1
|
Goodchild C, Symington EA, Baumgartner J, Zandberg L, Wise AJ, Smuts CM, Malan L. Anaemia at mid-pregnancy is associated with prehypertension in late pregnancy among urban women. Health SA 2024; 29:2610. [PMID: 38962297 PMCID: PMC11220126 DOI: 10.4102/hsag.v29i0.2610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/11/2024] [Indexed: 07/05/2024] Open
Abstract
Background Antenatal iron deficiency and anaemia are associated with gestational hypertension and diabetes mellitus, but so are elevated iron stores and haemoglobin. In South Africa, pregnant women receive routine iron supplementation regardless of iron status. Aim This study aimed to assess associations of antenatal iron status and anaemia with blood pressure in pregnant women in urban South Africa. Secondary to this, associations with heart rate, fasting glucose and glucose tolerance were also investigated. Setting Johannesburg, South Africa. Methods A total of 250 pregnant women, aged 27 (24-32) years, were recruited using consecutive sampling. The authors measured biomarkers of iron status and anaemia at < 18 and ± 22 weeks', blood pressure and heart rate at ± 36 weeks', and fasting glucose and glucose tolerance between 24 and 28 weeks' gestation. Associations were determined using multivariable regression models adjusted for confounders. Results The odds of prehypertension in late pregnancy among women with anaemia at ± 22 weeks' gestation were three times higher than among women without anaemia (odds ratio [OR]: 3.01, 95% confidence interval [CI]: 1.22, 7.42). Participants with anaemia at ± 22 weeks' gestation had 2.15 times higher odds of having elevated mean arterial pressure than women without anaemia (OR: 2.15, 95% CI: 1.01, 4.60). Conclusion Anaemia at mid-pregnancy could be a predictor of hypertensive disorders in pregnancy. The cause of antenatal anaemia may need further investigation apart from iron deficiency. The effective management of anaemia in pregnant women living in urban South Africa remains a challenge. Contribution This study provides evidence about the health impact of pregnant women regarding antenatal supplementation practices in South Africa.
Collapse
Affiliation(s)
- Caylin Goodchild
- Centre of Excellence for Nutrition, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Elizabeth A. Symington
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, Johannesburg, South Africa
| | - Jeannine Baumgartner
- Centre of Excellence for Nutrition, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
- Department of Nutritional Sciences, King’s College London, London, United Kingdom
| | - Lizelle Zandberg
- Centre of Excellence for Nutrition, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Amy J. Wise
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
- Empilweni Services and Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Cornelius M. Smuts
- Centre of Excellence for Nutrition, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Linda Malan
- Centre of Excellence for Nutrition, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Kell DB, Khan MA, Kane B, Lip GYH, Pretorius E. Possible Role of Fibrinaloid Microclots in Postural Orthostatic Tachycardia Syndrome (POTS): Focus on Long COVID. J Pers Med 2024; 14:170. [PMID: 38392604 PMCID: PMC10890060 DOI: 10.3390/jpm14020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024] Open
Abstract
Postural orthostatic tachycardia syndrome (POTS) is a common accompaniment of a variety of chronic, inflammatory diseases, including long COVID, as are small, insoluble, 'fibrinaloid' microclots. We here develop the argument, with accompanying evidence, that fibrinaloid microclots, through their ability to block the flow of blood through microcapillaries and thus cause tissue hypoxia, are not simply correlated with but in fact, by preceding it, may be a chief intermediary cause of POTS, in which tachycardia is simply the body's exaggerated 'physiological' response to hypoxia. Similar reasoning accounts for the symptoms bundled under the term 'fatigue'. Amyloids are known to be membrane disruptors, and when their targets are nerve membranes, this can explain neurotoxicity and hence the autonomic nervous system dysfunction that contributes to POTS. Taken together as a system view, we indicate that fibrinaloid microclots can serve to link POTS and fatigue in long COVID in a manner that is at once both mechanistic and explanatory. This has clear implications for the treatment of such diseases.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1, Matieland 7602, South Africa
| | - Muhammed Asad Khan
- Directorate of Respiratory Medicine, Manchester University Hospitals, Wythenshawe Hospital, Manchester M23 9LT, UK;
| | - Binita Kane
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Manchester University Foundation Trust and School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool L14 3PE, UK;
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
3
|
Tessema B, Sack U, König B, Serebrovska Z, Egorov E. Effects of Intermittent Hypoxia in Training Regimes and in Obstructive Sleep Apnea on Aging Biomarkers and Age-Related Diseases: A Systematic Review. Front Aging Neurosci 2022; 14:878278. [PMID: 35677200 PMCID: PMC9168371 DOI: 10.3389/fnagi.2022.878278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Several studies have assessed the effects of intermittent hypoxia-normoxia training (IHNT), intermittent hypoxia-hyperoxia training (IHHT), and obstructive sleep apnea (OSA) on aging and age-related diseases in humans; however, the results remain contradictory. Therefore, this review aims to systematically summarize the available studies on the effects of IHNT, IHHT, and OSA on aging and age-related diseases. Relevant studies were searched from PubMed, Google Scholar, Cochrane Library databases, and through manual searching from reference lists of eligible studies. A total of 38 eligible studies were included in this systematic review. IHHT and IHNT provide positive effects on several age-related parameters including quality of life, cognitive and physical functions, plasma level of glucose and cholesterol/LDL, systolic blood pressure, red blood cells, and inflammation. Moreover, moderate intermittent hypoxia induces telomerase reverse transcriptase (TERT) activity and telomere stabilization, delays induction of senescence-associated markers expression and senescence-associated β-galactosidase, upregulates pluripotent marker (Oct4), activates a metabolic shift, and raises resistance to pro-apoptotic stimuli. On the contrary, intermittent hypoxia in OSA causes hypertension, metabolic syndrome, vascular function impairment, quality of life and cognitive scores reduction, advanced brain aging, increase in insulin resistance, plasma hydrogen peroxide, GSH, IL-6, hsCRP, leptin, and leukocyte telomere shortening. Thus, it can be speculated that the main factor that determines the direction of the intermittent hypoxia action is the intensity and duration of exposure. There is no direct study to prove that IHNT/IHHT actually increases life expectancy in humans. Therefore, further study is needed to investigate the actual effect of IHNT/IHHT on aging in humans.Systematic Review Registrationwww.crd.york.ac.uk/prospero, identifier CRD42022298499.
Collapse
Affiliation(s)
- Belay Tessema
- Institute of Clinical Immunology, Faculty of Medicine, Leipzig University, Leipzig, Germany
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Faculty of Medicine, Leipzig University, Leipzig, Germany
- Department of Medical Microbiology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- *Correspondence: Belay Tessema, ,
| | - Ulrich Sack
- Institute of Clinical Immunology, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Brigitte König
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Zoya Serebrovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Egor Egorov
- IPAM Institute for Preventive and Anti-Aging Medicine, Berlin, Germany
| |
Collapse
|
4
|
Serebrovska ZO, Xi L, Tumanovska LV, Shysh AM, Goncharov SV, Khetsuriani M, Kozak TO, Pashevin DA, Dosenko VE, Virko SV, Kholin VA, Grib ON, Utko NA, Egorov E, Polischuk AO, Serebrovska TV. Response of Circulating Inflammatory Markers to Intermittent Hypoxia-Hyperoxia Training in Healthy Elderly People and Patients with Mild Cognitive Impairment. Life (Basel) 2022; 12:life12030432. [PMID: 35330183 PMCID: PMC8953753 DOI: 10.3390/life12030432] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/28/2022] Open
Abstract
Intermittent hypoxia-hyperoxia training (IHHT) is a non-pharmacological therapeutic modality for management of some chronic- and age-related pathologies, such as Alzheimer’s disease (AD). Our previous studies demonstrated significant improvement of cognitive function after IHHT in the patients with mild cognitive impairment (MCI). The present study further investigated the effects of IHHT on pro-inflammatory factors in healthy elderly individuals and patients with early signs of AD. Twenty-nine subjects (13 healthy subjects without signs of cognitive impairment syndrome and 16 patients diagnosed with MCI; age 52 to 76 years) were divided into four groups: Healthy+Sham (n = 7), Healthy+IHHT (n = 6), MCI+Sham (n = 6), and MCI+IHHT (n = 10). IHHT was carried out 5 days per week for 3 weeks (total 15 sessions), and each daily session included 4 cycles of 5-min hypoxia (12% FIO2) and 3-min hyperoxia (33% FIO2). Decline in cognitive function indices was observed initially in both MCI+Sham and MCI+IHHT groups. The sham training did not alter any of the parameters, whereas IHHT resulted in improvement in latency of cognitive evoked potentials, along with elevation in APP110, GDF15 expression, and MMP9 activity in both healthy subjects and those with MCI. Increased MMP2 activity, HMGB1, and P-selectin expression and decreased NETs formation and Aβ expression were also observed in the MCI+IHHT group. There was a negative correlation between MoCA score and the plasma GDF15 expression (R = −0.5799, p < 0.05) before the initiation of IHHT. The enhanced expression of GDF15 was also associated with longer latency of the event-related potentials P330 and N200 (R = 0.6263, p < 0.05 and R = 0.5715, p < 0.05, respectively). In conclusion, IHHT upregulated circulating levels of some inflammatory markers, which may represent potential triggers for cellular adaptive reprogramming, leading to therapeutic effects against cognitive dysfunction and neuropathological changes during progression of AD. Further investigation is needed to clarify if there is a causative relationship between the improved cognitive function and the elevated inflammatory markers following IHHT.
Collapse
Affiliation(s)
- Zoya O. Serebrovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
- Correspondence: (Z.O.S.); (L.X.)
| | - Lei Xi
- Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
- Correspondence: (Z.O.S.); (L.X.)
| | - Lesya V. Tumanovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Angela M. Shysh
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Sergii V. Goncharov
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Michael Khetsuriani
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Taisia O. Kozak
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Denis A. Pashevin
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Victor E. Dosenko
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Sergii V. Virko
- Lashkariov Institute of Semiconductor Physics, National Academy of Sciences, 41 Nauki Ave., 03028 Kyiv, Ukraine;
| | - Viktor A. Kholin
- Department of Age Physiology and Pathology of Nervous System, Chebotarev Institute of Gerontology NAMS of Ukraine, 04114 Kyiv, Ukraine; (V.A.K.); (O.N.G.); (N.A.U.)
| | - Oksana N. Grib
- Department of Age Physiology and Pathology of Nervous System, Chebotarev Institute of Gerontology NAMS of Ukraine, 04114 Kyiv, Ukraine; (V.A.K.); (O.N.G.); (N.A.U.)
| | - Natalie A. Utko
- Department of Age Physiology and Pathology of Nervous System, Chebotarev Institute of Gerontology NAMS of Ukraine, 04114 Kyiv, Ukraine; (V.A.K.); (O.N.G.); (N.A.U.)
| | - Egor Egorov
- CELLGYM Technologies GmbH, 14193 Berlin, Germany;
| | - Anna O. Polischuk
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Tetiana V. Serebrovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| |
Collapse
|
5
|
Yang Y, Gao C, Yang T, Sha Y, Cai Y, Wang X, Yang Q, Liu C, Wang B, Zhao S. Vascular characteristics and expression of hypoxia genes in Tibetan pigs' hearts. Vet Med Sci 2021; 8:177-186. [PMID: 34561963 PMCID: PMC8788992 DOI: 10.1002/vms3.639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Tibetan pigs have exhibited unique characteristics from low‐altitudes pigs and adapted well to the Qinghai‐Tibet Plateau. Objectives The current study was undertaken to investigate the hypoxic adaptation of heart in Tibetan pigs. Methods The hearts of Tibetan pigs and Landrace pigs raised at high or low altitudes were compared using 3D casting technology, scanning electron microscopy and real‐time quantitative PCR (qRT‐PCR). Results We found that the ratio of the major axis to the minor axis and the density of the heart were significantly higher in Tibetan pigs than in Landrace pigs (p < 0.05). Tibetan pigs had larger diameters and higher densities of arterioles than Landrace pigs (p < 0.05), and these features have a similar variation with the expression of vascular endothelial growth factor (VEGF). The cardiac expression levels of hypoxia‐inducible factor‐1α (HIF‐1α) and endothelial nitric oxide synthase (eNOS) were significantly higher in pigs reared at high altitudes than in those reared at low altitudes (p < 0.05). In contrast, Egl nine homolog 1 (EGLN1) had the opposite trend with respect to HIF‐1α and eNOS and was related to red blood cell (RBC) counts. Notably, the expressions of erythropoietin (EPO) and endothelial PAS domain‐containing protein 1 (EPAS1) were significantly higher in Landrace pigs kept at high altitudes than in the others (p < 0.05) and were associated with haemoglobin. Conclusions These findings show that the regulation of the heart function of Tibetan pigs in a hypoxic environment is manifested at various levels to ensure the circulation of blood under extreme environmental conditions.
Collapse
Affiliation(s)
- Yanan Yang
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, P.R. China
| | - Caixia Gao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P.R. China
| | - Tianliang Yang
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, P.R. China
| | - Yuzhu Sha
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, P.R. China
| | - Yuan Cai
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, P.R. China
| | - Xinrong Wang
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, P.R. China
| | - Qiaoli Yang
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, P.R. China
| | - Chengze Liu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, P.R. China
| | - Biao Wang
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, P.R. China
| | - Shengguo Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, P.R. China
| |
Collapse
|
6
|
Cai M, Chen X, Shan J, Yang R, Guo Q, Bi X, Xu P, Shi X, Chu L, Wang L. Intermittent Hypoxic Preconditioning: A Potential New Powerful Strategy for COVID-19 Rehabilitation. Front Pharmacol 2021; 12:643619. [PMID: 33995053 PMCID: PMC8120309 DOI: 10.3389/fphar.2021.643619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/15/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is a highly infectious respiratory virus, which can proliferate by invading the ACE2 receptor of host cells. Clinical studies have found that the virus can cause dyspnea, pneumonia and other cardiopulmonary system damage. In severe cases, it can lead to respiratory failure and even death. Although there are currently no effective drugs or vaccines for the prevention and treatment of COVID-19, the patient’s prognosis recovery can be effectively improved by ameliorating the dysfunction of the respiratory system, cardiovascular systems, and immune function. Intermittent hypoxic preconditioning (IHP) as a new non-drug treatment has been applied in the clinical and rehabilitative practice for treating chronic obstructive pulmonary disease (COPD), diabetes, coronary heart disease, heart failure, hypertension, and other diseases. Many clinical studies have confirmed that IHP can improve the cardiopulmonary function of patients and increase the cardiorespiratory fitness and the tolerance of tissues and organs to ischemia. This article introduces the physiological and biochemical functions of IHP and proposes the potential application plan of IHP for the rehabilitation of patients with COVID-19, so as to provide a better prognosis for patients and speed up the recovery of the disease. The aim of this narrative review is to propose possible causes and pathophysiology of COVID-19 based on the mechanisms of the oxidative stress, inflammation, and immune response, and to provide a new, safe and efficacious strategy for the better rehabilitation from COVID-19.
Collapse
Affiliation(s)
- Ming Cai
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xuan Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jieling Shan
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruoyu Yang
- College of Rehabilitation Science, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qi Guo
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xia Bi
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Ping Xu
- College of Rehabilitation Science, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiangrong Shi
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Lixi Chu
- College of Rehabilitation Science, Shanghai University of Medicine and Health Sciences, Shanghai, China.,Shanghai Sunshine Rehabilitation Center, Shanghai, China
| | - Liyan Wang
- College of Rehabilitation Science, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
7
|
Millet GP, Debevec T, Brocherie F, Burtscher M, Burtscher J. Altitude and COVID-19: Friend or foe? A narrative review. Physiol Rep 2021; 8:e14615. [PMID: 33340275 PMCID: PMC7749581 DOI: 10.14814/phy2.14615] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Recent reports suggest that high-altitude residence may be beneficial in the novel coronavirus disease (COVID-19) implicating that traveling to high places or using hypoxic conditioning thus could be favorable as well. Physiological high-altitude characteristics and symptoms of altitude illnesses furthermore seem similar to several pathologies associated with COVID-19. As a consequence, high altitude and hypoxia research and related clinical practices are discussed for potential applications in COVID-19 prevention and treatment. We summarize the currently available evidence on the relationship between altitude/hypoxia conditions and COVID-19 epidemiology and pathophysiology. The potential for treatment strategies used for altitude illnesses is evaluated. Symptomatic overlaps in the pathophysiology of COVID-19 induced ARDS and high altitude illnesses (i.e., hypoxemia, dyspnea…) have been reported but are also common to other pathologies (i.e., heart failure, pulmonary embolism, COPD…). Most treatments of altitude illnesses have limited value and may even be detrimental in COVID-19. Some may be efficient, potentially the corticosteroid dexamethasone. Physiological adaptations to altitude/hypoxia can exert diverse effects, depending on the constitution of the target individual and the hypoxic dose. In healthy individuals, they may optimize oxygen supply and increase mitochondrial, antioxidant, and immune system function. It is highly debated if these physiological responses to hypoxia overlap in many instances with SARS-CoV-2 infection and may exert preventive effects under very specific conditions. The temporal overlap of SARS-CoV-2 infection and exposure to altitude/hypoxia may be detrimental. No evidence-based knowledge is presently available on whether and how altitude/hypoxia may prevent, treat or aggravate COVID-19. The reported lower incidence and mortality of COVID-19 in high-altitude places remain to be confirmed. High-altitude illnesses and COVID-19 pathologies exhibit clear pathophysiological differences. While potentially effective as a prophylactic measure, altitude/hypoxia is likely associated with elevated risks for patients with COVID-19. Altogether, the different points discussed in this review are of possibly some relevance for individuals who aim to reach high-altitude areas. However, due to the ever-changing state of understanding of COVID-19, all points discussed in this review may be out of date at the time of its publication.
Collapse
Affiliation(s)
| | - Tadej Debevec
- Faculty of SportUniversity of LjubljanaLjubljanaSlovenia
| | | | | | | |
Collapse
|
8
|
Muangritdech N, Hamlin MJ, Sawanyawisuth K, Prajumwongs P, Saengjan W, Wonnabussapawich P, Manimmanakorn N, Manimmanakorn A. Hypoxic training improves blood pressure, nitric oxide and hypoxia-inducible factor-1 alpha in hypertensive patients. Eur J Appl Physiol 2020; 120:1815-1826. [PMID: 32524226 DOI: 10.1007/s00421-020-04410-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE To examine the effects of intermittent hypoxic breathing at rest (IHR) or during exercise (IHT) on blood pressure and nitric oxide metabolites (NOx) and hypoxia-inducible factor-1 alpha levels (HIF-1α) over a 6-week period. METHODS 47 hypertensive patients were randomly allocated to three groups: hypertensive control (CON: n = 17; IHR: n = 15 and IHT: n = 15. The CON received no intervention; whereas, IH groups received eight events of hypoxia (FIO2 0.14), and normoxia (FIO2 0.21), 24-min hypoxia and 24-min normoxia, for 6 weeks. The baseline data were collected 2 days before the intervention; while, the post-test data were collected at days 2 and 28 after the 6-week intervention. RESULTS We observed a significant decrease of the SBP in both IH groups: IHR (- 12.0 ± 8.0 mmHg, p = 0.004 and - 9.9 ± 8.8 mmHg, p = 0.028, mean ± 95% CI) and IHT (- 13.0 ± 7.8 mmHg, p = 0.002 and - 10.0 ± 8.4 mmHg, p = 0.016) at days 2 and 28 post-intervention, respectively. Compared to CON, IHR and IHT had increased of NOx (IHR; 8.5 ± 7.6 μmol/L, p = 0.031 and IHT; 20.0 ± 9.1 μmol/L, p < 0.001) and HIF-1α (IHR; 170.0 ± 100.0 pg/mL, p = 0.002 and IHT; 340.5 ± 160.0 pg/mL, p < 0.001). At 2 days post-intervention, NOx and HIF-1α were negatively correlated with SBP in IHT. CONCLUSION IH programs may act as an alternative therapeutic strategy for hypertension patients probably through elevation of NOx and HIF-1α production.
Collapse
Affiliation(s)
- Nattha Muangritdech
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Michael J Hamlin
- Department of Tourism, Sport and Society, Lincoln University, Lincoln, New Zealand
| | | | - Piya Prajumwongs
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wisutthida Saengjan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Preetiwat Wonnabussapawich
- Sport and Exercise Science Program, Faculty of Science and Technology, Nakhonratchasima Rajabhat University, Nakhon Ratchasima, Thailand
| | - Nuttaset Manimmanakorn
- Department of Rehabilitation, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Apiwan Manimmanakorn
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
9
|
Bao X, Liu H, Liu HY, Long Y, Tan JW, Zhu ZM. The effect of intermittent hypoxia training on migraine: a randomized controlled trial. Am J Transl Res 2020; 12:4059-4065. [PMID: 32774759 PMCID: PMC7407698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To study the effect of intermittent hypoxia training (IHT) for migraine. DESIGN A single-blind, randomized controlled trial. All participants were recruited from a rehabilitation department in an acute university-affiliated hospital. METHODS Participants with migraines were randomly assigned to two groups (IHT group and control group). The Migraine Disability Assessment (MIDAS), Visual Analog Scale (VAS), Beck Depression Inventory (BDI), Beck Anxiety Inventory (BAI), Vascular endothelial growth factor (VEGF), calcitonin gene related peptide (CGRP) and cerebrovascular hemodynamic parameters were collected at baseline and end of the 8th week. The attack frequencies of migraines were evaluated at 3 months. RESULTS Among the 48 subjects, five males and forty-three females, the ages ranged from 19 to 53 years old (mean ± SD = 31.3±7.78). MIDAS, SF-36, VAS, BAI, BDI, VEGF, CGRP and cerebrovascular hemodynamic parameters were improved after IHT intervention. There were significant differences between IHT group and the control group in MIDAS, SF-36, VAS, BAI, BDI, VEGF, CGRP and cerebrovascular hemodynamic parameters at the end of the 8th weeks (P<0.05). Attack frequencies were improved within 3 months after IH training intervention (P<0.01), but not in the control group (P>0.05). No adverse events occurred during the study. CONCLUSION IHT could improve migraines after intervention up to three months. IHT could be an effective method for relieving a migraine.
Collapse
Affiliation(s)
- Xiao Bao
- Department of Rehabilitation Medicine, Yue Bei People’s HospitalShaoguan, China
| | - Howe Liu
- Department of Physical Therapy, University of North Texas Health Science CenterFort Worth, USA
| | - Hui-Yu Liu
- Department of Rehabilitation Medicine, Yue Bei People’s HospitalShaoguan, China
| | - Ying Long
- Department of Hyperbaric Oxygen Medicine, Shenzhen People’s HospitalShenzhen, China
| | - Jie-Wen Tan
- Department of Rehabilitation Medicine, Xinhua College of Sun Yat-sen UniversityGuangzhou, China
| | - Zhi-Min Zhu
- Department of Rehabilitation Medicine, Lianjiang People’s HospitalLianjiang, China
| |
Collapse
|
10
|
Bello I, Usman NS, Dewa A, Abubakar K, Aminu N, Asmawi MZ, Mahmud R. Blood pressure lowering effect and vascular activity of Phyllanthus niruri extract: The role of NO/cGMP signaling pathway and β-adrenoceptor mediated relaxation of isolated aortic rings. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112461. [PMID: 31830549 DOI: 10.1016/j.jep.2019.112461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phyllanthus niruri have a long history of use in the traditional treatment of various ailments including hypertension. Literature reports have indicated that it is a potent antihypertensive herbal medication used traditionally. AIM OF THE STUDY This study was carried out to investigate the antihypertensive and vasodilatory activity of four solvents extracts of P. niruri namely; petroleum ether (PEPN), chloroform (CLPN), methanol (MEPN) and water (WEPN), with the aim of elucidating the mechanism of action and identifying the phytochemical constituents. MATERIALS AND METHODS Male Spontaneous Hypertensive Rats (SHRs) were given oral gavage of P. niruri extract daily for two weeks and the blood pressure was recorded in vivo. We also determine the vasodilation effect of the extracts on rings of isolated thoracic aorta pre-contracted with phenylephrine (PE, 1 μM). Endothelium-intact or endothelium-denuded aorta rings were pre-incubated with various antagonists like 1H-[1,2,4] oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ, 10 μM) and Methylene blue (MB 10 μM), sGC inhibitors; Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME, 10 μM) a nitric oxide synthase (NOS) inhibitor; atropine (10 μM), a cholinergic receptor blocker; indomethacin (10 μM), a cyclooxygenase inhibitor and various K+ channel blockers such as glibenclamide (10 μM) and tetraethyl ammonium (TEA 10 μM) for mechanism study. RESULTS SHRs receiving P. niruri extracts showed a significant decrease in their blood pressure (BP) when compared to the baseline value, with PEPN being more potent. The extracts (0.125-4 mg/mL) also induced vasorelaxation on endothelium-intact aorta rings. PEPN elicited the most potent maximum relaxation effect (Rmax). Mechanism assessment of PEPN showed that its relaxation effect is significantly suppressed in endothelium-denuded aorta rings. Pre-incubation of aorta rings with atropine, L-NAME, ODQ, indomethacin, and propranolol also significantly attenuated its relaxation effect. Conversely, incubation with TEA and glibenclamide did not show a significant effect on PEPN-induced relaxation. CONCLUSION This study indicates that the antihypertensive activity of P. niruri extract is mediated by vasoactive phytoconstituents that dilate the arterial wall via endothelium-dependent pathways and β-adrenoceptor activity which, in turn, cause vasorelaxation and reduce blood pressure.
Collapse
Affiliation(s)
- Idris Bello
- Department of Pharmacology, School of Pharmaceutical Sciences, University Sains Malaysia (USM), 11800, Pulau Penang, Malaysia.
| | - Nasiba Salisu Usman
- Department of Pharmacology, School of Pharmaceutical Sciences, University Sains Malaysia (USM), 11800, Pulau Penang, Malaysia
| | - Aidiahmad Dewa
- Department of Physiology, School of Pharmaceutical Sciences, University Sains Malaysia (USM), 11800, Pulau Penang, Malaysia
| | - Kabiru Abubakar
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P.M.B, 2346, Sokoto, Nigeria
| | - Nafiu Aminu
- Department of Pharmaceutics and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P.M.B, 2346, Sokoto, Nigeria
| | - Mohd Zaini Asmawi
- Department of Pharmacology, School of Pharmaceutical Sciences, University Sains Malaysia (USM), 11800, Pulau Penang, Malaysia
| | - Roziahanim Mahmud
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia.
| |
Collapse
|
11
|
Comparison of the Effectiveness of High-Intensity Interval Training in Hypoxia and Normoxia in Healthy Male Volunteers: A Pilot Study. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7315714. [PMID: 31662994 PMCID: PMC6778879 DOI: 10.1155/2019/7315714] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/07/2019] [Accepted: 09/05/2019] [Indexed: 01/05/2023]
Abstract
Aims The study investigated the effect of high-intensity interval training in hypoxia and normoxia on serum concentrations of proangiogenic factors, nitric oxide, and inflammatory responses in healthy male volunteers. Methods Twelve physically active male subjects completed a high-intensity interval training (HIIT) in normoxia (NorTr) and in normobaric hypoxia (HypTr) (FiO2 = 15.2%). The effects of HIIT in hypoxia and normoxia on maximal oxygen uptake, hypoxia-inducible factor-1-alpha, vascular endothelial growth factor, nitric oxide, and cytokines were analyzed. Results HIIT in hypoxia significantly increases maximal oxygen uptake (p=0.01) levels compared to pretraining levels. Serum hypoxia-inducible factor-1 (p=0.01) and nitric oxide levels (p=0.05), vascular endothelial growth factor (p=0.04), and transforming growth factor-β (p=0.01) levels were increased in response to exercise test after hypoxic training. There was no effect of training conditions for serum baseline angiogenic factors and cytokines (p > 0.05) with higher HIF-1α and NO levels after hypoxic training compared to normoxic training (F = 9.1; p < 0.01 and F = 5.7; p < 0.05, respectively). Conclusions High-intensity interval training in hypoxia seems to induce beneficial adaptations to exercise mediated via a significant increase in the serum concentrations of proangiogenic factors and serum nitric oxide levels compared to the same training regimen in normoxia.
Collapse
|
12
|
Effect of Intermittent Hypoxia Training for Dizziness: A Randomized Controlled Trial. J Sport Rehabil 2019; 28:540-543. [PMID: 29584516 DOI: 10.1123/jsr.2017-0341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/25/2018] [Accepted: 03/06/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To study the effect of intermittent hypoxia training (IHT) for dizziness. DESIGN A single-blind, randomized controlled trial. All participants were recruited from a rehabilitation department in an acute university-affiliated hospital. INTERVENTION Participants with dizziness were randomly assigned to 2 groups (IHT group and control group). The Dizziness Handicap Inventory, Activities-specific Balance Confidence Scale, and Vertigo Visual Analog Scale were conducted at baseline, end of the fourth week. RESULTS Among 52 subjects, there were18 males and 34 females, ages 35 to 62 years old (mean [SD] = 46.9 [7.93]). Time length since onset ranged from 12 to 34 months (20.2 [7.15] mo). Dizziness Handicap Inventory, Activities-specific Balance Confidence Scale, Vertigo Visual Analog Scale scores, and attack frequencies of dizziness were improved after IHT intervention in the end of the fourth week. There were significant differences between the IHT group and the control group in the Dizziness Handicap Inventory, Activities-specific Balance Confidence Scale, Vertigo Visual Analog Scale scores, and attack frequencies of dizziness at the end of the fourth week (P < .05). No adverse events occurred during the study. CONCLUSION IHT could improve dizziness after intervention at the end of the fourth week. IHT could be the effective method for treating dizziness.
Collapse
|
13
|
Mallet RT, Manukhina EB, Ruelas SS, Caffrey JL, Downey HF. Cardioprotection by intermittent hypoxia conditioning: evidence, mechanisms, and therapeutic potential. Am J Physiol Heart Circ Physiol 2018; 315:H216-H232. [PMID: 29652543 DOI: 10.1152/ajpheart.00060.2018] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The calibrated application of limited-duration, cyclic, moderately intense hypoxia-reoxygenation increases cardiac resistance to ischemia-reperfusion stress. These intermittent hypoxic conditioning (IHC) programs consistently produce striking reductions in myocardial infarction and ventricular tachyarrhythmias after coronary artery occlusion and reperfusion and, in many cases, improve contractile function and coronary blood flow. These IHC protocols are fundamentally different from those used to simulate sleep apnea, a recognized cardiovascular risk factor. In clinical studies, IHC improved exercise capacity and decreased arrhythmias in patients with coronary artery or pulmonary disease and produced robust, persistent, antihypertensive effects in patients with essential hypertension. The protection afforded by IHC develops gradually and depends on β-adrenergic, δ-opioidergic, and reactive oxygen-nitrogen signaling pathways that use protein kinases and adaptive transcription factors. In summary, adaptation to intermittent hypoxia offers a practical, largely unrecognized means of protecting myocardium from impending ischemia. The myocardial and perhaps broader systemic protection provided by IHC clearly merits further evaluation as a discrete intervention and as a potential complement to conventional pharmaceutical and surgical interventions.
Collapse
Affiliation(s)
- Robert T Mallet
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - Eugenia B Manukhina
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas.,Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences , Moscow , Russian Federation.,School of Medical Biology South Ural State University , Chelyabinsk , Russian Federation
| | - Steven Shea Ruelas
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - James L Caffrey
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas
| | - H Fred Downey
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center , Fort Worth, Texas.,School of Medical Biology South Ural State University , Chelyabinsk , Russian Federation
| |
Collapse
|
14
|
Gomes R, Dabó H, Esquinas AM. Long term effects of nocturnal hypoxia and urinary uric acid excretion: How much linked to COPD and OSAS? REVISTA PORTUGUESA DE PNEUMOLOGIA 2016; 22:302-303. [PMID: 27255784 DOI: 10.1016/j.rppnen.2016.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 04/28/2016] [Indexed: 06/05/2023] Open
Affiliation(s)
- R Gomes
- Pulmonology Department, Hospital Sousa Martins, ULS Guarda, Guarda, Portugal; Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| | - H Dabó
- Pulmonology Department, Centro Hospitalar de São João, Porto, Portugal
| | - A M Esquinas
- Intensive Care and Non Invasive Ventilatory Unit, Hospital Morales Meseguer, Murcia, Spain
| |
Collapse
|
15
|
Manukhina EB, Downey HF, Shi X, Mallet RT. Intermittent hypoxia training protects cerebrovascular function in Alzheimer's disease. Exp Biol Med (Maywood) 2016; 241:1351-63. [PMID: 27190276 DOI: 10.1177/1535370216649060] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a leading cause of death and disability among older adults. Modifiable vascular risk factors for AD (VRF) include obesity, hypertension, type 2 diabetes mellitus, sleep apnea, and metabolic syndrome. Here, interactions between cerebrovascular function and development of AD are reviewed, as are interventions to improve cerebral blood flow and reduce VRF. Atherosclerosis and small vessel cerebral disease impair metabolic regulation of cerebral blood flow and, along with microvascular rarefaction and altered trans-capillary exchange, create conditions favoring AD development. Although currently there are no definitive therapies for treatment or prevention of AD, reduction of VRFs lowers the risk for cognitive decline. There is increasing evidence that brief repeated exposures to moderate hypoxia, i.e. intermittent hypoxic training (IHT), improve cerebral vascular function and reduce VRFs including systemic hypertension, cardiac arrhythmias, and mental stress. In experimental AD, IHT nearly prevented endothelial dysfunction of both cerebral and extra-cerebral blood vessels, rarefaction of the brain vascular network, and the loss of neurons in the brain cortex. Associated with these vasoprotective effects, IHT improved memory and lessened AD pathology. IHT increases endothelial production of nitric oxide (NO), thereby increasing regional cerebral blood flow and augmenting the vaso- and neuroprotective effects of endothelial NO. On the other hand, in AD excessive production of NO in microglia, astrocytes, and cortical neurons generates neurotoxic peroxynitrite. IHT enhances storage of excessive NO in the form of S-nitrosothiols and dinitrosyl iron complexes. Oxidative stress plays a pivotal role in the pathogenesis of AD, and IHT reduces oxidative stress in a number of experimental pathologies. Beneficial effects of IHT in experimental neuropathologies other than AD, including dyscirculatory encephalopathy, ischemic stroke injury, audiogenic epilepsy, spinal cord injury, and alcohol withdrawal stress have also been reported. Further research on the potential benefits of IHT in AD and other brain pathologies is warranted.
Collapse
Affiliation(s)
- Eugenia B Manukhina
- University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA Institute of General Pathology and Pathophysiology, Moscow 125315, Russian Federation
| | - H Fred Downey
- University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | - Xiangrong Shi
- University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | - Robert T Mallet
- University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| |
Collapse
|