1
|
Kumar R, Goel H, Solanki R, Rawat L, Tabasum S, Tanwar P, Pal S, Sabarwal A. Recent developments in receptor tyrosine kinase inhibitors: A promising mainstay in targeted cancer therapy. MEDICINE IN DRUG DISCOVERY 2024; 23:100195. [PMID: 39281823 PMCID: PMC11393807 DOI: 10.1016/j.medidd.2024.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
During the past two decades, significant advances have been made in the discovery and development of targeted inhibitors aimed at improving the survival rates of cancer patients. Among the multitude of potential therapeutic targets identified thus far, Receptor Tyrosine Kinases (RTKs) are of particular importance. Dysregulation of RTKs has been implicated in numerous human diseases, particularly cancer, where aberrant signaling pathways contribute to disease progression. RTKs have a profound impact on intra and intercellular communication, and they also facilitate post-translational modifications, notably phosphorylation, which intricately regulates a multitude of cellular processes. Prolonged phosphorylation or the disruption of kinase regulation may lead to significant alterations in cell signaling. The emergence of small molecule kinase inhibitors has revolutionized cancer therapy by offering a targeted and strategic approach that surpasses the efficacy of traditional chemotherapeutic drugs. Over the last two decades, a plethora of targeted inhibitors have been identified or engineered and have undergone clinical evaluation to enhance the survival rates of cancer patients. In this review, we have compared the expression of different RTKs, including Met, KDR/VEGFR2, EGFR, BRAF, BCR, and ALK across different cancer types in TCGA samples. Additionally, we have summarized the recent development of small molecule inhibitors and their potential in treating various malignancies. Lastly, we have discussed the mechanisms of acquired therapeutic resistance with a focus on kinase inhibitors in EGFR mutant and ALK-rearranged non-small cell lung cancer and BCR-ABL positive chronic myeloid leukemia.
Collapse
Affiliation(s)
- Rahul Kumar
- Dr B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Harsh Goel
- Dr B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Laxminarayan Rawat
- Division of Nephrology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Saba Tabasum
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Pranay Tanwar
- Dr B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Soumitro Pal
- Division of Nephrology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Akash Sabarwal
- Division of Nephrology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Ou X, Gao G, Habaz IA, Wang Y. Mechanisms of resistance to tyrosine kinase inhibitor-targeted therapy and overcoming strategies. MedComm (Beijing) 2024; 5:e694. [PMID: 39184861 PMCID: PMC11344283 DOI: 10.1002/mco2.694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/27/2024] Open
Abstract
Tyrosine kinase inhibitor (TKI)-targeted therapy has revolutionized cancer treatment by selectively blocking specific signaling pathways crucial for tumor growth, offering improved outcomes with fewer side effects compared with conventional chemotherapy. However, despite their initial effectiveness, resistance to TKIs remains a significant challenge in clinical practice. Understanding the mechanisms underlying TKI resistance is paramount for improving patient outcomes and developing more effective treatment strategies. In this review, we explored various mechanisms contributing to TKI resistance, including on-target mechanisms and off-target mechanisms, as well as changes in the tumor histology and tumor microenvironment (intrinsic mechanisms). Additionally, we summarized current therapeutic approaches aiming at circumventing TKI resistance, including the development of next-generation TKIs and combination therapies. We also discussed emerging strategies such as the use of dual-targeted antibodies and PROteolysis Targeting Chimeras. Furthermore, we explored future directions in TKI-targeted therapy, including the methods for detecting and monitoring drug resistance during treatment, identification of novel targets, exploration of dual-acting kinase inhibitors, application of nanotechnologies in targeted therapy, and so on. Overall, this review provides a comprehensive overview of the challenges and opportunities in TKI-targeted therapy, aiming to advance our understanding of resistance mechanisms and guide the development of more effective therapeutic approaches in cancer treatment.
Collapse
Affiliation(s)
- Xuejin Ou
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Ge Gao
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China HospitalSichuan UniversityChengduChina
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China HospitalSichuan UniversityChengduChina
| | - Inbar A. Habaz
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonOntarioCanada
| | - Yongsheng Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
3
|
Hussain S, Mursal M, Verma G, Hasan SM, Khan MF. Targeting oncogenic kinases: Insights on FDA approved tyrosine kinase inhibitors. Eur J Pharmacol 2024; 970:176484. [PMID: 38467235 DOI: 10.1016/j.ejphar.2024.176484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Protein kinases play pivotal roles in various biological functions, influencing cell differentiation, promoting survival, and regulating the cell cycle. The disruption of protein kinase activity is intricately linked to pathways in tumor development. This manuscript explores the transformative impact of protein kinase inhibitors on cancer therapy, particularly their efficacy in cases driven by targeted mutations. Focusing on key tyrosine kinase inhibitors (TKIs) like Bcr-Abl, Epidermal Growth Factor Receptor (EGFR), and Vascular Endothelial Growth Factor Receptor (VEGFR), it targets critical kinase families in cancer progression. Clinical trial details of these TKIs offer insights into their therapeutic potentials. Learning from FDA-approved kinase inhibitors, the review dissects trends in kinase drug development since imatinib's paradigm-shifting approval in 2001. TKIs have evolved into pivotal drugs, extending beyond oncology. Ongoing clinical trials explore novel kinase targets, revealing the vast potential within the human kinome. The manuscript provides a detailed analysis of advancements until 2022, discussing the roles of specific oncogenic protein kinases in cancer development and carcinogenesis. Our exploration on PubMed for relevant and significant TKIs undergoing pre-FDA approval phase III clinical trials enriches the discussion with valuable findings. While kinase inhibitors exhibit lower toxicity than traditional chemotherapy in cancer treatment, challenges like resistance and side effects emphasize the necessity of understanding resistance mechanisms, prompting the development of novel inhibitors like osimertinib targeting specific mutant proteins. The review advocates thorough research on effective combination therapies, highlighting the future development of more selective RTKIs to optimize patient-specific cancer treatment and reduce adverse events.
Collapse
Affiliation(s)
- Sahil Hussain
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, 226026, India
| | - Mohd Mursal
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, 226026, India
| | - Garima Verma
- RWE Specialist, HealthPlix Technologies, Bengaluru, Karnataka 560103, India
| | - Syed Misbahul Hasan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, 226026, India
| | - Mohemmed Faraz Khan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, 226026, India.
| |
Collapse
|
4
|
Ara N, Hafeez A. Nanocarrier-Mediated Drug Delivery via Inhalational Route for Lung Cancer Therapy: A Systematic and Updated Review. AAPS PharmSciTech 2024; 25:47. [PMID: 38424367 DOI: 10.1208/s12249-024-02758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Lung cancer is one of the most severe lethal malignancies, with approximately 1.6 million deaths every year. Lung cancer can be broadly categorised into small and non-small-cell lung cancer. The traditional chemotherapy is nonspecific, destroys healthy cells and produces systemic toxicity; targeted inhalation drug delivery in conjunction with nanoformulations has piqued interest as an approach for improving chemotherapeutic drug activity in the treatment of lung cancer. Our aim is to discuss the impact of polymer and lipid-based nanocarriers (polymeric nanoparticles, liposomes, niosomes, nanostructured lipid carriers, etc.) to treat lung cancer via the inhalational route of drug administration. This review also highlights the clinical studies, patent reports and latest investigations related to lung cancer treatment through the pulmonary route. In accordance with the PRISMA guideline, a systematic literature search was carried out for published works between 2005 and 2023. The keywords used were lung cancer, pulmonary delivery, inhalational drug delivery, liposomes in lung cancer, nanotechnology in lung cancer, etc. Several articles were searched, screened, reviewed and included. The analysis demonstrated the potential of polymer and lipid-based nanocarriers to improve the entrapment of drugs, sustained release, enhanced permeability, targeted drug delivery and retention impact in lung tissues. Patents and clinical observations further strengthen the translational potential of these carrier systems for human use in lung cancer. This systematic review demonstrated the potential of pulmonary (inhalational) drug delivery approaches based on nanocarriers for lung cancer therapy.
Collapse
Affiliation(s)
- Nargis Ara
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Abdul Hafeez
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
| |
Collapse
|
5
|
Dailah HG, Hommdi AA, Koriri MD, Algathlan EM, Mohan S. Potential role of immunotherapy and targeted therapy in the treatment of cancer: A contemporary nursing practice. Heliyon 2024; 10:e24559. [PMID: 38298714 PMCID: PMC10828696 DOI: 10.1016/j.heliyon.2024.e24559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
Immunotherapy and targeted therapy have emerged as promising therapeutic options for cancer patients. Immunotherapies induce a host immune response that mediates long-lived tumor destruction, while targeted therapies suppress molecular mechanisms that are important for tumor maintenance and growth. In addition, cytotoxic agents and targeted therapies regulate immune responses, which increases the chances that these therapeutic approaches may be efficiently combined with immunotherapy to ameliorate clinical outcomes. Various studies have suggested that combinations of therapies that target different stages of anti-tumor immunity may be synergistic, which can lead to potent and more prolonged responses that can achieve long-lasting tumor destruction. Nurses associated with cancer patients should have a better understanding of the immunotherapies and targeted therapies, such as their efficacy profiles, mechanisms of action, as well as management and prophylaxis of adverse events. Indeed, this knowledge will be important in establishing care for cancer patients receiving immunotherapies and targeted therapies for cancer treatment. Moreover, nurses need a better understanding regarding targeted therapies and immunotherapies to ameliorate outcomes in patients receiving these therapies, as well as management and early detection of possible adverse effects, especially adverse events associated with checkpoint inhibitors and various other therapies that control T-cell activation causing autoimmune toxicity. Nurses practice in numerous settings, such as hospitals, home healthcare agencies, radiation therapy facilities, ambulatory care clinics, and community agencies. Therefore, as compared to other members of the healthcare team, nurses often have better opportunities to develop the essential rapport in providing effective nurse-led patient education, which is important for effective therapeutic outcomes and continuance of therapy. In this article, we have particularly focused on providing a detailed overview on targeted therapies and immunotherapies used in cancer treatment, management of their associated adverse events, and the impact as well as strategies of nurse-led patient education.
Collapse
Affiliation(s)
- Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, 45142, Saudi Arabia
| | - Abdullah Abdu Hommdi
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mahdi Dafer Koriri
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, 45142, Saudi Arabia
| | - Essa Mohammed Algathlan
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, 45142, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| |
Collapse
|
6
|
de Jong D, Das JP, Ma H, Pailey Valiplackal J, Prendergast C, Roa T, Braumuller B, Deng A, Dercle L, Yeh R, Salvatore MM, Capaccione KM. Novel Targets, Novel Treatments: The Changing Landscape of Non-Small Cell Lung Cancer. Cancers (Basel) 2023; 15:2855. [PMID: 37345192 PMCID: PMC10216085 DOI: 10.3390/cancers15102855] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023] Open
Abstract
Treatment of non-small cell lung cancer (NSCLC) has undergone a paradigm shift. Once a disease with limited potential therapies, treatment options for patients have exploded with the availability of molecular testing to direct management and targeted therapies to treat tumors with specific driver mutations. New in vitro diagnostics allow for the early and non-invasive detection of disease, and emerging in vivo imaging techniques allow for better detection and monitoring. The development of checkpoint inhibitor immunotherapy has arguably been the biggest advance in lung cancer treatment, given that the vast majority of NSCLC tumors can be treated with these therapies. Specific targeted therapies, including those against KRAS, EGFR, RTK, and others have also improved the outcomes for those individuals bearing an actionable mutation. New and emerging therapies, such as bispecific antibodies, CAR T cell therapy, and molecular targeted radiotherapy, offer promise to patients for whom none of the existing therapies have proved effective. In this review, we provide the most up-to-date survey to our knowledge regarding emerging diagnostic and therapeutic strategies for lung cancer to provide clinicians with a comprehensive reference of the options for treatment available now and those which are soon to come.
Collapse
Affiliation(s)
- Dorine de Jong
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA;
| | - Jeeban P. Das
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (J.P.D.); (R.Y.)
| | - Hong Ma
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA; (H.M.); (J.P.V.); (C.P.); (T.R.); (B.B.); (L.D.); (M.M.S.)
| | - Jacienta Pailey Valiplackal
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA; (H.M.); (J.P.V.); (C.P.); (T.R.); (B.B.); (L.D.); (M.M.S.)
| | - Conor Prendergast
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA; (H.M.); (J.P.V.); (C.P.); (T.R.); (B.B.); (L.D.); (M.M.S.)
| | - Tina Roa
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA; (H.M.); (J.P.V.); (C.P.); (T.R.); (B.B.); (L.D.); (M.M.S.)
| | - Brian Braumuller
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA; (H.M.); (J.P.V.); (C.P.); (T.R.); (B.B.); (L.D.); (M.M.S.)
| | - Aileen Deng
- Department of Hematology and Oncology, Novant Health, 170 Medical Park Road, Mooresville, NC 28117, USA;
| | - Laurent Dercle
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA; (H.M.); (J.P.V.); (C.P.); (T.R.); (B.B.); (L.D.); (M.M.S.)
| | - Randy Yeh
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (J.P.D.); (R.Y.)
| | - Mary M. Salvatore
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA; (H.M.); (J.P.V.); (C.P.); (T.R.); (B.B.); (L.D.); (M.M.S.)
| | - Kathleen M. Capaccione
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA; (H.M.); (J.P.V.); (C.P.); (T.R.); (B.B.); (L.D.); (M.M.S.)
| |
Collapse
|
7
|
Chang WI, Lin C, Liguori N, Honeyman JN, DeNardo B, El-Deiry W. Molecular Targets for Novel Therapeutics in Pediatric Fusion-Positive Non-CNS Solid Tumors. Front Pharmacol 2022; 12:747895. [PMID: 35126101 PMCID: PMC8811504 DOI: 10.3389/fphar.2021.747895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/03/2021] [Indexed: 12/31/2022] Open
Abstract
Chromosomal fusions encoding novel molecular drivers have been identified in several solid tumors, and in recent years the identification of such pathogenetic events in tumor specimens has become clinically actionable. Pediatric sarcomas and other rare tumors that occur in children as well as adults are a group of heterogeneous tumors often with driver gene fusions for which some therapeutics have already been developed and approved, and others where there is opportunity for progress and innovation to impact on patient outcomes. We review the chromosomal rearrangements that represent oncogenic events in pediatric solid tumors outside of the central nervous system (CNS), such as Ewing Sarcoma, Rhabdomyosarcoma, Fibrolamellar Hepatocellular Carcinoma, and Renal Cell Carcinoma, among others. Various therapeutics such as CDK4/6, FGFR, ALK, VEGF, EGFR, PDGFR, NTRK, PARP, mTOR, BRAF, IGF1R, HDAC inhibitors are being explored among other novel therapeutic strategies such as ONC201/TIC10.
Collapse
Affiliation(s)
- Wen-I Chang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Pediatric Hematology/Oncology, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, United States
- *Correspondence: Wen-I Chang, ; Wafik El-Deiry,
| | - Claire Lin
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Nicholas Liguori
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Joshua N. Honeyman
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, United States
- Pediatric Surgery, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Bradley DeNardo
- Pediatric Hematology/Oncology, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, United States
| | - Wafik El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI, United States
- *Correspondence: Wen-I Chang, ; Wafik El-Deiry,
| |
Collapse
|
8
|
Precision therapy with anaplastic lymphoma kinase inhibitor ceritinib in ALK-rearranged anaplastic large cell lymphoma. ESMO Open 2021; 6:100172. [PMID: 34242968 PMCID: PMC8271116 DOI: 10.1016/j.esmoop.2021.100172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND More than 80% of anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma (ALCL) patients harbor the (nucleophosmin) NPM1-ALK fusion gene t(2;5) chromosomal translocation. We evaluated the preclinical and clinical efficacy of ceritinib treatment of this aggressive lymphoma. MATERIALS AND METHODS We studied the effects of ceritinib treatment in NPM1-ALK+ T-cell lymphoma cell lines in vitro and on tumor size and survival advantage in vivo utilizing tumor xenografts. We treated an NPM1-ALK+ ALCL patient with ceritinib. We reviewed all hematologic malignancies profiled by a large hybrid-capture next-generation sequencing (NGS)-based comprehensive genomic profiling assay for ALK alterations. RESULTS In our in vitro experiments, ceritinib inhibited constitutive activation of the fusion kinase NPM1-ALK and downstream effector molecules STAT3, AKT, and ERK1/2, and induced apoptosis of these lymphoma cell lines. Cell cycle analysis following ceritinib treatment showed G0/G1 arrest with a concomitant decrease in the percentage of cells in S and G2/M phases. Further, treatment with ceritinib in the NPM1-ALK+ ALCL xenograft model resulted in tumor regression and improved survival. Of 19 272 patients with hematopoietic diseases sequenced, 58 patients (0.30%) harbored ALK fusions that include histiocytic disorders, multiple myeloma, B-cell neoplasms, Castleman's disease, and juvenile xanthogranuloma. A multiple relapsed NPM1-ALK+ ALCL patient treated with ceritinib achieved complete remission with ongoing clinical benefit to date, 5 years after initiation of therapy. CONCLUSIONS This ceritinib translational study in NPM1-ALK+ ALCL provides a strong rationale for a prospective study of ceritinib in ALK+ T-cell lymphomas and other ALK+ hematologic malignancies.
Collapse
|
9
|
Nguyen THP, Kumar VB, Ponnusamy VK, Mai TTT, Nhat PT, Brindhadevi K, Pugazhendhi A. Phytochemicals intended for anticancer effects at preclinical levels to clinical practice: Assessment of formulations at nanoscale for non-small cell lung cancer (NSCLC) therapy. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Zhou X, Zhang X, Wu Z, Xu X, Guo M, Zhai X, Zuo D, Wu Y. The novel ALK inhibitor ZX-29 induces apoptosis through inhibiting ALK and inducing ROS-mediated endoplasmic reticulum stress in Karpas299 cells. J Biochem Mol Toxicol 2020; 35:e22666. [PMID: 33140567 DOI: 10.1002/jbt.22666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 11/08/2022]
Abstract
It is a well-known fact that 60%-85% of anaplastic large cell lymphoma (ALCL) is mainly driven by the anaplastic lymphoma kinase (ALK) fusion protein. Although ALK-positive ALCL patients respond significantly to ALK inhibitors, the development of resistance is inevitable, which requires the development of new therapeutic strategies for ALK-positive ALCL. Here, we investigated the anticancer activities of N-(2((5-chloro-2-((2-methoxy-6-(4-methylpiperazin-1-yl)pyridin-3yl)amino)pyrimidin-4-yl)amino)phenyl)methanesulfonamide (ZX-29), a newly synthesized ALK inhibitor, against nucleophosmin-ALK-positive cell line Karpas299. We demonstrated that ZX-29 decreased Karpas299 cells growth and had better cytotoxicity than ceritinib, which was mediated through downregulating the expression of ALK and related proteins, inducing cell cycle arrest, and promoting cell apoptosis. Moreover, ZX-29-induced cell apoptosis by inducing endoplasmic reticulum stress (ERS). In addition, ZX-29 increased the generation of reactive oxygen species (ROS), and cells pretreatment with N-acetyl- l-cysteine could attenuate ZX-29-induced cell apoptosis and ERS. Taken together, ZX-29 inhibited Karpas299 cell proliferation and induced apoptosis through inhibiting ALK and its downstream protein expression and inducing ROS-mediated ERS. Therefore, our results provide evidence for a novel antitumor candidate for the further investigation.
Collapse
Affiliation(s)
- Xuejiao Zhou
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoning Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhuzhu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaobo Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Ming Guo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
11
|
Singh A, Chen H. Optimal Care for Patients with Anaplastic Lymphoma Kinase (ALK)-Positive Non-Small Cell Lung Cancer: A Review on the Role and Utility of ALK Inhibitors. Cancer Manag Res 2020; 12:6615-6628. [PMID: 32821158 PMCID: PMC7425086 DOI: 10.2147/cmar.s260274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
The treatment of advanced non–small-cell lung cancer (NSCLC) has undergone a paradigm shift in the last decade. Molecular characterization of the disease has led to the rapid development of personalized medicine and swift delivery of targeted therapies to patients. The discovery of the anaplastic lymphoma kinase (ALK) gene in patients with NSCLC has resulted in rapid bench–bedside transition of several active drugs, with several others currently in clinical trials. After the first-generation ALK inhibitor crizotinib, next-generation ALK inhibitors have entered clinical applications for ALK-rearranged NSCLC. Ceritinib, alectinib, and brigatinib have all received approval for ALK-positive patients who have failed prior crizotinib, as well as first-line therapy in treatment-naïve patients based on favorable efficacy. Most recently, lorlatinib, a potent, newer-generation ALK inhibitor, has been approved as second- or third-line treatment. These advances have led to better patient outcomes, but concurrently have led to several crucial unanswered questions about optimal care for ALK-positive NSCLC patients. The ultimate acquisition of resistance to ALK-inhibitor therapy poses a challenge to ongoing research efforts, in addition to the routine management of these patients in the clinic. This review provides a summary of the clinical development of crizotinib, ceritinib, alectinib, brigatinib, and lorlatinib and highlights current management paradigms, current and evolving clinical information, emerging clinical decision-making and sequencing of therapy in advanced, metastatic, or recurrent ALK-positive NSCLC.
Collapse
Affiliation(s)
- Abhay Singh
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Hongbin Chen
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
12
|
Li Y, Chen X, Qu Y, Fan JM, Li Y, Peng H, Zheng Y, Zhang Y, Zhang HB. Partial Response to Ceritinib in a Patient With Abdominal Inflammatory Myofibroblastic Tumor Carrying a TFG-ROS1 Fusion. J Natl Compr Canc Netw 2020; 17:1459-1462. [PMID: 31805529 DOI: 10.6004/jnccn.2019.7360] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022]
Abstract
Inflammatory myofibroblastic tumor (IMT), a rare sarcoma, is primarily treated via resection of the mass. However, there is no standard treatment for recurrence or unresectable tumors. Almost 50% of IMTs carry ALK gene rearrangement that can be treated using ALK inhibitors, but therapeutic options for ALK-negative tumors are limited. This report describes a woman aged 22 years with unresectable ALK-negative IMT. Next-generation sequencing revealed a TFG-ROS1 fusion, and she had a partial response to the ROS1 inhibitor ceritinib. This report provides the first published demonstration of a patient with IMT with ROS1 fusion successfully treated using ceritinib. Our study suggests that targeting ROS1 fusions using the small molecule inhibitor shows promise as an effective therapy in patients with IMT carrying this genetic alteration, but this requires further investigation in large clinical trials.
Collapse
Affiliation(s)
- Yong Li
- aDepartment of Oncology, and
| | | | | | | | - Yan Li
- aDepartment of Oncology, and
| | - Hui Peng
- bDepartment of Pathology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou; and
| | | | | | | |
Collapse
|
13
|
Ward RA, Fawell S, Floc'h N, Flemington V, McKerrecher D, Smith PD. Challenges and Opportunities in Cancer Drug Resistance. Chem Rev 2020; 121:3297-3351. [PMID: 32692162 DOI: 10.1021/acs.chemrev.0c00383] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There has been huge progress in the discovery of targeted cancer therapies in recent years. However, even for the most successful and impactful cancer drugs which have been approved, both innate and acquired mechanisms of resistance are commonplace. These emerging mechanisms of resistance have been studied intensively, which has enabled drug discovery scientists to learn how it may be possible to overcome such resistance in subsequent generations of treatments. In some cases, novel drug candidates have been able to supersede previously approved agents; in other cases they have been used sequentially or in combinations with existing treatments. This review summarizes the current field in terms of the challenges and opportunities that cancer resistance presents to drug discovery scientists, with a focus on small molecule therapeutics. As part of this review, common themes and approaches have been identified which have been utilized to successfully target emerging mechanisms of resistance. This includes the increase in target potency and selectivity, alternative chemical scaffolds, change of mechanism of action (covalents, PROTACs), increases in blood-brain barrier permeability (BBBP), and the targeting of allosteric pockets. Finally, wider approaches are covered such as monoclonal antibodies (mAbs), bispecific antibodies, antibody drug conjugates (ADCs), and combination therapies.
Collapse
Affiliation(s)
- Richard A Ward
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Stephen Fawell
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Nicolas Floc'h
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | | | - Paul D Smith
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| |
Collapse
|
14
|
Atal S, Asokan P, Jhaj R. Recent advances in targeted small-molecule inhibitor therapy for non-small-cell lung cancer-An update. J Clin Pharm Ther 2020; 45:580-584. [PMID: 32069373 DOI: 10.1111/jcpt.13121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/05/2020] [Indexed: 12/11/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Targeted small molecule EGFR Tyrosine Kinase Inhibitors (TKI's) and the Anaplastic Lymphoma Kinase (ALK) inhibitors have been promising tools for advanced non-small-cell lung cancers (NSCLCs). However, tumours tend to develop subsequent mutations, rendering them drug-resistant. Hence, alternative pathways of therapy need to be explored. COMMENT Gefitinib, erlotinib and afatinib, once considered as alternatives to platinum-based cytotoxic chemotherapy, have been rendered ineffective in patients with NSCLCs harbouring T790M mutation. Osimertinib is effective in T790M-mutant cancers, but not against those exhibiting the subsequent C797S mutation. ALK gene alterations have rendered tumours insensitive to crizotinib. However, lorlatinib and brigatinib are effective in tumours showing ALK+ mutations. Drugs acting through alternative pathways like the PD-1 pathway, BRAF, VEGFR, EGFR antibodies and NTRK inhibition have been showing promising results. WHAT IS NEW AND CONCLUSIONS Osimertinib, brigatinib and allosteric C797S EGFR inhibitors like AI1045, BRAF inhibitors like LXH254 under trials and entrictinib, a recently approved NTRK inhibitor, have all shown improved progression-free survival compared with earlier generations of small molecule inhibitors for NSCLCs.
Collapse
Affiliation(s)
- Shubham Atal
- Department of Pharmacology, All India Institute of Medical Sciences Bhopal, Bhopal, India
| | - Pravin Asokan
- Department of Pharmacology, All India Institute of Medical Sciences Bhopal, Bhopal, India
| | - Ratinder Jhaj
- Department of Pharmacology, All India Institute of Medical Sciences Bhopal, Bhopal, India
| |
Collapse
|
15
|
Blakely CM, Riess JW. Interpretation of ceritinib clinical trial results and future combination therapy strategies for ALK-rearranged NSCLC. Expert Rev Anticancer Ther 2019; 19:1061-1075. [PMID: 31809604 DOI: 10.1080/14737140.2019.1699792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Lung cancer is the leading cause of cancer-related deaths, with non-small cell lung cancer (NSCLC) accounting for approximately 85% of all lung cancer cases. The continued advancement of DNA sequencing technology and the discovery of multiple specific driver mutations underlying many cases of NSCLC are moving clinical intervention toward a more targeted approach. Here we focus on anaplastic lymphoma kinase (ALK), a member of the receptor tyrosine kinase family, as an oncogenic driver in NSCLC. The ALK gene is rearranged in 3-7% of NSCLCs, and targeted inhibition of ALK is a viable therapy option.Areas covered: We discuss the available treatment options for ALK-positive NSCLC with an emphasis on the second-generation ALK inhibitor ceritinib. We also discuss practical treatment strategies and possible strategies to overcome or delay resistance to ALK inhibitors.Expert opinion: With a robust treatment armamentarium for patients with ALK-positive NSCLC, emphasis has shifted to optimizing individualized treatment strategies to further enhance outcomes for these patients.
Collapse
Affiliation(s)
- Collin M Blakely
- Department of Medicine, UCSF Helen Diller Comprehensive Cancer Center, San Francisco, CA, USA
| | - Jonathan W Riess
- Department of Medicine, UC Davis Comprehensive Cancer Center, Sacramento, CA, USA
| |
Collapse
|
16
|
Deng H, Li B, Li L, Peng J, Lv T, Liu Y, Ding C. Clinical observation of crizotinib in the treatment of ALK-positive advanced non-small cell lung cancer. Pathol Res Pract 2019; 215:152695. [PMID: 31699471 DOI: 10.1016/j.prp.2019.152695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND ALK is a prognostic and predictive tumor marker in non-small cell lung carcinoma (NSCLC), and is more often found in lung adenocarcinomas. METHODS The clinical and pathological data of 87 patients confirmed to have NSCLC by pathology or cytology were selected from April 2014 to January 2017 at the Tumor Hospital of Hebei Province. RESULTS Of the 87 ALK-positive-patients, 47 patients were treated with oral administration of crizotinib. The objective response rate (ORR) was 61.7%, the disease control rate (DCR) was 93.6%, and the mPFS was 19 months. In an analysis of the number of metastatic sites, the patients who had more than three metastatic sites, the ORR, DCR, and mPFS were 63.9%, 94.5%, and 19 months, compared with the 45.5%, 91%, and 11 months in the patients with less sites (P = 0.040). For patients of 60 years or older, ORR and DCR were 40% and 100%, the other group was 71.9% and 90.6%, respectively(P = 0.036). The timing of treatment was analyzed. At the first application of crizotinib, ORR and DCR were 78.2% and 100% corresponding 45.8% and 87.5% at the second and final application of crizotinib group (P = 0.022). Baseline brain metastases were present in 25.5% (12/47) of patients in this study. 9 of the patients who developed disease progression during crizotinib treatment had new brain metastases or increased preexisting cranial foci. Most of them took the treatment strategy of continuing crizotinib or replacing the second/third generation ALK-TKI treatment combined with local radiotherapy for brain metastases. CONCLUSIONS The efficacy of crizotinib in patients with advanced NSCLC is related to the number of metastatic organs, age and timing of treatment. The use of crizotinib is prone to intracranial progression, and progression of simple brain metastases is not an indication that crizotinib is discontinued. Patients will continue to benefit from combination of local radiotherapy.
Collapse
Affiliation(s)
- Huiyan Deng
- Subject Hebei Provincial Department of Health, 20190683, PR China
| | - Bin Li
- Subject Hebei Provincial Department of Health, 20190683, PR China
| | - Lina Li
- Subject Hebei Provincial Department of Health, 20190683, PR China
| | - Jingcui Peng
- Subject Hebei Provincial Department of Health, 20190683, PR China
| | - Tongshuai Lv
- Subject Hebei Provincial Department of Health, 20190683, PR China
| | - Yueping Liu
- Subject Hebei Provincial Department of Health, 20190683, PR China.
| | - Cuimin Ding
- Subject Hebei Provincial Department of Health, 20190683, PR China.
| |
Collapse
|
17
|
Quantitative detection of ALK fusion breakpoints in plasma cell-free DNA from patients with non-small cell lung cancer using PCR-based target sequencing with a tiling primer set and two-step mapping/alignment. PLoS One 2019; 14:e0222233. [PMID: 31513617 PMCID: PMC6742348 DOI: 10.1371/journal.pone.0222233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/23/2019] [Indexed: 12/18/2022] Open
Abstract
Background Tyrosine kinase inhibitors targeted to anaplastic lymphoma kinase (ALK) have been demonstrated to be effective for lung cancer patients with an ALK fusion gene. Application of liquid biopsy, i.e., detection and quantitation of the fusion product in plasma cell-free DNA (cfDNA), could improve clinical practice. To detect ALK fusions, because fusion breakpoints occur somewhere in intron 19 of the ALK gene, sequencing of the entire intron is required to locate breakpoints. Results We constructed a target sequencing system using an adapter and a set of primers that cover the entire ALK intron 19. This system can amplify fragments, including breakpoints, regardless of fusion partners. The data analysis pipeline firstly detected fusions by alignment to selected target sequences, and then quantitated the fusion alleles aligning to the identified breakpoint sequences. Performance was validated using 20 cfDNA samples from ALK-positive non-small cell lung cancer patients and samples from 10 healthy volunteers. Sensitivity and specificity were 50 and 100%, respectively. Conclusions We demonstrated that PCR-based target sequencing using a tiling primer set and two-step mapping/alignment quantitatively detected ALK fusions in cfDNA from lung cancer patients. The system offers an alternative to existing approaches based on hybridization capture.
Collapse
|
18
|
Ceritinib-Induced Regression of an Insulin-Like Growth Factor-Driven Neuroepithelial Brain Tumor. Int J Mol Sci 2019; 20:ijms20174267. [PMID: 31480400 PMCID: PMC6747232 DOI: 10.3390/ijms20174267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/15/2019] [Accepted: 08/28/2019] [Indexed: 12/25/2022] Open
Abstract
The insulin-like growth factor (IGF) pathway plays an important role in several brain tumor entities. However, the lack of inhibitors crossing the blood–brain barrier remains a significant obstacle for clinical translation. Here, we targeted the IGF pathway using ceritinib, an off-target inhibitor of the IGF1 receptor (IGF1R) and insulin receptor (INSR), in a pediatric patient with an unclassified brain tumor and a notch receptor 1 (NOTCH1) germline mutation. Pathway analysis of the tumor revealed activation of the sonic hedgehog (SHH), the wingless and integrated-1 (WNT), the IGF, and the Notch pathway. The proliferation of the patient tumor cells (225ZL) was inhibited by arsenic trioxide (ATO), which is an inhibitor of the SHH pathway, by linsitinib, which is an inhibitor of IGF1R and INSR, and by ceritinib. 225ZL expressed INSR but not IGF1R at the protein level, and ceritinib blocked the phosphorylation of INSR. Our first personalized treatment included ATO, but because of side effects, we switched to ceritinib. After 46 days, we achieved a concentration of 1.70 µM of ceritinib in the plasma, and after 58 days, MRI confirmed that there was a response to the treatment. Ceritinib accumulated in the tumor at a concentration of 2.72 µM. Our data suggest ceritinib as a promising drug for the treatment of IGF-driven brain tumors.
Collapse
|
19
|
Evolution strategy of ROS1 kinase inhibitors for use in cancer therapy. Future Med Chem 2018; 10:1705-1720. [DOI: 10.4155/fmc-2018-0033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The abnormal expression of c-ros oncogene1 receptor tyrosine kinase (ROS1) has been identified as clinically actionable oncogenic driver in non-small-cell lung cancer. Since crizotinib was approved by the US FDA for the treatment of advanced ROS1-positive non-small-cell lung cancer, ROS1 kinase has become a promising therapeutic target. Under the guidance of some advanced computer-assisted technologies, such as structure-based drug design, homology modeling and lipophilic efficiency parameters, several potent and selective inhibitors against wild-type and mutant ROS1 were designed and synthesized. In this article, we will review a series of scaffolds targeting ROS1 kinase from the hit-to-drug evolution strategies of their representative compounds and it is hoped that these design strategies would facilitate medicinal chemists to optimize the process of drug design.
Collapse
|
20
|
Tong Y, Zhao Z, Liu B, Bao A, Zheng H, Gu J, McGrath M, Xia Y, Tan B, Song C, Li Y. 5'/ 3' imbalance strategy to detect ALK fusion genes in circulating tumor RNA from patients with non-small cell lung cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:68. [PMID: 29587818 PMCID: PMC5870746 DOI: 10.1186/s13046-018-0735-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/15/2018] [Indexed: 02/07/2023]
Abstract
Background Detecting an ALK fusion gene in patients with non-small cell lung cancer (NSCLC) could provide evidence to guide individualized therapy. Methods The 5′/3′ imbalance strategy for quantitative reverse transcription-PCR (RT-qPCR) was developed to detect ALK fusion genes in circulating tumor RNA (ctRNA) of NSCLC patients. Results This method was validated in patients with the ALK fusion gene confirmed by next generation sequencing (NGS). The amount of the ALK fusion gene detected by the new method ranged from 33.2 to 987.4, (mean 315.2), in the patients confirmed to have the ALK fusion gene (+). This is much higher than the amount of fusion gene detected in the patients who are negative for the ALK fusion gene (−). The amount detected in the ALK fusion gene (−) samples ranged from 0.36 to 13.04, (mean 4.58). In 188 NSCLC patients, the specificity and sensitivity of the method was compared to that of the FISH method. About 10.64% of the patients showed higher ALK fusion gene expression, and were classified as ALK fusion gene (+). This is identical to the percentage of patients detected by the FISH method to be ALK fusion gene (+). The cutoff value for diagnosis of ALK fusion (+) is 32.9 as determined by this method. Conclusions A new RT-PCR method using a 5′/3′ imbalance strategy was developed, with high specificity and sensitivity, for detection of the ALK fusion gene in ctRNA of NSCLC patients. This method can rapidly detect ALK fusion genes in patients, which will be helpful for guiding targeted therapy, particularly the individualized usage of TKIs in these patients.
Collapse
Affiliation(s)
- Yongqing Tong
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, 99 Ziyang Road of Wuchang District, Wuhan, 430060, People's Republic of China
| | - Zhijun Zhao
- Laboratory Medicine Center of General Hospital of Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Bei Liu
- Department of Pathology Affiliated Tianyou Hospital of Wuhan University of Science and Technology, Wuhan, 430064, People's Republic of China
| | - Anyu Bao
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, 99 Ziyang Road of Wuchang District, Wuhan, 430060, People's Republic of China
| | - Hongyun Zheng
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, 99 Ziyang Road of Wuchang District, Wuhan, 430060, People's Republic of China
| | - Jian Gu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, 99 Ziyang Road of Wuchang District, Wuhan, 430060, People's Republic of China
| | - Mary McGrath
- Pennsylvania State University College of Medicine and Hershey Medical center, Penn State Hershey Children's Hospital, PO Box 850, 500 University Drive, Hershey, PA, 17033, USA
| | - Ying Xia
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China
| | - Bihua Tan
- Pennsylvania State University College of Medicine and Hershey Medical center, Penn State Hershey Children's Hospital, PO Box 850, 500 University Drive, Hershey, PA, 17033, USA
| | - Chunhua Song
- Pennsylvania State University College of Medicine and Hershey Medical center, Penn State Hershey Children's Hospital, PO Box 850, 500 University Drive, Hershey, PA, 17033, USA.
| | - Yan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, 99 Ziyang Road of Wuchang District, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
21
|
Golding B, Luu A, Jones R, Viloria-Petit AM. The function and therapeutic targeting of anaplastic lymphoma kinase (ALK) in non-small cell lung cancer (NSCLC). Mol Cancer 2018; 17:52. [PMID: 29455675 PMCID: PMC5817728 DOI: 10.1186/s12943-018-0810-4] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/06/2018] [Indexed: 01/19/2023] Open
Abstract
Lung cancer is the leading cause of death by cancer in North America. A decade ago, genomic rearrangements in the anaplastic lymphoma kinase (ALK) receptor tyrosine kinase were identified in a subset of non-small cell lung carcinoma (NSCLC) patients. Soon after, crizotinib, a small molecule ATP-competitive ALK inhibitor was proven to be more effective than chemotherapy in ALK-positive NSCLC patients. Crizotinib and two other ATP-competitive ALK inhibitors, ceritinib and alectinib, are approved for use as a first-line therapy in these patients, where ALK rearrangement is currently diagnosed by immunohistochemistry and in situ hybridization. The clinical success of these three ALK inhibitors has led to the development of next-generation ALK inhibitors with even greater potency and selectivity. However, patients inevitably develop resistance to ALK inhibitors leading to tumor relapse that commonly manifests in the form of brain metastasis. Several new approaches aim to overcome the various mechanisms of resistance that develop in ALK-positive NSCLC including the knowledge-based alternate and successive use of different ALK inhibitors, as well as combined therapies targeting ALK plus alternative signaling pathways. Key issues to resolve for the optimal implementation of established and emerging treatment modalities for ALK-rearranged NSCLC therapy include the high cost of the targeted inhibitors and the potential of exacerbated toxicities with combination therapies.
Collapse
Affiliation(s)
- Brandon Golding
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Anita Luu
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Robert Jones
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Alicia M Viloria-Petit
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
22
|
Santarpia M, Liguori A, Karachaliou N, Gonzalez-Cao M, Daffinà MG, D'Aveni A, Marabello G, Altavilla G, Rosell R. Osimertinib in the treatment of non-small-cell lung cancer: design, development and place in therapy. LUNG CANCER-TARGETS AND THERAPY 2017; 8:109-125. [PMID: 28860885 PMCID: PMC5571822 DOI: 10.2147/lctt.s119644] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery of epidermal growth factor receptor (EGFR) mutations and subsequent demonstration of the efficacy of genotype-directed therapies with EGFR tyrosine kinase inhibitors (TKIs) marked the advent of the era of precision medicine for non-small-cell lung cancer (NSCLC). First- and second-generation EGFR TKIs, including erlotinib, gefitinib and afatinib, have consistently shown superior efficacy and better toxicity compared with first-line platinum-based chemotherapy and currently represent the standard of care for EGFR-mutated advanced NSCLC patients. However, tumors invariably develop acquired resistance to EGFR TKIs, thereby limiting the long-term efficacy of these agents. The T790M mutation in exon 20 of the EGFR gene has been identified as the most common mechanism of acquired resistance. Osimertinib is a third-generation TKI designed to target both EGFR TKI-sensitizing mutations and T790M, while sparing wild-type EGFR. Based on its pronounced clinical activity and good safety profile demonstrated in early Phase I and II trials, osimertinib received first approval in 2015 by the US FDA and in early 2016 by European Medicines Agency for the treatment of EGFR T790M mutation-positive NSCLC patients in progression after EGFR TKI therapy. Recent results from the Phase III AURA3 trial demonstrated the superiority of osimertinib over standard platinum-based doublet chemotherapy for treatment of patients with advanced EGFR T790M mutation-positive NSCLC with disease progression following first-line EGFR TKI therapy, thus definitively establishing this third-generation TKI as the standard of care in this setting. Herein, we review preclinical findings and clinical data from Phase I–III trials of osimertinib, including its efficacy in patients with central nervous system metastases. We further discuss currently available methods used to analyze T790M mutation status and the main mechanisms of resistance to osimertinib. Finally, we provide an outlook on ongoing trials with osimertinib and novel therapeutic combinations that might continue to improve the clinical outcome of EGFR-mutated NSCLC patients.
Collapse
Affiliation(s)
- Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Alessia Liguori
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Niki Karachaliou
- Institute of Oncology Rosell (IOR), University Hospital Sagrat Cor
| | - Maria Gonzalez-Cao
- Department of Oncology, Institute of Oncology Rosell (IOR), Quirón-Dexeus University Institute, Barcelona
| | - Maria Grazia Daffinà
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Alessandro D'Aveni
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Grazia Marabello
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Giuseppe Altavilla
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Rafael Rosell
- Department of Oncology, Institute of Oncology Rosell (IOR), Quirón-Dexeus University Institute, Barcelona.,Cancer Biology and Precision Medicine Program, Germans Trias i Pujol Research Institute.,Catalan Institute of Oncology, Germans Trias i Pujol University Hospital, Badalona, Spain
| |
Collapse
|
23
|
ALK in Non-Small Cell Lung Cancer (NSCLC) Pathobiology, Epidemiology, Detection from Tumor Tissue and Algorithm Diagnosis in a Daily Practice. Cancers (Basel) 2017; 9:cancers9080107. [PMID: 28805682 PMCID: PMC5575610 DOI: 10.3390/cancers9080107] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 12/25/2022] Open
Abstract
Patients with advanced-stage non-small cell lung carcinoma (NSCLC) harboring an ALK rearrangement, detected from a tissue sample, can benefit from targeted ALK inhibitor treatment. Several increasingly effective ALK inhibitors are now available for treatment of patients. However, despite an initial favorable response to treatment, in most cases relapse or progression occurs due to resistance mechanisms mainly caused by mutations in the tyrosine kinase domain of ALK. The detection of an ALK rearrangement is pivotal and can be done using different methods, which have variable sensitivity and specificity depending, in particular, on the quality and quantity of the patient’s sample. This review will first highlight briefly some information regarding the pathobiology of an ALK rearrangement and the epidemiology of patients harboring this genomic alteration. The different methods used to detect an ALK rearrangement as well as their advantages and disadvantages will then be examined and algorithms proposed for detection in daily routine practice.
Collapse
|