1
|
Cafaro A, Barco S, Pigliasco F, Russo C, Mariani M, Mesini A, Saffioti C, Castagnola E, Cangemi G. Therapeutic drug monitoring of glycopeptide antimicrobials: An overview of liquid chromatography-tandem mass spectrometry methods. J Mass Spectrom Adv Clin Lab 2024; 31:33-39. [PMID: 38304144 PMCID: PMC10831154 DOI: 10.1016/j.jmsacl.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024] Open
Abstract
Therapeutic drug monitoring (TDM) is a critical clinical tool used to optimize the safety and effectiveness of drugs by measuring their concentration in biological fluids. These fluids are primarily plasma or blood. TDM, together with real-time dosage adjustment, contributes highly to the successful management of glycopeptide antimicrobial therapies. Understanding pharmacokinetic/pharmacodynamic (PK/PD) properties is vital for optimizing antimicrobial therapies, as the efficacy of these therapies depends on both the exposure of the patient to the drug (PK) and pharmacodynamic (PD) parameters such as the in vitro estimated minimum drug concentration that inhibits bacterial growth (MIC). Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is widely recognized as the gold standard for measuring small molecules, such as antibiotics. This review provides a comprehensive overview of LC-MS/MS methods available for TDM of glycopeptide antibiotics, including vancomycin, teicoplanin, dalbavancin, oritavancin, and telavancin.
Collapse
Affiliation(s)
- Alessia Cafaro
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Sebastiano Barco
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Federica Pigliasco
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Chiara Russo
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Marcello Mariani
- Pediatric Infectious Diseases Unit IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Alessio Mesini
- Pediatric Infectious Diseases Unit IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Carolina Saffioti
- Pediatric Infectious Diseases Unit IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Elio Castagnola
- Pediatric Infectious Diseases Unit IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Giuliana Cangemi
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| |
Collapse
|
2
|
Chen C, Xie M, Gong J, Yu N, Wei R, Lei L, Zhao S, Li R, Dong X, Zhang X, Zhou Y, Li S, Cui Y. Population pharmacokinetic analysis and dosing regimen optimization of teicoplanin in critically ill patients with sepsis. Front Pharmacol 2023; 14:1132367. [PMID: 37188268 PMCID: PMC10175687 DOI: 10.3389/fphar.2023.1132367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Objectives: Teicoplanin has been extensively used in the treatment for infections caused by gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA). However, current teicoplanin treatment is challenging due to relatively low and variable concentrations under standard dosage regimens. This study aimed to investigate the population pharmacokinetics (PPK) characteristics of teicoplanin in adult sepsis patients and provide recommendations for optimal teicoplanin dosing regimens. Methods: A total of 249 serum concentration samples from 59 septic patients were prospectively collected in the intensive care unit (ICU). Teicoplanin concentrations were detected, and patients' clinical data were recorded. PPK analysis was performed using a non-linear, mixed-effect modeling approach. Monte Carlo simulations were performed to evaluate currently recommended dosing and other dosage regimens. The optimal dosing regimens were defined and compared by different pharmacokinetic/pharmacodynamic parameters, including trough concentration (Cmin), the ratio of 24-h area under the concentration-time curve to the minimum inhibitory concentration (AUC0-24/MIC), as well as the probability of target attainment (PTA) and the cumulative fraction of response (CFR) against MRSA. Results: A two-compartment model adequately described the data. The final model parameter estimates for clearance, central compartment volume of distribution, intercompartmental clearance and peripheral compartment volume were 1.03 L/h, 20.1 L, 3.12 L/h and 101 L, respectively. Glomerular filtration rate (GFR) was the only covariate that significantly affected teicoplanin clearance. Model-based simulations revealed that 3 or 5 loading doses of 12/15 mg/kg every 12 h followed by a maintenance dose of 12/15 mg/kg every 24 h-72 h for patients with different renal functions were required to achieve a target Cmin of 15 mg/L and a target AUC0-24/MIC of 610. For MRSA infections, PTAs and CFRs were not satisfactory for simulated regimens. Prolonging the dosing interval may be easier to achieve the target AUC0-24/MIC than reducing the unit dose for renal insufficient patients. Conclusion: A PPK model for teicoplanin in adult septic patients was successfully developed. Model-based simulations revealed that current standard doses may result in undertherapeutic Cmin and AUC, and a single dose of at least 12 mg/kg may be needed. AUC0-24/MIC should be preferred as the PK/PD indicator of teicoplanin, if AUC estimation is unavailable, in addition to routine detection of teicoplanin Cmin on Day 4, follow-up therapeutic drug monitoring at steady-state is recommended.
Collapse
Affiliation(s)
- Chao‐Yang Chen
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Min Xie
- Department of Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Jun Gong
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Ning Yu
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Ran Wei
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Li‐Li Lei
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Si‐Miao Zhao
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Ruo‐Ming Li
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiu Dong
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiang‐Lin Zhang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Ying Zhou
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Shuang‐Ling Li
- Department of Critical Care Medicine, Peking University First Hospital, Beijing, China
- *Correspondence: Shuang‐Ling Li, ; Yi‐Min Cui,
| | - Yi‐Min Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
- *Correspondence: Shuang‐Ling Li, ; Yi‐Min Cui,
| |
Collapse
|
3
|
Fu WQ, Tian TT, Zhang MX, Song HT, Zhang LL. Population pharmacokinetics and dosing optimization of unbound teicoplanin in Chinese adult patients. Front Pharmacol 2022; 13:1045895. [PMID: 36506535 PMCID: PMC9728581 DOI: 10.3389/fphar.2022.1045895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Objectives: To develop a population pharmacokinetic (PopPK) model describing unbound teicoplanin concentrations in Chinese adult patients and perform Monte Carlo simulations to optimize the dosing regimens. Methods: The raw data for PopPK analysis in this study were collected from Chinese adult patients. A PopPK model of unbound teicoplanin was developed and Monte Carlo simulations were used to optimize the dosing regimens. The trough concentrations of unbound teicoplanin were targeted at 0.75 mg/L and 1.13 mg/L for most infection induced by Gram-positive bacteria and endocarditis or severe infections, respectively. Results: A total of 103 teicoplanin unbound concentrations were collected from 72 Chinese adult patients. A one-compartment pharmacokinetic model with first-order elimination was established. The typical values of clearance and the volume of distribution were 11.7 L/h and 811 L, respectively. The clearance and volume of distribution of unbound teicoplanin were positively correlated with estimated glomerular filtration rate (eGFR) and serum albumin concentrations, respectively. Dosing simulation results showed that standard dosing regimens were unable to meet the treatment needs of all patients, and the dosing regimen need optimize based on eGFR and serum albumin concentrations. The high eGFR and serum albumin concentration were associated with reduced probability of achieving target unbound trough concentrations. Conclusion: We successfully characterized the pharmacokinetics of unbound teicoplanin in Chinese adult patients. Importantly, we further highlight the importance of guiding dosing through unbound drugs. To achieve safe and effective treatment, the dosing regimens need to be adjusted according to eGFR and serum albumin concentrations.
Collapse
Affiliation(s)
- Wen-Qian Fu
- Department of Pharmacy, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Ting-Ting Tian
- Department of Pharmacy, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Min-Xin Zhang
- Department of Pharmacy, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Hong-Tao Song
- Department of Pharmacy, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Li-Li Zhang
- Department of Pharmacy, 900th Hospital of Joint Logistics Support Force, Fuzhou, China,Department of Purchasing Management, 900th Hospital of Joint Logistics Support Force, Fuzhou, China,*Correspondence: Li-Li Zhang,
| |
Collapse
|
4
|
Luxton TN, King N, Wälti C, Jeuken LJC, Sandoe JAT. A Systematic Review of the Effect of Therapeutic Drug Monitoring on Patient Health Outcomes during Treatment with Carbapenems. Antibiotics (Basel) 2022; 11:antibiotics11101311. [PMID: 36289971 PMCID: PMC9598625 DOI: 10.3390/antibiotics11101311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Adjusting dosing regimens based on measurements of carbapenem levels may improve carbapenem exposure in patients. This systematic review aims to describe the effect carbapenem therapeutic drug monitoring (TDM) has on health outcomes, including the emergence of antimicrobial resistance (AMR). Four databases were searched for studies that reported health outcomes following adjustment to dosing regimens, according to measurements of carbapenem concentration. Bias in the studies was assessed with risk of bias analysis tools. Study characteristics and outcomes were tabulated and a narrative synthesis was performed. In total, 2 randomised controlled trials (RCTs), 17 non-randomised studies, and 19 clinical case studies were included. Significant variation in TDM practice was seen; consequently, a meta-analysis was unsuitable. Few studies assessed impacts on AMR. No significant improvement on health outcomes and no detrimental effects of carbapenem TDM were observed. Five cohort studies showed significant associations between achieving target concentrations and clinical success, including suppression of resistance. Studies in this review showed no obvious improvement in clinical outcomes when TDM is implemented. Optimisation and standardisation of carbapenem TDM practice are needed to improve intervention success and enable study synthesis. Further suitably powered studies of standardised TDM are required to assess the impact of TMD on clinical outcomes and AMR.
Collapse
Affiliation(s)
- Timothy N. Luxton
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
- Correspondence:
| | - Natalie King
- Leeds Institute of Health Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Christoph Wälti
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Lars J. C. Jeuken
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
5
|
Matsumoto K, Samura M, Tashiro S, Shishido S, Saiki R, Takemura W, Misawa K, Liu X, Enoki Y, Taguchi K. Target Therapeutic Ranges of Anti-MRSA Drugs, Linezolid, Tedizolid and Daptomycin, and the Necessity of TDM. Biol Pharm Bull 2022; 45:824-833. [PMID: 35786589 DOI: 10.1248/bpb.b22-00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The target therapeutic ranges of vancomycin, teicoplanin, and arbekacin have been determined, and therapeutic drug monitoring (TDM) is performed in clinical practice. However, TDM is not obligatory for daptomycin, linezolid, or tedizolid. In this study, we examined whether TDM will be necessary for these 3 drugs in the future. There was no significant difference in therapeutic effects on acute bacterial skin and skin structure infection between linezolid and tedizolid by meta-analysis. Concerning the therapeutic effects on pneumonia, the rate of effectiveness after treatment with tedizolid was significantly lower than with linezolid. With respect to safety, the incidences of gastrointestinal adverse events and blood/lymphatic system disorders related to tedizolid were significantly lower than those related to linezolid. Linezolid exhibits potent therapeutic effects on pneumonia, but the appearance of adverse reactions is indicated as a problem. There was a dose-dependent decrease in the platelet count, and the target trough concentration (Ctrough) was estimated to be 4-6 or 2-7 µg/mL in accordance with the patient's condition. The efficacy of linezolid may be obtained while minimizing the appearance of adverse reactions by performing TDM. The target therapeutic range of tedizolid cannot be achieved in immunocompromised or severe patients. Therefore, we concluded that TDM was unnecessary, considering step-down therapy with oral drugs, use in non-severe patients, and high-level safety. Concerning daptomycin, high-dose administration is necessary to achieve an area under the curve (AUC) of ≥666 as an index of efficacy. To secure its safety, Ctrough (<20 µg/mL) monitoring is important. Therefore, TDM is necessary.
Collapse
Affiliation(s)
| | - Masaru Samura
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| | - Sho Tashiro
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| | - Shino Shishido
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| | - Reika Saiki
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| | - Wataru Takemura
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| | - Kana Misawa
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| | - Xiaoxi Liu
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| | - Yuki Enoki
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| |
Collapse
|
6
|
Clinical Practice Guidelines for Therapeutic Drug Monitoring of Vancomycin in the Framework of Model-Informed Precision Dosing: A Consensus Review by the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring. Pharmaceutics 2022; 14:pharmaceutics14030489. [PMID: 35335866 PMCID: PMC8955715 DOI: 10.3390/pharmaceutics14030489] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/08/2023] Open
Abstract
Background: To promote model-informed precision dosing (MIPD) for vancomycin (VCM), we developed statements for therapeutic drug monitoring (TDM). Methods: Ten clinical questions were selected. The committee conducted a systematic review and meta-analysis as well as clinical studies to establish recommendations for area under the concentration-time curve (AUC)-guided dosing. Results: AUC-guided dosing tended to more strongly decrease the risk of acute kidney injury (AKI) than trough-guided dosing, and a lower risk of treatment failure was demonstrated for higher AUC/minimum inhibitory concentration (MIC) ratios (cut-off of 400). Higher AUCs (cut-off of 600 μg·h/mL) significantly increased the risk of AKI. Although Bayesian estimation with two-point measurement was recommended, the trough concentration alone may be used in patients with mild infections in whom VCM was administered with q12h. To increase the concentration on days 1–2, the routine use of a loading dose is required. TDM on day 2 before steady state is reached should be considered to optimize the dose in patients with serious infections and a high risk of AKI. Conclusions: These VCM TDM guidelines provide recommendations based on MIPD to increase treatment response while preventing adverse effects.
Collapse
|
7
|
Tsuji Y. Hospital Pharmacometrics for Optimal Individual Administration of Antimicrobial Agents for Anti-methicillin-resistant Staphylococcus aureus Infected Patients. Biol Pharm Bull 2021; 44:1174-1183. [PMID: 34471044 DOI: 10.1248/bpb.b21-00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Therapeutic drug monitoring and target concentration intervention based on population pharmacokinetic and pharmacodynamic models has been strongly recommended for anti-methicillin-resistant Staphylococcus aureus (MRSA) agents in order to provide appropriate antimicrobial chemotherapy to each individual patient, and pharmacokinetic and pharmacodynamic analyses in hospitalized patients have been actively conducted, as evidenced with vancomycin. Teicoplanin, daptomycin, and linezolid have been the most studied antibiotics, using population pharmacokinetics of patients with MRSA. Infections caused by MRSA have higher severity and fatality rates than other antimicrobial-susceptible infections. Therefore, many medical facilities have been implementing infection control programs based on antimicrobial stewardship to prevent nosocomial infections and drug-resistant strains. Studies detailing pharmacometrics for these antibiotics have been reported to elucidate the pharmacokinetic and pharmacodynamic properties, to determine significant factors influencing variabilities between individuals, and to develop target concentration interventions and dosing regimens for adults, the elderly, patients with renal insufficiency including those on continuous renal replacement therapies, patients with low body weight, obese patients, and pediatric patients. This review presents the details of our recent research on the optimal dosing design of antimicrobial agents for the treatment of MRSA infection based on hospital pharmacometrics. In addition, the prospect of using modeling and simulation has shown major advantages in supporting dosing regimen selection.
Collapse
Affiliation(s)
- Yasuhiro Tsuji
- Center for Pharmacist Education, School of Pharmacy, Nihon University
| |
Collapse
|
8
|
Asumang J, Heard KL, Troise O, Fahmy S, Mughal N, Moore LSP, Hughes S. Evaluation of a thrice weekly administration of teicoplanin in the outpatient setting: a retrospective observational multicentre study. JAC Antimicrob Resist 2021; 3:dlab012. [PMID: 34223089 PMCID: PMC8210249 DOI: 10.1093/jacamr/dlab012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/19/2021] [Indexed: 12/04/2022] Open
Abstract
Introduction The glycopeptide teicoplanin is commonly utilized to facilitate outpatient parenteral antimicrobial therapy (OPAT). Licensed for once daily maintenance dosing, teicoplanin’s long half-life allows for less frequent dosing (e.g. thrice weekly) following successful loading. This service evaluation reviews the safety and effectiveness of a novel thrice weekly teicoplanin dosing regimen. Methods A retrospective, observational study was conducted at Chelsea and Westminster Hospital (March 2018 to July 2020), evaluating trough serum teicoplanin concentrations for patients receiving >5 days of teicoplanin in the OPAT setting. Teicoplanin dosing and administration (once daily versus thrice weekly), clinical outcomes and therapeutic levels were analysed for all patients. The project was registered with clinical governance locally. Results A total of 82 patients treated with teicoplanin in the OPAT service were included; 53/82 receiving thrice weekly and 29/82 receiving once daily dosing. Mean teicoplanin trough levels were similar in both groups (26.2 mg/L and 25.8 mg/L in once daily and thrice weekly groups, P = 0.8895). High clinical success rates were recorded in both groups (25/29 [86.2%] versus 50/53 [94.3%]). No correlation with clinical outcomes and initial teicoplanin serum levels was identified. Normal renal function (>90 mL/min) was associated with lower teicoplanin serum concentrations (mean [±SD] 21.4 mg/L [±10.1] versus 29.7 mg/L [±14], P = 0.0178) in the thrice weekly dosed group but not with the once daily dosed group (mean [±SD] 28.2 mg/L [±9.4] versus 23.7 mg/L [±9.9], P = 0.2201). Conclusions This study supports thrice weekly teicoplanin as a convenient and effective OPAT for administration in the OPAT setting. Therapeutic drug monitoring is advised to adjust for intra-patient variability.
Collapse
Affiliation(s)
- John Asumang
- School of Medicine, Imperial College, London, SW7 2DD, UK
| | - Katie L Heard
- Chelsea and Westminster NHS Foundation Trust, 369 Fulham Road, London SW10 9NH, UK
| | - Oliver Troise
- Chelsea and Westminster NHS Foundation Trust, 369 Fulham Road, London SW10 9NH, UK
| | - Sandra Fahmy
- Chelsea and Westminster NHS Foundation Trust, 369 Fulham Road, London SW10 9NH, UK
| | - Nabeela Mughal
- Chelsea and Westminster NHS Foundation Trust, 369 Fulham Road, London SW10 9NH, UK
| | - Luke S P Moore
- Chelsea and Westminster NHS Foundation Trust, 369 Fulham Road, London SW10 9NH, UK
| | - Stephen Hughes
- Chelsea and Westminster NHS Foundation Trust, 369 Fulham Road, London SW10 9NH, UK
| |
Collapse
|
9
|
Zhang T, Sun D, Shu Z, Duan Z, Liu Y, Du Q, Zhang Y, Dong Y, Wang T, Hu S, Cheng H, Dong Y. Population Pharmacokinetics and Model-Based Dosing Optimization of Teicoplanin in Pediatric Patients. Front Pharmacol 2020; 11:594562. [PMID: 33363469 PMCID: PMC7753357 DOI: 10.3389/fphar.2020.594562] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/16/2020] [Indexed: 01/16/2023] Open
Abstract
Objectives: The pharmacokinetics (PK) of teicoplanin differs in children compared with adults. Our aim was to determine the PK of teicoplanin in an Asian pediatric population and to optimize dosage regimens. Methods: This was a retrospective PK study and all the data were collected from hospitalized children. We developed a population PK model using sparse data, and Monte Carlo simulation was used to assess the ability of standard teicoplanin regimen and other different dosage regimens. The optimal dosing regimens were defined as achieving the target trough concentration (C min) of 10 mg/L and pharmacokinetic/pharmacodynamic (PK/PD, [AUC24/MIC]) of 125 for moderate infection. For severe infection, the optimal dosing regimens were defined as achieving the target 15 mg/L and AUC24/MIC of 345. Results: 159 children were included and 1.5 samples/children on average were provided. Estimated clearance of teicoplanin was 0.694 L/h (0.784/L/h/70 kg) and volume of distribution was 1.39 L. Teicoplanin standard loading dose was adequate for moderate infection, while 13 mg/kg was needed for severer infection. With standard maintenance doses, both patients with moderate and severe infection failed to achieve the target C min. 12 and 16 mg/kg/day were required to achieve a C min ≥ 10 and 15 mg/L, respectively. However, standard maintenance dose was adequate to achieve AUC24/MIC ≥ 125 for moderate infection, and 12 mg/kg/day was needed to achieve AUC24/MIC ≥ 345 for severe infection. Lower weight and serum creatinine were associated with higher dose. Conclusion: Optimal doses based on the target C min were higher than that based on the PK/PD target. To achieve the C min and PK/PD targets simultaneously, a standard loading dose was adequate for moderate infection based on simulation, while dosing higher than standard doses were required in other situation. Further clinical studies with rich sampling from children is required to confirm our findings.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dan Sun
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zuocheng Shu
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ziyun Duan
- Department of Pharmacy, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Liu
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qian Du
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuzhu Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Taotao Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Sasa Hu
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hua Cheng
- Department of Pharmacy, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Abdul-Aziz MH, Alffenaar JWC, Bassetti M, Bracht H, Dimopoulos G, Marriott D, Neely MN, Paiva JA, Pea F, Sjovall F, Timsit JF, Udy AA, Wicha SG, Zeitlinger M, De Waele JJ, Roberts JA. Antimicrobial therapeutic drug monitoring in critically ill adult patients: a Position Paper .. Intensive Care Med 2020; 46:1127-1153. [PMID: 32383061 PMCID: PMC7223855 DOI: 10.1007/s00134-020-06050-1] [Citation(s) in RCA: 526] [Impact Index Per Article: 131.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022]
Abstract
Purpose This Position Paper aims to review and discuss the available data on therapeutic drug monitoring (TDM) of antibacterials, antifungals and antivirals in critically ill adult patients in the intensive care unit (ICU). This Position Paper also provides a practical guide on how TDM can be applied in routine clinical practice to improve therapeutic outcomes in critically ill adult patients.
Methods Literature review and analysis were performed by Panel Members nominated by the endorsing organisations, European Society of Intensive Care Medicine (ESICM), Pharmacokinetic/Pharmacodynamic and Critically Ill Patient Study Groups of European Society of Clinical Microbiology and Infectious Diseases (ESCMID), International Association for Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT) and International Society of Antimicrobial Chemotherapy (ISAC). Panel members made recommendations for whether TDM should be applied clinically for different antimicrobials/classes. Results TDM-guided dosing has been shown to be clinically beneficial for aminoglycosides, voriconazole and ribavirin. For most common antibiotics and antifungals in the ICU, a clear therapeutic range has been established, and for these agents, routine TDM in critically ill patients appears meritorious. For the antivirals, research is needed to identify therapeutic targets and determine whether antiviral TDM is indeed meritorious in this patient population. The Panel Members recommend routine TDM to be performed for aminoglycosides, beta-lactam antibiotics, linezolid, teicoplanin, vancomycin and voriconazole in critically ill patients. Conclusion Although TDM should be the standard of care for most antimicrobials in every ICU, important barriers need to be addressed before routine TDM can be widely employed worldwide. Electronic supplementary material The online version of this article (10.1007/s00134-020-06050-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohd H Abdul-Aziz
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Jan-Willem C Alffenaar
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Westmead Hospital, Westmead, NSW, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Matteo Bassetti
- Infectious Diseases Clinic, Department of Health Sciences, University of Genoa, Genoa and Hospital Policlinico San Martino - IRCCS, Genoa, Italy
| | - Hendrik Bracht
- Department of Anaesthesiology, University Ulm, Ulm, Germany
| | - George Dimopoulos
- Department of Critical Care, University Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Deborah Marriott
- Department of Microbiology and Infectious Diseases, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Michael N Neely
- Department of Paediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Jose-Artur Paiva
- Department of Medicine, Faculty of Medicine of Porto, Porto, Portugal.,Department of Emergency and Intensive Care Medicine, Centro Hospitalar Universitario de São João, Porto, Portugal
| | - Federico Pea
- Institute of Clinical Pharmacology, SM Misericordia University Hospital, ASUFC, Udine, Italy
| | - Fredrik Sjovall
- Department of Perioperative Medicine, Skåne University Hospital, Malmö, Sweden
| | - Jean F Timsit
- Department of Intensive Care Medicine and Infectious Diseases, Bichat-Claude Bernard University Hospital, AP-HP, Paris, France.,Infection, Antimicrobials, Modelling, Evolution (IAME), Paris Diderot University, Paris, France
| | - Andrew A Udy
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.,Department of Intensive Care and Hyperbaric Medicine, The Alfred, Melbourne, VIC, Australia
| | - Sebastian G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jan J De Waele
- Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jason A Roberts
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia. .,Department of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia. .,Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia. .,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France.
| | | | | | | | | |
Collapse
|
11
|
Population Pharmacokinetics of Teicoplanin in Preterm and Term Neonates: Is It Time for a New Dosing Regimen? Antimicrob Agents Chemother 2020; 64:AAC.01971-19. [PMID: 31932366 DOI: 10.1128/aac.01971-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023] Open
Abstract
Our objective was to develop a population pharmacokinetic (PK) model in order to evaluate the currently recommended dosing regimen in term and preterm neonates. By using an optimal design approach, a prospective PK study was designed and implemented in 60 neonates with postmenstrual ages (PMA) of 26 to 43 weeks. A loading dose of 16 mg/kg was administered at day 1, followed by a maintenance dose of 8 mg/kg daily. Plasma concentrations were quantified by high-pressure liquid chromatography-mass spectrometry. Population PK (popPK) analysis was performed using NONMEM software. Monte-Carlo (MC) simulations were performed to evaluate currently recommended dosing based on a pharmacodynamic index of area under the concentration-time curve (AUC)/MIC ratio of ≥400. A two-compartment model with linear elimination best described the data by the following equations: clearance (CL) = 0.0227 × (weight [wt]/1,765)0.75 × (estimated creatinine clearance [eCRCL]/22)0.672, central compartment volume of distribution (V1) = 0.283 (wt/1,765), intercompartmental clearance (Q) = 0.151 (wt/1,765)0.75, and peripheral compartment volume (V2) = 0.541 (wt/1,765). The interindividual variability estimates for CL, V1, and V2 were 36.5%, 45.7%, and 51.4%, respectively. Current weight (wt) and estimated creatinine clearance (eCRCL) significantly explained the observed variability. MC simulation demonstrated that, with the current dosing regimen, an AUC/MIC ratio of ≥400 was reached by only 68.5% of neonates with wt of <1 kg when the MIC was equal to 1 mg/kg, versus 82.2%, 89.7%, and 92.7% of neonates with wt of 1 to <2, 2 to <3, or ≥3 kg, respectively. Augmentation of a maintenance dose up to 10 or 11 mg/kg for preterm neonates with wt of 1 to <2 or <1 kg, respectively, increases the probability of reaching the therapeutic target; the recommended doses seem to be adequate for neonates with wt of ≥2 kg. Teicoplanin PK are variable in neonates, with wt and eCRCL having the most significant impact. Neonates with wt of <2 kg need higher doses, especially for Staphylococcus spp. with an MIC value of ≥1 mg/liter.
Collapse
|
12
|
da Costa TM, Cuba GT, Morgado PGM, Nicolau DP, Nouér SA, dos Santos KRN, Kiffer CRV. Pharmacodynamic comparison of different antimicrobial regimens against Staphylococcus aureus bloodstream infections with elevated vancomycin minimum inhibitory concentration. BMC Infect Dis 2020; 20:74. [PMID: 31973753 PMCID: PMC6979379 DOI: 10.1186/s12879-020-4782-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 01/09/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is one of the major causes of bloodstream infections (BSI) worldwide, representing a major challenge for public health due to its resistance profile. Higher vancomycin minimum inhibitory concentrations (MIC) in S. aureus are associated with treatment failure and defining optimal empiric options for BSIs in settings where these isolates are prevalent is rather challenging. In silico pharmacodynamic models based on stochastic simulations (Monte Carlo) are important tools to estimate best antimicrobial regimens in different scenarios. We aimed to compare the pharmacodynamic profiles of different antimicrobials regimens for the treatment of S. aureus BSI in an environment with high vancomycin MIC. METHODS Steady-state drug area under the curve ratio to MIC (AUC/MIC) or the percent time above MIC (fT > MIC) were modeled using a 5000-patient Monte Carlo simulation to achieve pharmacodynamic exposures against 110 consecutive S. aureus isolates associated with BSI. RESULTS Cumulative fractions of response (CFRs) against all S. aureus isolates were 98% for ceftaroline; 79% and 92% for daptomycin 6 mg/kg q24h and for the high dose of 10 mg/kg q24h, respectively; 77% for linezolid 600 mg q12h when MIC was read according to CLSI M100-S26 instructions, and 64% when MIC was considered at the total growth inhibition; 65% and 86% for teicoplanin, three loading doses of 400 mg q12 h followed by 400 mg q24 h and for teicoplanin 400 mg q12 h, respectively; 61% and 76% for vancomycin 1000 mg q12 h and q8 h, respectively. CONCLUSIONS Based on this model, ceftaroline and high-dose daptomycin regimens delivered best pharmacodynamic exposures against S. aureus BSIs. Teicoplanin higher dose regimen achieved the best CFR (86%) among glycopeptides, although optimal threshold was not achieved, and vancomycin performance was critically affected by the S. aureus vancomycin MIC ≥2 mg/L. Linezolid effectiveness (CFR of 73%) is also affected by high prevalence of isolates with linezolid MIC ≥2 mg/L. These data show the need to continually evaluate the pharmacodynamic profiles of antimicrobials for empiric treatment of these infections.
Collapse
Affiliation(s)
- Thaina Miranda da Costa
- Laboratório de Infecção Hospitalar, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373 - bloco I, Sala I2-010, Cidade Universitária Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel Trova Cuba
- Laboratório Especial de Microbiologia Clínica, Disciplina de Infectologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Leandro Dupret, São Paulo, SP 188 Brazil
| | - Priscylla Guimarães Migueres Morgado
- Laboratório de Infecção Hospitalar, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373 - bloco I, Sala I2-010, Cidade Universitária Rio de Janeiro, Rio de Janeiro, Brazil
| | - David P. Nicolau
- Center for Anti-infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT USA
| | - Simone Aranha Nouér
- Hospital Universitário Clementino Fraga FilhoFaculdade de Medicina, Universidade Federal do Rio de Janeiro, Rua Rodolpho Paulo Rocco, 255, Rio de Janeiro, RJ Brazil
| | - Kátia Regina Netto dos Santos
- Laboratório de Infecção Hospitalar, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373 - bloco I, Sala I2-010, Cidade Universitária Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Roberto Veiga Kiffer
- Laboratório Especial de Microbiologia Clínica, Disciplina de Infectologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Leandro Dupret, São Paulo, SP 188 Brazil
| |
Collapse
|
13
|
Rampogu S, Baek A, Gajula RG, Zeb A, Bavi RS, Kumar R, Kim Y, Kwon YJ, Lee KW. Ginger (Zingiber officinale) phytochemicals-gingerenone-A and shogaol inhibit SaHPPK: molecular docking, molecular dynamics simulations and in vitro approaches. Ann Clin Microbiol Antimicrob 2018; 17:16. [PMID: 29609660 PMCID: PMC5879566 DOI: 10.1186/s12941-018-0266-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/09/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Antibiotic resistance is a defense mechanism, harbored by pathogens to survive under unfavorable conditions. Among several antibiotic resistant microbial consortium, Staphylococcus aureus is one of the most havoc microorganisms. Staphylococcus aureus encodes a unique enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (SaHPPK), against which, none of existing antibiotics have been reported. METHODS Computational approaches have been instrumental in designing and discovering new drugs for several diseases. The present study highlights the impact of ginger phytochemicals on Staphylococcus aureus SaHPPK. Herein, we have retrieved eight ginger phytochemicals from published literature and investigated their inhibitory interactions with SaHPPK. To authenticate our work, the investigation proceeds considering the known antibiotics alongside the phytochemicals. Molecular docking was performed employing GOLD and CDOCKER. The compounds with the highest dock score from both the docking programmes were tested for their inhibitory capability in vitro. The binding conformations that were seated within the binding pocket showing strong interactions with the active sites residues rendered by highest dock score were forwarded towards the molecular dynamic (MD) simulation analysis. RESULTS Based on molecular dock scores, molecular interaction with catalytic active residues and MD simulations studies, two ginger phytochemicals, gingerenone-A and shogaol have been proposed as candidate inhibitors against Staphylococcus aureus. They have demonstrated higher dock scores than the known antibiotics and have represented interactions with the key residues within the active site. Furthermore, these compounds have rendered considerable inhibitory activity when tested in vitro. Additionally, their superiority was corroborated by stable MD results conducted for 100 ns employing GROMACS package. CONCLUSIONS Finally, we suggest that gingerenone-A and shogaol may either be potential SaHPPK inhibitors or can be used as fundamental platforms for novel SaHPPK inhibitor development.
Collapse
Affiliation(s)
- Shailima Rampogu
- Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ayoung Baek
- Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Rajesh Goud Gajula
- Primer Biotech Research Center, Jaipuri Colony, Nagole, Hyderabad, Telangana, 500068, India
| | - Amir Zeb
- Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Rohit S Bavi
- Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Raj Kumar
- Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Yongseong Kim
- Department of Science Education, Kyungnam University, Changwon, 51767, Republic of Korea
| | - Yong Jung Kwon
- Department of Chemical Engineering, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Keun Woo Lee
- Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
14
|
Tang H, Long N, Lin L, Liu Y, Li J, Sun F, Guo L, Zhang F, Dai M. Effect of MRSA on CYP450: dynamic changes of cytokines, oxidative stress, and drug-metabolizing enzymes in mice infected with MRSA. Infect Drug Resist 2018; 11:229-238. [PMID: 29491713 PMCID: PMC5815478 DOI: 10.2147/idr.s153871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) is a very damaging and widespread pathogen, which is associated with many diseases and causes serious infections. MRSA infection can modulate the effects of drugs, which may occur through an influence on cytochrome P450 (CYP450), the drug-metabolizing enzyme in the liver. In this study, we evaluated the underlying mechanism of drug failure or poisoning in MRSA infection. Materials and methods Mice were infected with three different doses of MRSA and the changes in CYP450 expression, cytokines, and oxidative stress markers were evaluated. Results The administration of an attack dose of MRSA caused serious symptoms of infection and resulted in a 40% mortality rate in the mice. MRSA induced strong inflammation and oxidative stress in the mice, predominantly caused by significant increases in interleukin (IL)-1β, IL-4, IL-6, macrophage inflammatory protein, glutathione S-transferase (GST), and malondialdehyde, and decreases in oxygen radical absorbance capacity and glutathione levels in the liver. The expression of IL-2, tumor necrosis factor-α, and GST was briefly suppressed, but increased on days 3 and 7. The increased inflammation and oxidative stress further induced a significant decrease in the mRNA levels and activities of CYP450 1A2, 2D22, 2E1, and 3A1 in MRSA-infected mice within the first day of infection. Conclusion These results show that MRSA infection leads to inflammation and oxidative stress, and reduces the expression levels and activities of drug metabolism enzymes, which decreased drug metabolism in patients infected with MRSA. Therefore, to avoid a drug overdose, the plasma concentration of patients with MRSA infection should be continuously monitored.
Collapse
Affiliation(s)
- Huaqiao Tang
- School of Laboratory Medicine.,Laboratory of Veterinary Drug Residue Prevention and Control Technology of Animal-derived Food
| | - Nana Long
- School of Laboratory Medicine.,Laboratory of Veterinary Drug Residue Prevention and Control Technology of Animal-derived Food
| | - Lin Lin
- School of Laboratory Medicine.,Laboratory of Veterinary Drug Residue Prevention and Control Technology of Animal-derived Food
| | - Yao Liu
- School of Laboratory Medicine
| | - Jianlong Li
- School of Laboratory Medicine.,Laboratory of Veterinary Drug Residue Prevention and Control Technology of Animal-derived Food
| | - Fenghui Sun
- School of Laboratory Medicine.,Laboratory of Veterinary Drug Residue Prevention and Control Technology of Animal-derived Food
| | - Lijuan Guo
- School of Laboratory Medicine.,Laboratory of Veterinary Drug Residue Prevention and Control Technology of Animal-derived Food
| | - Fen Zhang
- School of Humanities and Information Management, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
| | - Min Dai
- School of Laboratory Medicine.,Laboratory of Veterinary Drug Residue Prevention and Control Technology of Animal-derived Food
| |
Collapse
|
15
|
Wijesekara PNK, Kumbukgolla WW, Jayaweera JAAS, Rawat D. Review on Usage of Vancomycin in Livestock and Humans: Maintaining Its Efficacy, Prevention of Resistance and Alternative Therapy. Vet Sci 2017; 4:vetsci4010006. [PMID: 29056665 PMCID: PMC5606620 DOI: 10.3390/vetsci4010006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/05/2017] [Accepted: 01/22/2017] [Indexed: 12/27/2022] Open
Abstract
Vancomycin is one of the “last-line” classes of antibiotics used in the treatment of life-threatening infections caused by Gram-positive bacteria. Even though vancomycin was discovered in the 1950s, it was widely used after the 1980s for the treatment of infections caused by methicillin-resistant Staphylococci, as the prevalence of these strains were increased. However, it is currently evident that vancomycin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci have developed for various reasons, including the use of avaparcin—an analog of vancomycin—as a feed additive in livestock. Therefore, prophylactic and empiric use of antibiotics and their analogues need to be minimized. Herein we discuss the rational use of vancomycin in treating humans, horses, farm animals, and pet animals such as dogs, cats, and rabbits. In present day context, more attention should be paid to the prevention of the emergence of resistance to antibiotics in order to maintain their efficacy. In order to prevent emergence of resistance, proper guidance for the responsible use of antimicrobials is indispensable. Therefore, almost all stakeholders who use antibiotics should have an in-depth understanding of the antibiotic that they use. As such, it is imperative to be aware of the important aspects of vancomycin. In the present review, efforts have been made to discuss the pharmacokinetics and pharmacodynamics, indications, emergence of resistance, control of resistance, adverse effects, and alternative therapy for vancomycin.
Collapse
Affiliation(s)
| | - Wikum Widuranga Kumbukgolla
- Department of Biochemistry, Faculty of Medicine and Allied Sciences, Rajarata University Mihintale, Mihintale 50008, Sri Lanka.
| | | | - Diwan Rawat
- Department of Chemistry, University of Delhi, Delhi 110007, India.
| |
Collapse
|