymorphisms of FGFR2 and MGAT5 affect the susceptibility to COPD in the Chinese people. BMC Pulm Med 2021; 21:129. [PMID: 33879098 PMCID: PMC8058990 DOI: 10.1186/s12890-021-01498-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/31/2021] [Indexed: 11/24/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is characterized by incomplete reversible airflow limitation and chronic inflammatory response lesions. This study mainly explored whether FGFR2 and MGAT5 polymorphisms affected the risk of COPD in the Chinese people. Methods Five variants in FGFR2 and MGAT5 were chosen and genotyped using Agena MassARRAY platform from 315 COPD patients and 314 healthy controls. The correlation of FGFR2 and MGAT5 with COPD susceptibility was evaluated with odds ratio (OR) and 95% confidence interval (CI) via logistic regression. Results We found rs2420915 enhanced the risk of COPD, while rs6430491, rs2593704 reduced the susceptibility of COPD (p < 0.05). Rs2420915 could promote the incidence of COPD in the elderly and nonsmokers. Rs1907240 and rs2257129 also increased the susceptibility to COPD in nonsmokers (p < 0.05). MGAT5-rs2593704 played a protective role in COPD development in different subgroups (age ≤ 70, male, smokers, and individuals with BMI ≤ 24 kg/m2). Meanwhile, rs6430491 was linked with a lower risk of COPD in nonsmoking and BMI ≤ 24 kg/m2 subgroups. Conclusions We concluded that FGFR2 and MGAT5 genetic polymorphisms are correlated with the risk of COPD in the Chinese people. These data underscored the important role of FGFR2 and MGAT5 gene in the occurrence of COPD and provided new biomarkers for COPD treatment. Trial registration: NA. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01498-3.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of General Practice, People's Hospital of Wanning, Wanning, 571500, Hainan, China
| | - Guangyu Zhou
- Department of Nursing, People's Hospital of Wanning, Wanning, 571500, Hainan, China
| | - Xiaobo Tian
- Department of Medical, People's Hospital of Wanning, Wanning, 571500, Hainan, China
| | - Fei Chen
- Nanyang Branch of Wencheng Health Center of Wenchang City, Wenchang, 571399, Hainan, China.,Department of Science and Education Department, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Guoyao Li
- Department of General Practice, People's Hospital of Wanning, Wanning, 571500, Hainan, China
| | - Yipeng Ding
- Department of General Practice, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19, Xinhua Road, Xiuying District, Haikou, 570311, Hainan, China.
| |
Collapse
|
19
|
Sharma A, Tewari D, Nabavi SF, Nabavi SM, Habtemariam S. Reactive oxygen species modulators in pulmonary medicine. Curr Opin Pharmacol 2021; 57:157-164. [PMID: 33743400 DOI: 10.1016/j.coph.2021.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/23/2020] [Accepted: 02/08/2021] [Indexed: 12/23/2022]
Abstract
Adapted to effectively capture oxygen from inhaled air and deliver it to all other parts of the body, the lungs constitute the organ with the largest surface area. This makes the lungs more susceptible to airborne pathogens and pollutants that mediate pathologies through generation of reactive oxygen species (ROS). One pathological consequence of excessive levels of ROS production is pulmonary diseases that account for a large number of mortality and morbidity in the world. Of the various mechanisms involved in pulmonary disease pathogenesis, mitochondrial dysfunction takes prominent importance. Herein, we briefly describe the significance of oxidative stress caused by ROS in pulmonary diseases and some possible therapeutic strategies.
Collapse
Affiliation(s)
- Ankush Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, School of Science, University of Greenwich, Central Avenue, Chatham-Maritime, Kent, ME4 4TB, United Kingdom.
| |
Collapse
|
20
|
Heme Oxgenase-1, a Cardinal Modulator of Regulated Cell Death and Inflammation. Cells 2021; 10:cells10030515. [PMID: 33671004 PMCID: PMC7997353 DOI: 10.3390/cells10030515] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Heme oxygenase catalyzes the rate-limiting step in heme degradation in order to generate biliverdin, carbon monoxide (CO), and iron. The inducible form of the enzyme, heme oxygenase-1 (HO-1), exerts a central role in cellular protection. The substrate, heme, is a potent pro-oxidant that can accelerate inflammatory injury and promote cell death. HO-1 has been implicated as a key mediator of inflammatory cell and tissue injury, as validated in preclinical models of acute lung injury and sepsis. A large body of work has also implicated HO-1 as a cytoprotective molecule against various forms of cell death, including necrosis, apoptosis and newly recognized regulated cell death (RCD) programs such as necroptosis, pyroptosis, and ferroptosis. While the antiapoptotic potential of HO-1 and its reaction product CO in apoptosis regulation has been extensively characterized, relatively fewer studies have explored the regulatory role of HO-1 in other forms of necrotic and inflammatory RCD (i.e., pyroptosis, necroptosis and ferroptosis). HO-1 may provide anti-inflammatory protection in necroptosis or pyroptosis. In contrast, in ferroptosis, HO-1 may play a pro-death role via enhancing iron release. HO-1 has also been implicated in co-regulation of autophagy, a cellular homeostatic program for catabolic recycling of proteins and organelles. While autophagy is primarily associated with cell survival, its occurrence can coincide with RCD programs. This review will summarize the roles of HO-1 and its reaction products in co-regulating RCD and autophagy programs, with its implication for both protective and detrimental tissue responses, with emphasis on how these impact HO-1 as a candidate therapeutic target in disease.
Collapse
|
21
|
Batra N, De Souza C, Batra J, Raetz AG, Yu AM. The HMOX1 Pathway as a Promising Target for the Treatment and Prevention of SARS-CoV-2 of 2019 (COVID-19). Int J Mol Sci 2020; 21:E6412. [PMID: 32899231 PMCID: PMC7503392 DOI: 10.3390/ijms21176412] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
The coronavirus disease of 2019 (COVID-19) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global pandemic with increasing incidence and mortality rates. Recent evidence based on the cytokine profiles of severe COVID-19 cases suggests an overstimulation of macrophages and monocytes associated with reduced T-cell abundance (lymphopenia) in patients infected with SARS-CoV-2. The SARS-CoV-2 open reading frame 3 a (ORF3a) protein was found to bind to the human HMOX1 protein at a high confidence through high-throughput screening experiments. The HMOX1 pathway can inhibit platelet aggregation, and can have anti-thrombotic and anti-inflammatory properties, amongst others, all of which are critical medical conditions observed in COVID-19 patients. Here, we review the potential of modulating the HMOX1-ORF3a nexus to regulate the innate immune response for therapeutic benefits in COVID-19 patients. We also review other potential treatment strategies and suggest novel synthetic and natural compounds that may have the potential for future development in clinic.
Collapse
Affiliation(s)
- Neelu Batra
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA; (N.B.); (C.D.S.); (A.G.R.)
| | - Cristabelle De Souza
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA; (N.B.); (C.D.S.); (A.G.R.)
- Department of Internal Medicine, University of New Mexico Cancer Center, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Jyoti Batra
- Gladstone Institute, San Francisco, CA 94158, USA;
| | - Alan G. Raetz
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA; (N.B.); (C.D.S.); (A.G.R.)
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA; (N.B.); (C.D.S.); (A.G.R.)
| |
Collapse
|
22
|
Chu Q, Chen W, Jia R, Ye X, Li Y, Liu Y, Jiang Y, Zheng X. Tetrastigma hemsleyanum leaves extract against acrylamide-induced toxicity in HepG2 cells and Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122364. [PMID: 32114136 DOI: 10.1016/j.jhazmat.2020.122364] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Acrylamide (ACR), as a raw material of polyacrylamide that used in water purification, was verified to possess various toxicity. Tetrastigma hemsleyanum (TH) is a medicinal plant widely used to anti-inflammation and anti-tumor in Chinese folks. However, more researches focused on the biological activities in tubers and the leaves were ignored. Thus, the protective effect of Tetrastigma hemsleyanum leaves extract (THLE) against ACR-induced toxicity in HepG2 cells and Caenorhabditis elegans (C. elegans) was explored in this study. In vitro, we observed that THLE attenuated ACR-induced toxicity in HepG2 cell via regulating Akt/mTOR/FOXO1/MAPK signaling pathway. Further research proved that 5-caffeoylquinic acid (5-CA) plays a major role in THLE's amelioration effect of ACR toxicity. In vivo, it was found that THLE possesses the same protective effect in ACR-treated wild-type N2 C. elegans and daf-2 (-) (deficit in DAF-2) mutants. However, the anti-ACR toxicity effect of THLE in daf-16 (-) mutants (deficit in DAF-16 that homologous to FOXO family in human) was weakened. Our results indicated that THLE exhibited protective effects against ACR-induced toxicity both in HepG2 cells and C. elegans, while DAF-16/FOXO gene is involved in THLE' protective effect via regulating the expression levels of downstream antioxidant genes.
Collapse
Affiliation(s)
- Qiang Chu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Wen Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, 310058, People's Republic of China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Ruoyi Jia
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, 310058, People's Republic of China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiang Ye
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, 310058, People's Republic of China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yonglu Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, 310058, People's Republic of China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yangyang Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, 310058, People's Republic of China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yong Jiang
- Shanghai Zhengyue Enterprise Management Co., Ltd., 19th Floor, Block B, Xinchengkonggu Building, NO.388 Zhongjiang Road, Putuo District, Shanghai, 600062, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, 310058, People's Republic of China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|