1
|
Wu D, Chen M, Zheng N, Lu Y, Wang X, Jiang C, Xu H. The efficacy and safety of pH-responsive and photothermal-sensitive multifunctional nanoparticles loaded with cryptotanshinone for the treatment of gastric cancer. Mol Carcinog 2024; 63:2346-2362. [PMID: 39185663 DOI: 10.1002/mc.23814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024]
Abstract
A multifunctional polydopamine/mesoporous silica nanoparticles loaded cryptotanshinone (PDA/MSN@CTS) was synthesized and subjected to investigating its physicochemical properties and anti-gastric cancer (GC) effects. Utilizing network pharmacology and molecular docking techniques, CTS was identified as our final research target. The structural morphology and physicochemical properties of PDA/MSN@CTS were examined. Near-infrared (NIR) laser was employed to evaluate the photothermal properties of the PDA/MSN@CTS, along with pH-responsive and NIR-triggered release assessments. In vitro experiments evaluated the impact of PDA/MSN@CTS on the malignant behavior of AGS gastric cells. A subcutaneous tumor model was further established to evaluate the in vivo safety of PDA/MSN@CTS. Furthermore, the in vivo photothermal efficacy of PDA/MSN@CTS, in addition to its combined effect with photothermal therapy (PTT), was investigated. Uniform and stable PDA/MSN@CTS had been successfully synthesized and demonstrated efficient release under tumor environment and NIR irradiation. Upon increasing NIR laser conditions, in vivo cytotoxicity, apoptosis rate, reactive oxygen species scavenging ability, and suppression of migration and invasion of AGS cells by PDA/MSN@CTS were significantly enhanced. In vivo assessments revealed excellent blood compatibility and biosafety of PDA/MSN@CTS, alongside robust tumor tissue targeting. Combining nanoparticles with PTT facilitated the anti-GC effects of PDA/MSN@CTS. Compared to free drugs, PDA/MSN@CTS exhibits higher selectivity towards cancer cells, demonstrating effective anticancer activity and biocompatibility both in vitro and in vivo. Furthermore, our nanomaterial possesses excellent photothermal properties, and under NIR conditions, PDA/MSN@CTS exhibits synergistic therapeutic effects.
Collapse
Affiliation(s)
- Dan Wu
- Department of Gastrointestinal Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - MingHang Chen
- College of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Nan Zheng
- College of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Ying Lu
- College of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Xiang Wang
- College of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Chuan Jiang
- Department of Gastrointestinal Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - HongTao Xu
- Department of Gastrointestinal Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| |
Collapse
|
2
|
Wang X, Wang XQ, Luo K, Bai H, Qi JL, Zhang GX. Research Progress of Chinese Medicine Monomers in Treatment of Cholangiocarcinoma. Chin J Integr Med 2024:10.1007/s11655-024-4203-9. [PMID: 39470920 DOI: 10.1007/s11655-024-4203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 11/01/2024]
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor originating from cholangiocytes. However, it remains unclear about the pathogenesis of this carcinoma, which may be related to multiple factors. Currently, CCA is mainly treated by surgery, chemotherapy, and radiotherapy. Among them, surgery is the only potentially curative option for CCA. Nevertheless, the high malignancy and asymptomatic nature of CCA may lead to poor treatment outcomes. It has been demonstrated that Chinese medicine (CM) plays a significant role in various antitumor applications. Meanwhile, CM exhibits fewer side effects and high availability. Moreover, the in vitro application of CM monomers has been explored in many domestic and foreign studies. This article mainly reviews the signaling pathways and molecular mechanisms of CM monomers in the treatment of CCA in recent years. These findings are expected to provide new insights into the treatment of CCA.
Collapse
Affiliation(s)
- Xiang Wang
- Department of General Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning Province, 116027, China
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
- Hepatobiliary Surgery Department, Shandong Provincial Third Hospittal, Shandong University, Jinan, 250031, China
| | - Xiao-Qing Wang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
| | - Kai Luo
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
| | - He Bai
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
| | - Jia-Lin Qi
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Gui-Xin Zhang
- Department of General Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning Province, 116027, China.
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China.
| |
Collapse
|
3
|
Wang M, Yu K, Fu W, Yang L. The combination of SHP099 inhibits the malignant biological behavior of L-OHP/5-FU-resistant colorectal cancer cells by regulating energy metabolism reprogramming. Biochem Biophys Res Commun 2024; 728:150262. [PMID: 38959530 DOI: 10.1016/j.bbrc.2024.150262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND AND OBJECTIVE Colorectal cancer (CRC) is one of the most common malignancies in China. At present, there is a problem that the CRC treatment drugs SHP099, L-OHP and 5-FU are insensitive to tumor cells. Combination medication is an important means to solve the insensitivity of medication alone. The purpose of this project was to explore the effect and molecular mechanism of SHP099 combination on the malignant biological behavior of L-OHP/5-FU resistant strains of CRC. METHODS HT29 and SW480 cells were cultured in media supplemented with L-OHP or 5-FU to establish drug-resistant strains. HT29 and SW480 drug-resistant cells were subcutaneously injected into the ventral nerves of nude mice at a dose of 5 × 106 to establish CRC drug-resistant animal models. CCK-8, Western blot, flow cytometry, Transwell and kit detection were used to detect the regulatory mechanism of energy metabolism reprogramming in drug-resistant CRC cells. RESULTS Compared with nonresistant strains, L-OHP/5-FU-resistant strains exhibited greater metabolic reprogramming. Functionally, SHP099 can restrain the metabolic reprogramming of L-OHP/5-FU-resistant strains and subsequently restrain the proliferation, colony formation, migration and spheroid formation of L-OHP/5-FU-resistant strains. Downstream mechanistic studies have shown that SHP099 interferes with the metabolic reprogramming of L-OHP/5-FU drug-resistant strains by suppressing the PI3K/AKT pathway, thereby restraining the malignant biological behavior of L-OHP/5-FU drug-resistant strains and alleviating CRC. CONCLUSION The combination of SHP099 can restrain the malignant biological behavior of L-OHP/5-FU-resistant CRC cells and alleviate the progression of CRC by interfering with the reprogramming of energy metabolism. This study explored the effect of SHP099 combination on dual-resistant CRC cells for the first time, and provided a new therapeutic idea for solving the problem of SHP099 insensitivity to CRC cells.
Collapse
Affiliation(s)
- Meilian Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Kun Yu
- Department of Colorectal Surgery, Yunnan Cancer Hospital (The Third Affiliated Hospital of Kunming Medical University), Kunming, 650118, China
| | - Wen Fu
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Lihong Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China.
| |
Collapse
|
4
|
He B, Guo W, Shi R, Hoffman RD, Luo Q, Hu YJ, Gao J. Ruyong formula improves thymus function of CUMS-stimulated breast cancer mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117164. [PMID: 37717843 DOI: 10.1016/j.jep.2023.117164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ruyong Formula (RYF) is a famous Chinese herbal formula composed of 10 traditional Chinese herbs. It has been used as a therapeutic agent for breast cancer patients with depressive symptoms in China. However, its underlying pharmacological mechanism remains unclear. AIM OF THE STUDY This study aimed to explore the mechanism of RYF on the changes of thymus immune function in breast cancer body under mood disorders such as depression/anxiety. MATERIALS AND METHODS The chronic unpredictable mild stress (CUMS) was used to stimulate 4T1 breast cancer mice. The behavioral changes, 5-hydroxytryptamine (5-HT) level in brain, cytokeratin 5 (CK5) and 8 (CK8) expression in thymus, the proportion of T cell subsets, the thymic output, phenotypic changes of thymus epithelial cells (TECs), the expression levels of immune-related factors and downstream proteins of TSLP were analyzed after RYF treatment. RESULTS In CUMS stimulated group, the level of 5-HT in brain was significantly increased after RYF treatment. The output function of the thymus was improved, and the number of TECs in the medulla (CK5+), the proportion of CD3+CD4-CD8- (Double negative) and CD3+CD4+CD8+ (Double positive) T cells were all increased. The mRNA level of TSLP in mouse thymus was significantly decreased, but increased for IL-7. The protein levels of TSLP and Vimentin were decreased, but increased for p-STAT3, p-JAK2, E-cadherin, and p-PI3K p55 in vivo. In vitro study was showed the levels of Snail 1, Zeb 1 and Smad increased significantly in TGF-β1 group, and RYF could reverse their expression. CONCLUSIONS RYF could restore the structure and function of the thymus in depressed breast cancer mice by reversing the phenotypic changes of TECs and activating the JAK2/STAT3/PI3K pathway.
Collapse
Affiliation(s)
- Bingqian He
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Wenqin Guo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Rongzhen Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Tangqi Branch of Traditional Chinese Medicine Hospital of Linping District, Hangzhou, Zhejiang, 311106, China.
| | - Robert D Hoffman
- Yo San University of Traditional Chinese Medicine, Los Angeles, CA, 90066, USA.
| | - Qihan Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yuan-Jia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, 999078, China.
| | - Jianli Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
5
|
Gu A, Li J, Wu JA, Li MY, Liu Y. Exploration of Dan-Shen-Yin against pancreatic cancer based on network pharmacology combined with molecular docking and experimental validation. CURRENT RESEARCH IN BIOTECHNOLOGY 2024; 7:100228. [DOI: 10.1016/j.crbiot.2024.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
|
6
|
Zhang P, Liu W, Wang Y. The mechanisms of tanshinone in the treatment of tumors. Front Pharmacol 2023; 14:1282203. [PMID: 37964867 PMCID: PMC10642231 DOI: 10.3389/fphar.2023.1282203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Tanshinone is a lipophilic compound that is present in traditional Chinese medicine and is derived from the roots of Salvia miltiorrhiza (Danshen). It has been proven to be highly effective in combating tumors in various parts of the body, including liver carcinoma, gastric cancer, ovarian cancer, cervix carcinoma, breast cancer, colon cancer, and prostate cancer. Tanshinone can efficiently prevent the reproduction of cancerous cells, induce cell death, and inhibit the spread of cancerous cells, which are mainly involved in the PI3K/Akt signaling pathway, NF-κB pathway, Bcl-2 family, Caspase cascades, MicroRNA, MAPK signaling pathway, p21, STAT3 pathway, miR30b-P53-PTPN11/SHP2 axis, β-catenin, and Skp2. However, the properties and mechanisms of tanshinone's anti-tumor effects remain unclear currently. Thus, this study aims to review the research progress on tumor prevention and mechanisms of tanshinone to gain new perspectives for further development and clinical application of tanshinone.
Collapse
Affiliation(s)
- Pengyu Zhang
- The Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wendi Liu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Wang
- Department of Histology and Embryology, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Protective Roles of Xijiao Dihuang Tang on Coronary Artery Injury in Kawasaki Disease. Cardiovasc Drugs Ther 2023; 37:257-270. [PMID: 34665368 DOI: 10.1007/s10557-021-07277-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Xijiao Dihuang Tang (XJDHT) is a classical formula of traditional Chinese medicine constituted of Cornu Bubali, Rehmannia glutinosa (Gaertn.) DC., Paeonia lactiflora Pall., and Paeonia suffruticosa Andrews. It was first mentioned in the medical classic "Beiji Qianjin Yaofang" written by Simiao Sun in Tang Dynasty. It shows very strong antipyretic and anticoagulant effects and has been clinically applied to treat various type of blood loss, purple and black spots, heat stroke, and glossitis. Kawasaki disease (KD) is considered as a kind of acute febrile illness in children with systemic vasculitis as the main lesions. The aim of this research is to clarify whether XJDHT can play a protective role in KD. METHODS A mouse model of Candida albicans water-soluble fraction (CAWS)-induced coronary arteritis and a KD cell model with tumor necrosis factor (TNF)-α induction were employed to investigate the potential effect and mechanism of XJDHT on coronary artery injury in KD. RESULTS Data showed that XJDHT remarkably alleviated the coronary artery injury of KD mice, as evidenced by reduced inflammation and downregulated expression of pro-inflammatory cytokines interleukin (IL)-1β and TNF-α. In vitro investigation showed that XJDHT could promote cell proliferation, inhibit cell apoptosis, and improve mitochondrial functions. Subsequent studies demonstrated that XJDHT rescued endothelial cell injury by PI3K/Akt-NFκB signaling pathway. Component analysis of XJDHT detected thirty-eight chemically active ingredients, including paeoniflorin, albiflorin, and paeoniflorigenone, which in in vitro experiments exhibited significant rescue effects on TNF-α-mediated endothelial cell injury. CONCLUSION Our findings demonstrated that XJDHT mitigated coronary artery injury of KD through suppressing endothelial cell damage via PI3K/Akt-NFκB signaling.
Collapse
|
8
|
Fan CW, Li MS, Song XX, Luo L, Jiang JC, Luo JZ, Wang HS. Discovery of novel 2-oximino-2-indolylacetamide derivatives as potent anticancer agents capable of inducing cell autophagy and ferroptosis. Bioorg Med Chem 2023; 80:117176. [PMID: 36709571 DOI: 10.1016/j.bmc.2023.117176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
A series of 2-oximino-2-indolylacetamide derivatives were designed, synthesized and evaluated for their antitumour effects. Among them, 4d exhibited the most potent antiproliferative effect in vitro on the tested human cancer cells. Additionally, 4d significantly induced cell apoptosis, caused mitochondrial dysfunction, promoted Bax, cleaved-PARP and p53 expression and inhibited Bcl-2 expression in 5-8F cells. Moreover, 4d remarkably promoted autophagosome formation, leading to cell apoptosis. Further investigation indicated that 4d could trigger cell death through cell ferroptosis, including increased ROS generation and lipid peroxidation and decreased glutathione peroxidase 4 (GPx4) expression and glutathione (GSH) levels. More importantly, 4d induced 5-8F cell death by activating ROS/MAPK and inhibiting the AKT/mTOR and STAT3 signalling pathways. Interestingly, 4d significantly suppressed tumour growth in a 5-8F cell xenograft model without obvious toxicity to mice. Overall, these results demonstrate that 4d may be a potential compound for cancer therapy.
Collapse
Affiliation(s)
- Cai-Wen Fan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Scientific Experiment Center, Guilin Medical University, Guilin 541199, China
| | - Mei-Shan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xi-Xi Song
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Li Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jing-Chen Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jia-Zi Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
9
|
Anticancer Activity of (±)-Kusunokinin Derivatives towards Cholangiocarcinoma Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238291. [PMID: 36500383 PMCID: PMC9735782 DOI: 10.3390/molecules27238291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
This study aimed to investigate the cytotoxicity and anticancer activity of (±)-kusunokinin derivatives ((±)-TTPG-A and (±)-TTPG-B). The cytotoxicity effect was performed on human cancer cells, including breast cancer, cholangiocarcinoma, colon and ovarian cancer-cells, compared with normal cells, using the MTT assay. Cell-cycle arrest and apoptosis were detected using flow-cytometry analysis. We found that (±)-TTPG-B exhibited the strongest cytotoxicity on aggressive breast-cancer (MDA-MB-468 and MDA-MB-231) and cholangiocarcinoma (KKU-M213), with an IC50 value of 0.43 ± 0.01, 1.83 ± 0.04 and 0.01 ± 0.001 µM, respectively. Interestingly, (±)-TTPG-A and (±)-TTPG-B exhibited less toxicity than (±)-kusunokinin (9.75 ± 0.39 µM) on L-929 cells (normal fibroblasts). Moreover, (±)-TTPG-A predominated the ell-cycle arrest at the S phase, while (±)-TTPG-B caused cell arrest at the G0/G1 phase, in the same way as (±)-kusunokinin in KKU-M213 cells. Both (±)-TTPG-A and (±)-TTPG-B induced apoptosis and multi-caspase activity more than (±)-kusunokinin. Taken together, we conclude that (±)-TTPG-A and (±)-TTPG-B have a strong anticancer effect on cholangiocarcinoma. Moreover, (±)-TTPG-B could be a potential candidate compound for breast cancer and cholangiocarcinoma in the future.
Collapse
|
10
|
Guo H, Zhang W, Wang J, Zhao G, Wang Y, Zhu BM, Dong P, Watari H, Wang B, Li W, Tigyi G, Yue J. Cryptotanshinone inhibits ovarian tumor growth and metastasis by degrading c-Myc and attenuating the FAK signaling pathway. Front Cell Dev Biol 2022; 10:959518. [PMID: 36247016 PMCID: PMC9554091 DOI: 10.3389/fcell.2022.959518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Cryptotanshinone (CT), a natural compound derived from Salvia miltiorrhiza Bunge that is also known as the traditional Chinese medicine Danshen, exhibits antitumor activity in various cancers. However, it remains unclear whether CT has a potential therapeutic benefit against ovarian cancers. The aim of this study was to test the efficacy of CT in ovarian cancer cells in vitro and using a xenograft model in NSG mice orthotopically implanted with HEY A8 human ovarian cancer cells and to explore the molecular mechanism(s) underlying CT’s antitumor effects. We found that CT inhibited the proliferation, migration, and invasion of OVCAR3 and HEY A8 cells, while sensitizing the cell responses to the chemotherapy drugs paclitaxel and cisplatin. CT also suppressed ovarian tumor growth and metastasis in immunocompromised mice orthotopically inoculated with HEY A8 cells. Mechanistically, CT degraded the protein encoded by the oncogene c-Myc by promoting its ubiquitination and disrupting the interaction with its partner protein Max. CT also attenuated signaling via the nuclear focal adhesion kinase (FAK) pathway and degraded FAK protein in both cell lines. Knockdown of c-Myc using lentiviral CRISPR/Cas9 nickase resulted in reduction of FAK expression, which phenocopies the effects of CT and the c-Myc/Max inhibitor 10058-F4. Taken together, our studies demonstrate that CT inhibits primary ovarian tumor growth and metastasis by degrading c-Myc and FAK and attenuating the FAK signaling pathway.
Collapse
Affiliation(s)
- Huijun Guo
- Department of Pathogen Biology and Immunology, College of Life Science, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Wenjing Zhang
- Department of Genetics, Genomics and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
- *Correspondence: Junming Yue, ; Wenjing Zhang, ; Bing-Mei Zhu,
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Guannan Zhao
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yaohong Wang
- Department of Pathology, Immunology and Microbiology, Vanderbilt University, Nashville, TN, United States
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Junming Yue, ; Wenjing Zhang, ; Bing-Mei Zhu,
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Baojin Wang
- Department of Gynecology and Obstetrics, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Gabor Tigyi
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
- *Correspondence: Junming Yue, ; Wenjing Zhang, ; Bing-Mei Zhu,
| |
Collapse
|
11
|
Li W, Huang T, Xu S, Che B, Yu Y, Zhang W, Tang K. Molecular Mechanism of Tanshinone against Prostate Cancer. Molecules 2022; 27:molecules27175594. [PMID: 36080361 PMCID: PMC9457553 DOI: 10.3390/molecules27175594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is the most common malignant tumor of the male urinary system in Europe and America. According to the data in the World Cancer Report 2020, the incidence rate of PCa ranks second in the prevalence of male malignant tumors and varies worldwide between regions and population groups. Although early PCa can achieve good therapeutic results after surgical treatment, due to advanced PCa, it can adapt and tolerate androgen castration-related drugs through a variety of mechanisms. For this reason, it is often difficult to achieve effective therapeutic results in the treatment of advanced PCa. Tanshinone is a new fat-soluble phenanthraquinone compound derived from Salvia miltiorrhiza that can play a therapeutic role in different cancers, including PCa. Several studies have shown that Tanshinone can target various molecular pathways of PCa, including the signal transducer and activator of transcription 3 (STAT3) pathway, androgen receptor (AR) pathway, phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway, and mitogen-activated protein kinase (MAPK) pathway, which will affect the release of pro-inflammatory cytokines and affect cell proliferation, apoptosis, tumor metabolism, genomic stability, and tumor drug resistance. Thus, the occurrence and development of PCa cells are inhibited. In this review, we summarized the in vivo and in vitro evidence of Tanshinone against prostate cancer and discussed the effect of Tanshinone on nuclear factor kappa-B (NF-κB), AR, and mTOR. At the same time, we conducted a network pharmacology analysis on the four main components of Tanshinone to further screen the possible targets of Tanshinone against prostate cancer and provide ideas for future research.
Collapse
|
12
|
Wang H, Ai J, Shopit A, Niu M, Ahmed N, Tesfaldet T, Tang Z, Li X, Jamalat Y, Chu P, Peng J, Ma X, Qaed E, Han G, Zhang W, Wang J, Tang Z. Protection of pancreatic β-cell by phosphocreatine through mitochondrial improvement via the regulation of dual AKT/IRS-1/GSK-3β and STAT3/Cyp-D signaling pathways. Cell Biol Toxicol 2022; 38:531-551. [PMID: 34455488 DOI: 10.1007/s10565-021-09644-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Diabetes mellitus (DM) is a metabolic syndrome, caused by insufficient insulin secretion or insulin resistance (IR). DM enhances oxidative stress and induces mitochondrial function in different kinds of cell types, including pancreatic β-cells. Our previous study has showed phosphocreatine (PCr) can advance the mitochondrial function through enhancing the oxidative phosphorylation and electron transport ability in mitochondria damaged by methylglyoxal (MG). Our aim was to explore the potential role of PCr as a molecule to protect mitochondria from diabetes-induced pancreatic β-cell injury with insulin secretion deficiency or IR through dual AKT/IRS-1/GSK-3β and STAT3/Cyclophilin D (Cyp-D) signaling pathways. MG-induced INS-1 cell viability, apoptosis, mitochondrial division and fusion, the morphology, and function of mitochondria were suppressed. Flow cytometry was used to detect the production of intracellular reactive oxygen species (ROS) and the changes of intracellular calcium, and the respiratory function was measured by oxygraph-2k. The expressions of AKT, IRS-1, GSK-3β, STAT3, and Cyp-D were detected using Western blot. The result showed that the oxidative stress-related kinases were significantly restored to the normal level after the pretreatment with PCr. Moreover, PCr pretreatment significantly inhibited cell apoptosis, decreased intracellular calcium, and ROS production, and inhibited mitochondrial division and fusion, and increased ATP synthesis damaged by MG in INS-1 cells. In addition, pretreatment with PCr suppressed Cytochrome C, p-STAT3, and Cyp-D expressions, while increased p-AKT, p-IRS-1, p-GSK-3β, caspase-3, and caspase-9 expressions. In conclusion, PCr has protective effect on INS-1 cells in vitro and in vivo, relying on AKT mediated STAT3/ Cyp-D pathway to inhibit oxidative stress and restore mitochondrial function, signifying that PCr might become an emerging candidate for the cure of diabetic pancreatic cancer β-cell damage.
Collapse
Affiliation(s)
- Hongyan Wang
- Acad Integrated Med & College of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 Western Section, Lvshun South Street, Dalian, 116044, China
| | - Jie Ai
- Acad Integrated Med & College of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 Western Section, Lvshun South Street, Dalian, 116044, China
| | - Abdullah Shopit
- Acad Integrated Med & College of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 Western Section, Lvshun South Street, Dalian, 116044, China
| | - Mengyue Niu
- Acad Integrated Med & College of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 Western Section, Lvshun South Street, Dalian, 116044, China
| | - Nisar Ahmed
- Acad Integrated Med & College of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 Western Section, Lvshun South Street, Dalian, 116044, China
| | - Tsehaye Tesfaldet
- Acad Integrated Med & College of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 Western Section, Lvshun South Street, Dalian, 116044, China
| | | | - Xiaodong Li
- Second Clinical College, Dalian Medical University, Dalian, China
| | - Yazeed Jamalat
- Acad Integrated Med & College of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 Western Section, Lvshun South Street, Dalian, 116044, China
| | - Peng Chu
- Acad Integrated Med & College of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 Western Section, Lvshun South Street, Dalian, 116044, China
| | - Jinyong Peng
- Acad Integrated Med & College of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 Western Section, Lvshun South Street, Dalian, 116044, China
| | - Xiaodong Ma
- Acad Integrated Med & College of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 Western Section, Lvshun South Street, Dalian, 116044, China
| | - Eskandar Qaed
- Acad Integrated Med & College of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 Western Section, Lvshun South Street, Dalian, 116044, China
| | - Guozhu Han
- Acad Integrated Med & College of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 Western Section, Lvshun South Street, Dalian, 116044, China
| | - Weisheng Zhang
- First Clinical College, Dalian Medical University, 9 Western Section, Lvshun South Street, Dalian, 116044, China.
| | - Jun Wang
- Department of Pathophysiology, Dalian Medical University, 9 Western Section, Lvshun South Street, Dalian, 116044, China.
| | - Zeyao Tang
- Acad Integrated Med & College of Pharmacy, Department of Pharmacology, Dalian Medical University, 9 Western Section, Lvshun South Street, Dalian, 116044, China.
| |
Collapse
|
13
|
Wang F, Wu P, Qin S, Deng Y, Han P, Li X, Fan C, Xu Y. Curcin C inhibit osteosarcoma cell line U2OS proliferation by ROS induced apoptosis, autophagy and cell cycle arrest through activating JNK signal pathway. Int J Biol Macromol 2022; 195:433-439. [PMID: 34896468 DOI: 10.1016/j.ijbiomac.2021.11.156] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022]
Abstract
Osteosarcoma is a kind of primary bone malignant tumors. Its cure rate has been stagnant in the past decade years. Curcin C belongs to type I ribosome inactivating proteins, extracted from the cotyledons of post-germinated Jatropha curcas seeds. It can inhibit the proliferation of several tumor lines including U2OS cells with extraordinary efficiency. The treated U2OS cells were arrested in both S and G2/M phase, showed typical apoptosis morphological characteristic, formed autophagosomes and increase the ratio of LC3II to LC3I. Meanwhile, the level of ROS in the treated cells was found increasing significantly, with the change of mitochondrial membrane potential and decreased antioxidant enzyme activities. The application of ROS scavenger NAC not only significantly inhibited the toxicity of Curcin C but also prevented the happen of apoptosis and autophagy to some extent. These results suggested that Curcin C may function through ROS pathway. In addition, the Curcin C treatment could activate JNK and inhibit ERK signal pathway. Sp600125, an inhibitor of JNK signaling pathway, can prevent subsequent apoptosis and autophagy events, suggesting that JNK pathway was at least one of the pathways of Curcin C action. Moreover, the relevant including antagonistic among autophagy, apoptosis and cell cycle arresting induced by Curcin C also was found. In summary, it can be speculated that Curcin C may induce S, G2/M phase arrest, apoptosis and autophagy of human osteosarcoma U2OS cells through activating JNK signal pathway and blocking ERK signal pathway by promoting ROS accumulation in cell, thus finally reflected in the effect of inhibiting tumor cell proliferation.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Peng Wu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Siying Qin
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yushan Deng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Pan Han
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiao Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Caixin Fan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ying Xu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Park KH, Joo SH, Seo JH, Kim J, Yoon G, Jeon YJ, Lee MH, Chae JI, Kim WK, Shim JH. Licochalcone H Induces Cell Cycle Arrest and Apoptosis in Human Skin Cancer Cells by Modulating JAK2/STAT3 Signaling. Biomol Ther (Seoul) 2022; 30:72-79. [PMID: 34873073 PMCID: PMC8724845 DOI: 10.4062/biomolther.2021.149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
Licochalcone H (LCH) is a phenolic compound synthetically derived from licochalcone C (LCC) that exerts anticancer activity. In this study, we investigated the anticancer activity of LCH in human skin cancer A375 and A431 cells. The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) cell viability assay was used to evaluate the antiproliferative activity of LCH. Cell cycle distribution and the induction of apoptosis were analyzed by flow cytometry. Western blotting assays were performed to detect the levels of proteins involved in cell cycle progression, apoptosis, and the JAK2/STAT3 signaling pathway. LCH inhibited the growth of cells in dose- and time-dependent manners. The annexin V/propidium iodide double staining assay revealed that LCH induced apoptosis, and the LCH-induced apoptosis was accompanied by cell cycle arrest in the G1 phase. Western blot analysis showed that the phosphorylation of JAK2 and STAT3 was decreased by treatment with LCH. The inhibition of the JAK2/STAT3 signaling pathway by pharmacological inhibitors against JAK2/STAT3 (cryptotanshinone (CTS) and S3I-201) simulated the antiproliferative effect of LCH suggesting that LCH induced apoptosis by modulating JAK2/STAT3 signaling.
Collapse
Affiliation(s)
- Kyung-Ho Park
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sang Hoon Joo
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Ji-Hye Seo
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jumi Kim
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Young-Joo Jeon
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Woo-Keun Kim
- Biosystem Research Group, Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea.,The China -US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| |
Collapse
|
15
|
Poosekeaw P, Pairojkul C, Sripa B, Sa Ngiamwibool P, Iamsaard S, Sakonsinsiri C, Thanan R, Ungarreevittaya P. Adaptor protein XB130 regulates the aggressiveness of cholangiocarcinoma. PLoS One 2021; 16:e0259075. [PMID: 34780466 PMCID: PMC8592414 DOI: 10.1371/journal.pone.0259075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a group of heterogenous malignancies arising from bile duct epithelium with distinct pathological features. Adaptor proteins have implicated in cell proliferation, migration, and invasion of different cancer cells. The objective of this study was to assess whether the adaptor protein XB130 (AFAP1L2) is a critical biological determinant of CCA outcome. XB130 expression levels were investigated in four CCA cell lines compared to an immortalized cholangiocyte cell line by Western blotting. Small interfering (si) RNA-mediated XB130 gene silencing was conducted to evaluate the effects of reduced XB130 expression on cell proliferation, migration, and invasion by MTT, transwell migration and cell invasion assay. The immunohistochemical quantification of XB130 levels were performed in surgically resected formalin-fixed, paraffin-embedded specimens obtained from 151 CCA patients. The relationship between XB130 expression and the clinicopathological parameters of CCA patients were analyzed. Our results showed that XB130 was highly expressed in KKU-213A cell line. Knockdown of XB130 using siRNA significantly decreased the proliferation, migration, and invasion properties of KKU-213A cells through the inhibition of PI3K/Akt pathway, suggesting that XB130 plays an important role in CCA progression. Moreover, elevated XB130 expression levels were positive relationship with lymphovascular space invasion (LVSI), intrahepatic type of CCA, high TNM staging (stage III, IV), high T classification (T3, T4), and lymph node metastasis. We provide the first evidence that the overexpression of XB130 is associated with tumorigenic properties of CCA cells, leading to CCA progression with aggressive clinical outcomes.
Collapse
Affiliation(s)
- Pirawan Poosekeaw
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chawalit Pairojkul
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Banchob Sripa
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Sitthichai Iamsaard
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Piti Ungarreevittaya
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
16
|
Tan WL, Zhang C, Li Y, Guo K, Gao XW, Wei J, Yi D, Pu L, Wang Q. Synthesis, Anticancer Activity, Structure-Activity Relationship and Mechanistic Investigations of Falcarindiol Analogues. ChemMedChem 2021; 16:3569-3575. [PMID: 34414677 DOI: 10.1002/cmdc.202100377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 11/07/2022]
Abstract
Forty samples of optically active falcarindiol analogues are synthesized by using the easily available C2 symmetric (R)- and (S)-1,1'-binaphth-2-ol (BINOL) in combination with Ti(Oi Pr)4 , Zn powder and EtI. Their anticancer activities on Hccc-9810, HepG2, MDA-MB-231, Hela, MG-63 and H460 cells are assayed to elucidate their structure-activity relationships. These results showed that the falcarindiol analogue (3R,8S)-2 i with the terminal double bond has the most potent anti-proliferation effect on Hccc-9810 cells with IC50 value of 0.46 μM. The falcarindiol analogue (3R,8S)-2 i can induce obvious Hccc-9810 cell apoptosis in a concentration-dependent manner by Hoechst staining and flow cytometry analysis. The proposed mechanism suggests that the falcarindiol analogue (3R,8S)-2 i increases LDH release and MDA content, and reduces the levels of SOD activity, which lead to the accumulation of oxidative stress and induce apoptosis in Hccc-9810 cells.
Collapse
Affiliation(s)
- Wan-Li Tan
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Chun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yang Li
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Kai Guo
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiao-Wei Gao
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jun Wei
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Dong Yi
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Lin Pu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904-4319, USA
| | - Qin Wang
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
17
|
Zhou H, Yuan Y, Qian H. Expression of STAT3 and vasculogenic mimicry in gallbladder carcinoma promotes invasion and metastasis. Exp Ther Med 2021; 22:738. [PMID: 34055055 PMCID: PMC8138270 DOI: 10.3892/etm.2021.10170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Abstract
Surgical treatment of gallbladder carcinoma remains challenging, while targeted therapy has been demonstrated to have potential. In the present study, the effect of signal transducer and activator of transcription 3 (STAT3) expression and vasculogenic mimicry (VM) on the occurrence and development of gallbladder carcinoma was evaluated. A total of 72 patients with gallbladder carcinoma and 10 patients with chronic cholecystitis were examined. Immunohistochemical staining was performed to determine the positive expression rates of STAT3. Periodic acid Schiff CD34 double staining was performed to detect VM in the gallbladder carcinoma group. STAT3 expression and VM in gallbladder carcinoma tissues was compared among patients with different clinical characteristics. In postoperative patients with gallbladder cancer, the relationship of the postoperative recurrence time with STAT3 expression and VM was assessed. STAT3 expression in gallbladder carcinoma tissue was significantly higher than that in cholecystitis tissue (P<0.05). STAT3 expression levels and VM were positively correlated in gallbladder carcinoma tissue. STAT3 protein expression in gallbladder carcinoma tissues differed significantly among patients with different degrees of differentiation and clinical stages (P<0.05). Among the 51 patients who completed the 3-year follow-up, the mean time to relapse was 17.353 and 35.647 months in those with high and low STAT3 expression, respectively, with significant differences (P<0.05). The VM structure was detected in 47 cases (92.15%) and not detected in four cases (7.84%), which exhibited no immediate recurrence after surgery, and the difference in the mean postoperative recurrence time was significant (22.38 vs. 36.00 months, respectively; P<0.05). In gallbladder carcinoma tissues, a lower degree of differentiation, higher malignancy degree and higher clinical stage were associated with higher expression of STAT3 and VM. Thus, STAT3 may promote VM formation in the process of tumor occurrence, development and metastasis. Therefore, STAT3 as a regulatory target, may inhibit the proliferation and invasion of tumor cells and block the development of VM, thereby representing a suitable target for antitumor angiogenesis therapy.
Collapse
Affiliation(s)
- Hongbing Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of The Medical School of Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Yin Yuan
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of The Medical School of Nantong University, Taizhou, Jiangsu 225300, P.R. China
| | - Haixin Qian
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
18
|
Shen S, Wang X, Lv H, Shi Y, Xiao L. PADI4 mediates autophagy and participates in the role of ganoderic acid A monomers in delaying the senescence of Alzheimer's cells through the Akt/mTOR pathway. Biosci Biotechnol Biochem 2021; 85:1818-1829. [PMID: 33963744 DOI: 10.1093/bbb/zbab054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/04/2021] [Indexed: 12/15/2022]
Abstract
The effects of PADI4 and GAA on the senescence of Alzheimer's cells were explored in the present work. HT22 cells were treated with Aβ25-35 to establish an Alzheimer's model and were then treated with different concentrations of GAA and transfected with a siPADI4 lentiviral vector. GAA could reverse the effects of Aβ25-35 on inhibiting cell viability and promoting apoptosis and senescence. siPADI4 reduced Aβ25-35-induced cell viability and upregulated Aβ25-35-induced cell apoptosis and senescence, as well as partially reversed the effect of GAA on cells, and these results were confirmed by detecting the expressions of senescence- and apoptosis-related proteins. In addition, siPADI4 was found to promote the phosphorylation of Akt and mTOR, which was partially reversed by GAA. In conclusion, PADI4 mediates autophagy and participates in the role of GAA monomers in delaying the senescence of Alzheimer's cells through the Akt/mTOR pathway.
Collapse
Affiliation(s)
- Shuhua Shen
- Disease Prevention and Health Management Center, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China.,Disease Prevention and Health Management Center, People's Hospital of Songyang, Lishui, Zhejiang Province, China
| | - Xiaoming Wang
- Disease Prevention and Health Management Center, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Hang Lv
- Central Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yuan Shi
- Central Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Luwei Xiao
- Disease Prevention and Health Management Center, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
19
|
Wang H, Pang W, Xu X, You B, Zhang C, Li D. Cryptotanshinone Attenuates Ischemia/Reperfusion-induced Apoptosis in Myocardium by Upregulating MAPK3. J Cardiovasc Pharmacol 2021; 77:370-377. [PMID: 33662979 DOI: 10.1097/fjc.0000000000000971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/26/2020] [Indexed: 01/17/2023]
Abstract
ABSTRACT Chinese people have used the root of Salvia miltiorrhiza Bunge (called "Danshen" in Chinese) for centuries as an anticancer agent, anti-inflammatory agent, antioxidant, and cardiovascular disease drug. In addition, Danshen is considered to be a drug that can improve ischemia/reperfusion (I/R)-induced myocardium injury in traditional Chinese medicine. However, Danshen is a mixture that includes various bioactive substances. In this study, we aimed to identify the protective component and mechanism of Danshen on myocardium through network pharmacology and molecular simulation methods. First, cryptotanshinone (CTS) was identified as a potential active compound from Danshen that was associated with apoptosis by a network pharmacology approach. Subsequently, biological experiments validated that CTS inhibited ischemia/reperfusion-induced cardiomyocyte apoptosis in vivo and in vitro. Molecular docking techniques were used to screen key target information. Based on the simulative results, MAPKs were verified as well-connected molecules of CTS. Western blotting assays also demonstrated that CTS could enhance MAPK expression. Furthermore, we demonstrated that inhibition of the MAPK pathway reversed the CTS-mediated effect on cardiomyocyte apoptosis. Altogether, our work screened out CTS from Danshen and demonstrated that it protected cardiomyocytes from apoptosis.
Collapse
Affiliation(s)
- Hefeng Wang
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Wenhui Pang
- Department of Otolaryngology Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xingsheng Xu
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Beian You
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Cuijuan Zhang
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; and
| | - Dan Li
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; and
| |
Collapse
|
20
|
Vundavilli H, Datta A, Sima C, Hua J, Lopes R, Bittner M. Targeting oncogenic mutations in colorectal cancer using cryptotanshinone. PLoS One 2021; 16:e0247190. [PMID: 33596259 PMCID: PMC7888617 DOI: 10.1371/journal.pone.0247190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent types of cancer in the world and ranks second in cancer deaths in the US. Despite the recent improvements in screening and treatment, the number of deaths associated with CRC is still very significant. The complexities involved in CRC therapy stem from multiple oncogenic mutations and crosstalk between abnormal pathways. This calls for using advanced molecular genetics to understand the underlying pathway interactions responsible for this cancer. In this paper, we construct the CRC pathway from the literature and using an existing public dataset on healthy vs tumor colon cells, we identify the genes and pathways that are mutated and are possibly responsible for the disease progression. We then introduce drugs in the CRC pathway, and using a boolean modeling technique, we deduce the drug combinations that produce maximum cell death. Our theoretical simulations demonstrate the effectiveness of Cryptotanshinone, a traditional Chinese herb derivative, achieved by targeting critical oncogenic mutations and enhancing cell death. Finally, we validate our theoretical results using wet lab experiments on HT29 and HCT116 human colorectal carcinoma cell lines.
Collapse
Affiliation(s)
- Haswanth Vundavilli
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, United States of America
- TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering (CBGSE), College Station, Texas, United States of America
| | - Aniruddha Datta
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, United States of America
- TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering (CBGSE), College Station, Texas, United States of America
| | - Chao Sima
- TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering (CBGSE), College Station, Texas, United States of America
| | - Jianping Hua
- TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering (CBGSE), College Station, Texas, United States of America
| | - Rosana Lopes
- TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering (CBGSE), College Station, Texas, United States of America
| | - Michael Bittner
- TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering (CBGSE), College Station, Texas, United States of America
| |
Collapse
|
21
|
Bittner ML, Lopes R, Hua J, Sima C, Datta A, Wilson-Robles H. Comprehensive live-cell imaging analysis of cryptotanshinone and synergistic drug-screening effects in various human and canine cancer cell lines. PLoS One 2021; 16:e0236074. [PMID: 33544704 PMCID: PMC7864433 DOI: 10.1371/journal.pone.0236074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
Background Several studies have highlighted both the extreme anticancer effects of Cryptotanshinone (CT), a Stat3 crippling component from Salvia miltiorrhiza, as well as other STAT3 inhibitors to fight cancer. Methods Data presented in this experiment incorporates 2 years of in vitro studies applying a comprehensive live-cell drug-screening analysis of human and canine cancer cells exposed to CT at 20 μM concentration, as well as to other drug combinations. As previously observed in other studies, dogs are natural cancer models, given to their similarity in cancer genetics, epidemiology and disease progression compared to humans. Results Results obtained from several types of human and canine cancer cells exposed to CT and varied drug combinations, verified CT efficacy at combating cancer by achieving an extremely high percentage of apoptosis within 24 hours of drug exposure. Conclusions CT anticancer efficacy in various human and canine cancer cell lines denotes its ability to interact across different biological processes and cancer regulatory cell networks, driving inhibition of cancer cell survival.
Collapse
Affiliation(s)
- Michael L. Bittner
- Center for Bioinformatics and Genomic Systems Engineering, Texas A&M Engineering Experiment Station, Texas A&M University, College Station, TX, United States of America
- Translational Genomics Research Institute, Phoenix, AZ, United States of America
| | - Rosana Lopes
- Center for Bioinformatics and Genomic Systems Engineering, Texas A&M Engineering Experiment Station, Texas A&M University, College Station, TX, United States of America
- * E-mail: (RL); (HWR)
| | - Jianping Hua
- Center for Bioinformatics and Genomic Systems Engineering, Texas A&M Engineering Experiment Station, Texas A&M University, College Station, TX, United States of America
| | - Chao Sima
- Center for Bioinformatics and Genomic Systems Engineering, Texas A&M Engineering Experiment Station, Texas A&M University, College Station, TX, United States of America
| | - Aniruddha Datta
- Center for Bioinformatics and Genomic Systems Engineering, Texas A&M Engineering Experiment Station, Texas A&M University, College Station, TX, United States of America
| | - Heather Wilson-Robles
- College of Veterinary Medicine, Texas A&M University, College Station, TX, United States of America
- * E-mail: (RL); (HWR)
| |
Collapse
|
22
|
Xu L, Liao WL, Lu QJ, Zhang P, Zhu J, Jiang GN. Hypoxic tumor-derived exosomal circular RNA SETDB1 promotes invasive growth and EMT via the miR-7/Sp1 axis in lung adenocarcinoma. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 23:1078-1092. [PMID: 33614250 PMCID: PMC7875767 DOI: 10.1016/j.omtn.2021.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023]
Abstract
Hypoxia is a common feature of solid tumors and has been associated with tumor aggressiveness and poor prognosis. Exosomes are involved in mediating cellular-environment interactions. Circular RNAs (circRNAs) are a class of non-coding RNA broadly found in cells and exosomes. However, the functions and regulatory mechanisms of exosomal circRNAs induced by hypoxia remain poorly understood in lung adenocarcinoma (LUAD) development. Differentially expressed circRNAs were identified between exosomes extracted from hypoxic and normoxic conditions through microarray analysis. We focused on hsa-circ-0003439 found on chromosome 1 and derived from SET domain bifurcated histone lysine methyltransferase 1 (SETDB1), and thus we named it circSETDB1. We discovered that exosomes obtained from hypoxic LUAD cells improved the migration, invasion, and proliferation capacity of normoxic LUAD cells. circSETDB1 was found to be significantly upregulated in hypoxia-induced exosomes from LUAD cell lines compared with exosomes in the normal condition. Moreover, knockdown of circSETDB1 significantly inhibited cell malignant growth in vitro. Importantly, we showed that circSETDB1 was upregulated in serum exosomes in LUAD patients, and exosomal circSETDB1 levels were closely associated with disease stage. Finally, using RNA immunoprecipitation (RIP), bioinformatics, and luciferase reporter assays, we elucidated the implication of a circSETDB1/miR-7/specificity protein 1 (Sp1) axis in the development and epithelial-mesenchymal transition (EMT) of lung adenocarcinoma.
Collapse
Affiliation(s)
- Li Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,Department of General Thoracic Surgery, Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Wei-Lin Liao
- Department of Thoracic Surgery, General Hospital of Western Theater Command, Chengdu, China
| | - Qi-Jue Lu
- Department of Thoracic Surgery, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Ji Zhu
- Department of Thoracic Surgery, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Ge-Ning Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
23
|
Kong J, Shen S, Zhang Z, Wang W. Identification of hub genes and pathways in cholangiocarcinoma by coexpression analysis. Cancer Biomark 2020; 27:505-517. [PMID: 32116234 DOI: 10.3233/cbm-190038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is the most common biliary malignancy worldwide. However, the molecular mechanisms of its tumorigenesis and progression are still largely unclear. OBJECTIVE This study aimed to explore the hub genes and pathways associated with CCA prognosis by coexpression analysis. METHODS A coexpression network complex was constructed using the top 20% most variant genes in the GSE89748 dataset to find modules associated with prognosis related clinical trait-histology. The hub genes in the clinically significant modules were defined as candidates if they were common in both the coexpression network and protein-protein interaction (PPI) network. Afterwards, survival analysis, expression level analysis and a series of bioinformatic analysis were used to validate the hub genes. RESULTS Twenty-five modules were obtained, and the cyan, light cyan and red modules regarded as closely associated with histology were selected. Subsequently, combining the PPI network complexes and coexpression networks, we screened 20 candidates. After expression and survival analysis, 10 real hub genes (LIMA1, HDAC1, ITGA3, ACTR3, GSK3B, ITGA2, THOC2, PTGES3, HEATR1 and ILF2) were finally identified. Additionally, functional enrichment analysis revealed that the hub genes were mainly enriched in cell cycle-related pathways. CONCLUSIONS Overall, this study identified 10 hub genes and cell cycle-related pathways were closely related to CCA development, progression and prognosis, which may contribute to CCA diagnosis and treatment.
Collapse
|
24
|
Wu YH, Wu YR, Li B, Yan ZY. Cryptotanshinone: A review of its pharmacology activities and molecular mechanisms. Fitoterapia 2020; 145:104633. [DOI: 10.1016/j.fitote.2020.104633] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/03/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
|
25
|
Cryptotanshinone chemosensitivity potentiation by TW-37 in human oral cancer cell lines by targeting STAT3-Mcl-1 signaling. Cancer Cell Int 2020; 20:405. [PMID: 32863764 PMCID: PMC7448991 DOI: 10.1186/s12935-020-01495-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
Background Despite being one of the leading cancer types in the world, the diagnosis of oral cancer and its suitable therapeutic options remain limited. This study aims to investigate the single and chemosensitizing effects of TW-37, a BH3 mimetic in oral cancer, on human oral cancer cell lines. Methods We assessed the single and chemosensitizing effects of TW-37 in vitro using trypan blue exclusion assay, Western blotting, DAPI staining, Annexin V–FITC/PI double staining, and quantitative real-time PCR. Mcl-1 overexpression models were established by transforming vector and transient transfection was performed to test for apoptosis Results TW-37 enhanced the cytotoxicity of human oral cancer cell lines by inducing caspase-dependent apoptosis, which correlates with the reduction of the myeloid cell leukemia-1 (Mcl-1) expression via transcriptional and post-translational regulation. The ectopic expression of Mcl-1 partially attenuated the apoptosis-inducing capacity of TW-37 in human oral cancer cell lines. Besides, TW-37 decreased the phosphorylation of signal transducer and activator of transcription 3 (STAT3) at Tyr705 and nuclear translocation in human oral cancer cell lines at the early time points. Furthermore, TW-37 potentiated chemosusceptibility of cryptotanshinone in human oral cancer cell lines by suppressing STAT3–Mcl-1 signaling compared with either TW-37 or cryptotanshinone alone, resulting in potent apoptosis. Conclusions This study not only unravels the single and chemosensitizing effects of TW-37 for treatment of human oral cancer but also highlights the likelihood of TW-37 as a good therapeutic strategy to enhance the prognosis of patients with oral cancer in the future.
Collapse
|
26
|
Ashrafizadeh M, Zarrabi A, Orouei S, Saberifar S, Salami S, Hushmandi K, Najafi M. Recent advances and future directions in anti-tumor activity of cryptotanshinone: A mechanistic review. Phytother Res 2020; 35:155-179. [PMID: 33507609 DOI: 10.1002/ptr.6815] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/29/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
In respect to the enhanced incidence rate of cancer worldwide, studies have focused on cancer therapy using novel strategies. Chemotherapy is a common strategy in cancer therapy, but its adverse effects and chemoresistance have limited its efficacy. So, attempts have been directed towards minimally invasive cancer therapy using plant derived-natural compounds. Cryptotanshinone (CT) is a component of salvia miltiorrihiza Bunge, well-known as Danshen and has a variety of therapeutic and biological activities such as antioxidant, anti-inflammatory, anti-diabetic and neuroprotective. Recently, studies have focused on anti-tumor activity of CT against different cancers. Notably, this herbal compound is efficient in cancer therapy by targeting various molecular signaling pathways. In the present review, we mechanistically describe the anti-tumor activity of CT with an emphasis on molecular signaling pathways. Then, we evaluate the potential of CT in cancer immunotherapy and enhancing the efficacy of chemotherapy by sensitizing cancer cells into anti-tumor activity of chemotherapeutic agents, and elevating accumulation of anti-tumor drugs in cancer cells. Finally, we mention strategies to enhance the anti-tumor activity of CT, for instance, using nanoparticles to provide targeted drug delivery.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.,Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, Turkey
| | - Sima Orouei
- MSc. Student, Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sedigheh Saberifar
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Saeed Salami
- DVM. Graduated, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
27
|
Lee JE, Sim H, Yoo HM, Lee M, Baek A, Jeon YJ, Seo KS, Son MY, Yoon JS, Kim J. Neuroprotective Effects of Cryptotanshinone in a Direct Reprogramming Model of Parkinson's Disease. Molecules 2020; 25:molecules25163602. [PMID: 32784741 PMCID: PMC7463464 DOI: 10.3390/molecules25163602] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease (PD) is a well-known age-related neurodegenerative disease. Considering the vital importance of disease modeling based on reprogramming technology, we adopted direct reprogramming to human-induced neuronal progenitor cells (hiNPCs) for in vitro assessment of potential therapeutics. In this study, we investigated the neuroprotective effects of cryptotanshinone (CTN), which has been reported to have antioxidant properties, through PD patient-derived hiNPCs (PD-iNPCs) model with induced oxidative stress and cell death by the proteasome inhibitor MG132. A cytotoxicity assay showed that CTN possesses anti-apoptotic properties in PD-hiNPCs. CTN treatment significantly reduced cellular apoptosis through mitochondrial restoration, such as the reduction in mitochondrial reactive oxygen species and increments of mitochondrial membrane potential. These effects of CTN are mediated via the nuclear factor erythroid 2-related factor 2 (NRF2) pathway in PD-hiNPCs. Consequently, CTN could be a potential antioxidant reagent for preventing disease-related pathological phenotypes of PD.
Collapse
Affiliation(s)
- Joo-Eun Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-E.L.); (H.S.); (M.L.); (A.B.); (Y.-J.J.); (M.-Y.S.)
| | - Hyuna Sim
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-E.L.); (H.S.); (M.L.); (A.B.); (Y.-J.J.); (M.-Y.S.)
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea
| | - Hee Min Yoo
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea;
| | - Minhyung Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-E.L.); (H.S.); (M.L.); (A.B.); (Y.-J.J.); (M.-Y.S.)
| | - Aruem Baek
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-E.L.); (H.S.); (M.L.); (A.B.); (Y.-J.J.); (M.-Y.S.)
| | - Young-Joo Jeon
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-E.L.); (H.S.); (M.L.); (A.B.); (Y.-J.J.); (M.-Y.S.)
| | - Kang-Sik Seo
- Huen Co., Ltd., Gwanggyo Business Center 5F (#508), 156, Gwanggyo-ro, Yeongtong-gu, Suwon 16506, Korea;
| | - Mi-Young Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-E.L.); (H.S.); (M.L.); (A.B.); (Y.-J.J.); (M.-Y.S.)
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea
| | - Joo Seog Yoon
- Huen Co., Ltd., Gwanggyo Business Center 5F (#508), 156, Gwanggyo-ro, Yeongtong-gu, Suwon 16506, Korea;
- Correspondence: (J.S.Y.); (J.K.); Tel.: +82-31-8064-1622 (J.S.Y.); +82-42-860-4478 (J.K.)
| | - Janghwan Kim
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-E.L.); (H.S.); (M.L.); (A.B.); (Y.-J.J.); (M.-Y.S.)
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (J.S.Y.); (J.K.); Tel.: +82-31-8064-1622 (J.S.Y.); +82-42-860-4478 (J.K.)
| |
Collapse
|
28
|
Liu M, Huang X, Tian Y, Yan X, Wang F, Chen J, Zhang Q, Zhang Q, Yuan X. Phosphorylated GSK‑3β protects stress‑induced apoptosis of myoblasts via the PI3K/Akt signaling pathway. Mol Med Rep 2020; 22:317-327. [PMID: 32377749 PMCID: PMC7248528 DOI: 10.3892/mmr.2020.11105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 02/17/2020] [Indexed: 01/02/2023] Open
Abstract
Facial jaw muscle is involved in the occurrence, development, treatment and maintenance of maxillofacial deformities. The structure and function of this tissue can be altered by changes in external stimuli, and orthodontists can regulate its reconstruction using orthopedic forces. The PI3K/Akt signaling pathway is most well‑known for its biological functions in cell proliferation, survival and apoptosis. In the present study, the effects of the PI3K/Akt signaling pathway in cyclic stretch‑induced myoblast apoptosis were investigated. For this purpose, L6 rat myoblasts were cultured under mechanical stimulation and treated with the PI3K kinase inhibitor, LY294002, to elucidate the role of the PI3K/Akt signaling pathway. Cells were stained with Hoechst 33258 to visualize morphological changes and apoptosis of myoblasts, and western blotting was performed to detect expression of Akt, phosphorylated (p)‑Akt (Ser473), glycogen synthase kinase 3β (GSK‑3β) and p‑GSK‑3β (Ser9). After addition of PI3K inhibitor, the expression of total Akt and GSK‑3β did not significantly differ among groups; however, the levels of p‑Akt and p‑GSK‑3β were lower in inhibitor‑treated groups than in those treated with loading stress alone. In addition, the rate of apoptosis in myoblasts subjected to cyclic stretch increased in a time‑dependent manner, peaking at 24 h. Collectively, it was also demonstrated that the PI3K/Akt/GSK‑3β pathway plays an important role in stretch‑induced myoblast apoptosis.
Collapse
Affiliation(s)
- Meixi Liu
- Department of Orthodontics II, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
- School of Stomatology of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xia Huang
- Department of Nursing and Hospital Infection Management, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Yihong Tian
- Department of Orthodontics II, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
- School of Stomatology of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiao Yan
- Department of Orthodontics II, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Fang Wang
- Department of Orthodontics, Xiaoshan Branch of Hangzhou Stomatology Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Junbo Chen
- School of Stomatology of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Qi Zhang
- School of Stomatology of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Qiang Zhang
- Department of Orthodontics II, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiao Yuan
- Department of Orthodontics II, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
29
|
Ren S, Xing Y, Wang C, Jiang F, Liu G, Li Z, Jiang T, Zhu Y, Piao D. Fraxetin inhibits the growth of colon adenocarcinoma cells via the Janus kinase 2/signal transducer and activator of transcription 3 signalling pathway. Int J Biochem Cell Biol 2020; 125:105777. [PMID: 32504672 DOI: 10.1016/j.biocel.2020.105777] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Fraxetin, extracted from the bark of Fraxinus rhynchophylla, has been shown to exhibit antitumour and anti-inflammatory pharmacological properties. However, the mechanism underlying its anticancer activity towards colon adenocarcinoma (COAD) is not well understood. We aimed to determine the antitumour effect of fraxetin on COAD cell lines and elucidate its biochemical and molecular targets. METHODS The cell lines HCT116 and DLD-1 were used to evaluate the in vitro antitumour efficacy of fraxetin. Cytotoxicity and viability were assessed by CCK-8 and plate colony formation assays. Flow cytometry was used to assess apoptosis and cell cycle progression in fraxetin-treated COAD cells. Western blot, RT-qPCR, molecular docking, immunohistochemical, and immunofluorescence analyses were used to gain insights into cellular and molecular mechanisms. Preclinical curative effects were evaluated in nude mouse xenograft models. RESULTS Fraxetin significantly inhibited COAD cell proliferation in both dose- and time-dependent manners, specifically by inducing S-phase cell cycle arrest and triggering intrinsic apoptosis. Additionally, the level of p-JAK2 was decreased by fraxetin via the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signalling pathway. Interestingly, in COAD cells, fraxetin directly targeted the Y1007 and Y1008 residues of JAK2 to suppress its auto- or transphosphorylation, leading to decreased activation of its downstream effector STAT3 and blocking its nuclear translocation. Finally, fraxetin exhibited good tumour growth suppression activity and low toxicity. CONCLUSIONS Fraxetin inhibits the proliferation of COAD cells by regulating the JAK2/STAT3 signalling pathway, providing evidence that targeting JAK2 with fraxetin may offer a novel potential auxiliary therapy for COAD treatment.
Collapse
Affiliation(s)
- Shuo Ren
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yanwei Xing
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Chengbo Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Fengqi Jiang
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Guangyu Liu
- Department of Anorectal Surgery, The Shenzhen Hospital of Southern Medical University, Southern Medical University, Shenzhen, China
| | - Ziyi Li
- The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Tao Jiang
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yuekun Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Daxun Piao
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China.
| |
Collapse
|
30
|
Du D, Shen X, Zhang Y, Yin L, Pu Y, Liang G. Expression of long non-coding RNA SFTA1P and its function in non-small cell lung cancer. Pathol Res Pract 2020; 216:153049. [PMID: 32825934 DOI: 10.1016/j.prp.2020.153049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/23/2020] [Accepted: 06/05/2020] [Indexed: 10/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a major type of lung cancer with high morbidity and mortality. Long non-coding RNAs (lncRNAs) have been reported to be important in development and progression of NSCLC. However, the role of lncRNA SFTA1P remains unclear. This study aims to explore the clinical roles, biological function, and mechanism of SFTA1P in NSCLC. SFTA1P expression was estimated by the quantitative real-time polymerase chain reaction (qRT-PCR) of 90 pairs of tissue samples, the Cancer Genome Atlas (TCGA) database and microarray. After overexpressing SFTA1P, NSCLC cell proliferation, cycle, and apoptosis were detected. We found that the expression of SFTA1P was significantly downregulated in NSCLC tissues with high diagnostic value (AUC = 0.87), which was consistent with the results of TCGA and microarray data. For the analysis of clinical features, the results revealed that SFTA1P expression was closely related to the pathological type (P < 0.01). Furthermore, the cell function results suggested that the overexpression of SFTA1P triggered cell cycle arrest in the S-phase (P < 0.05). From a mechanistic perspective, the results showed that the PI3K-AKT signaling pathway was inhibited after overexpression of SFTA1P in NSCLC. Taken together, this work supported that SFTA1P may play a suppressing role in the tumorigenesis of NSCLC by modulating PI3K-AKT signaling pathway to influence cell cycle, which provides a potential and prospective biomarker for NSCLC.
Collapse
Affiliation(s)
- Dandan Du
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Xian Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Yanqiu Zhang
- Department of Environmental Occupational Health, Taizhou Center for Disease Control and Prevention, No.318 Yongtai Road, Hailing District, Taizhou City, Jiangsu Province, PR China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
31
|
Al-Azab M, Wang B, Elkhider A, Walana W, Li W, Yuan B, Ye Y, Tang Y, Almoiliqy M, Adlat S, Wei J, Zhang Y, Li X. Indian Hedgehog regulates senescence in bone marrow-derived mesenchymal stem cell through modulation of ROS/mTOR/4EBP1, p70S6K1/2 pathway. Aging (Albany NY) 2020; 12:5693-5715. [PMID: 32235006 PMCID: PMC7185126 DOI: 10.18632/aging.102958] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022]
Abstract
Premature senescence of bone marrow-derived mesenchymal stem cells (BMSC) remains a major concern for their application clinically. Hedgehog signaling has been reported to regulate aging-associated markers and MSC skewed differentiation. Indian Hedgehog (IHH) is a ligand of Hedgehog intracellular pathway considered as an inducer in chondrogenesis of human BMSC. However, the role of IHH in the aging of BMSC is still unclear. This study explored the role IHH in the senescence of BMSC obtained from human samples and senescent mice. Isolated BMSC were transfected with IHH siRNA or incubated with exogenous IHH protein and the mechanisms of aging and differentiation investigated. Moreover, the interactions between IHH, and mammalian target of rapamycin (mTOR) and reactive oxygen species (ROS) were evaluated using the corresponding inhibitors and antioxidants. BMSC transfected with IHH siRNA showed characteristics of senescence-associated features including increased senescence-associated β-galactosidase activity (SA-β-gal), induction of cell cycle inhibitors (p53/p16), development of senescence-associated secretory phenotype (SASP), activation of ROS and mTOR pathways as well as the promotion of skewed differentiation. Interestingly, BMSC treatment with IHH protein reversed the senescence markers and corrected biased differentiation. Moreover, IHH shortage-induced senescence signs were compromised after mTOR and ROS inhibition. Our findings presented anti-aging activity for IHH in BMSC through down-regulation of ROS/mTOR pathways. This discovery might contribute to increasing the therapeutic, immunomodulatory and regenerative potency of BMSC and introduce a novel remedy in the management of aging-related diseases.
Collapse
Affiliation(s)
- Mahmoud Al-Azab
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China.,Department of Immunology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bing Wang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Abdalkhalig Elkhider
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Williams Walana
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China.,Department of Clinical Microbiology, University for Development Studies, Tamale, Ghana
| | - Weiping Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Bo Yuan
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Yunshan Ye
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Yawei Tang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Marwan Almoiliqy
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Liaoning, China
| | - Salah Adlat
- Key Laboratory of Molecular Epigenetics of MOE, School of Life Science, Northeast Normal University, Changchun, Jilin Province, China
| | - Jing Wei
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Yan Zhang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| |
Collapse
|
32
|
Fu L, Han B, Zhou Y, Ren J, Cao W, Patel G, Kai G, Zhang J. The Anticancer Properties of Tanshinones and the Pharmacological Effects of Their Active Ingredients. Front Pharmacol 2020; 11:193. [PMID: 32265690 PMCID: PMC7098175 DOI: 10.3389/fphar.2020.00193] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/11/2020] [Indexed: 12/31/2022] Open
Abstract
Cancer is a common malignant disease worldwide with an increasing mortality in recent years. Salvia miltiorrhiza, a well-known traditional Chinese medicine, has been used for the treatment of cardiovascular and cerebrovascular diseases for thousands of years. The liposoluble tanshinones in S. miltiorrhiza are important bioactive components and mainly include tanshinone IIA, dihydrodanshinone, tanshinone I, and cryptotanshinone. Previous studies showed that these four tanshinones exhibited distinct inhibitory effects on tumor cells through different molecular mechanisms in vitro and in vivo. The mechanisms mainly include the inhibition of tumor cell growth, metastasis, invasion, and angiogenesis, apoptosis induction, cell autophagy, and antitumor immunity, and so on. In this review, we describe the latest progress on the antitumor functions and mechanisms of these four tanshinones to provide a deeper understanding of the efficacy. In addition, the important role of tumor immunology is also reviewed.
Collapse
Affiliation(s)
- Li Fu
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China
| | - Bing Han
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Zhou
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China
| | - Jie Ren
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China
| | - Wenzhi Cao
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China
| | - Gopal Patel
- Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guoyin Kai
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China.,Laboratory of Medicinal Plant Biotechnology, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Zhang
- School of Life Sciences, Institute of Plant Biotechnology, Shanghai Normal University, Shanghai, China
| |
Collapse
|
33
|
Zhang ZH, Li MY, Wang Z, Zuo HX, Wang JY, Xing Y, Jin C, Xu G, Piao L, Piao H, Ma J, Jin X. Convallatoxin promotes apoptosis and inhibits proliferation and angiogenesis through crosstalk between JAK2/STAT3 (T705) and mTOR/STAT3 (S727) signaling pathways in colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153172. [PMID: 32004989 DOI: 10.1016/j.phymed.2020.153172] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/09/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Aberrant activation of STAT3 is frequently encountered and promotes survival, cellular proliferation, migration, invasion and angiogenesis in tumor cell. Convallatoxin, triterpenoid ingredient, exhibits anticancer pharmacological properties. PURPOSE In this work, we investigated the anticancer potential of convallatoxin and explored whether convallatoxin mediates its effect through interference with the STAT3 activation in colorectal cancer cells. METHODS In vitro, the underlying mechanisms of convallatoxin at inhibiting STAT3 activation were investigated by homology modeling and molecular docking, luciferase reporter assay, MTT assay, RT-PCR, Western blotting and immunofluorescence assays. Changes in cellular proliferation, apoptosis, migration, invasion and angiogenesis were analyzed by EdU labeling assay, colony formation assay, flow cytometry assay, wound-healing assay, matrigel transwell invasion assay and tube formation assays. And in vivo, antitumor activity of convallatoxin was assessed in a murine xenograft model of HCT116 cells. RESULTS Convallatoxin decreased the viability of colorectal cancer lines. Moreover, convallatoxin reduced the P-STAT3 (T705) via the JAK1, JAK2, and Src pathways and inhibited serine-727 phosphorylation of STAT3 via the PI3K-AKT-mTOR-STAT3 pathways in colorectal cancer cells. Interestingly, we discovered the crosstalk between mTOR and JAK2 in mTOR/STAT3 and JAK/STAT3 pathways, which collaboratively regulated STAT3 activation and convallatoxin play a role in it. Convallatoxin also downregulated the expression of target genes involved cell survival (e.g., Survivin, Bcl-xl, Bcl-2), proliferation (e.g., Cyclin D1), metastasis (e.g., MMP-9), and angiogenesis (e.g., VEGF). Indeed, we found that convallatoxin inhibited tube formation, migration, and invasion of endothelial cells, and inhibited the proliferation. Finally, in vivo observations were confirmed by showing antitumor activity of convallatoxin in a murine xenograft model. CONCLUSION The result of the current study show that convallatoxin promotes apoptosis and inhibits proliferation and angiogenesis through crosstalk between JAK2/STAT3 (T705) and mTOR/STAT3 (S727) signaling pathways in colorectal cancer cells and indicate that convallatoxin could be a valuable candidate for the development of colorectal cancer therapeutic.
Collapse
Affiliation(s)
- Zhi Hong Zhang
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Molecular Medicine Research Center, Ministry of education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ming Yue Li
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Molecular Medicine Research Center, Ministry of education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Zhe Wang
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Molecular Medicine Research Center, Ministry of education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Xiang Zuo
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Molecular Medicine Research Center, Ministry of education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Jing Ying Wang
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Molecular Medicine Research Center, Ministry of education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yue Xing
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Molecular Medicine Research Center, Ministry of education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Chenghua Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Molecular Medicine Research Center, Ministry of education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Guanghua Xu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Molecular Medicine Research Center, Ministry of education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Lianxun Piao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Molecular Medicine Research Center, Ministry of education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hongxin Piao
- Yanbian University Affiliated Hospital/Liver Diseases Branch, China.
| | - Juan Ma
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Molecular Medicine Research Center, Ministry of education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Molecular Medicine Research Center, Ministry of education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
34
|
Wang JR, Li TZ, Wang C, Li SM, Luo YH, Piao XJ, Feng YC, Zhang Y, Xu WT, Zhang Y, Zhang T, Wang SN, Xue H, Wang HX, Cao LK, Jin CH. Liquiritin inhibits proliferation and induces apoptosis in HepG2 hepatocellular carcinoma cells via the ROS-mediated MAPK/AKT/NF-κB signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1987-1999. [PMID: 31956937 DOI: 10.1007/s00210-019-01763-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022]
Abstract
Liquiritin (LIQ), a major constituent of Glycyrrhiza Radix, exhibits various pharmacological activities. In this study, to explore the potential anti-cancer effects and its underlying molecular mechanisms of LIQ in hepatocellular carcinoma (HCC) cells. LIQ significantly decreased viability and induced apoptosis in HepG2 cells by decreasing mitochondrial membrane potential and regulating Bcl-2 family proteins, cytochrome c, cle-caspase-3, and cle-PARP. The cell cycle analysis and western blot analysis revealed that LIQ induced G2/M phase arrest through increased expression of p21 and decreased levels of p27, cyclin B, and CDK1/2. The flow cytometry and western blot analysis also suggested that LIQ promoted the accumulation of ROS in HepG2 cells and up-regulated the phosphorylation expression levels of p38 kinase, c-Jun N-terminal kinase (JNK), and inhibitor of NF-κB (IκB-α); the phosphorylation levels of extracellular signal-regulated kinase (ERK), protein kinase B (AKT), signal transducer activator of transcription 3 (STAT3), and nuclear factor kappa B (NF-κB) were down-regulated. However, these effects were reversed by N-acetyl-L-cysteine (NAC), MAPK, and AKT inhibitors. The findings demonstrated that LIQ induced cell cycle arrest and apoptosis via the ROS-mediated MAPK/AKT/NF-κB signaling pathway in HepG2 cells, and the LIQ may serve as a potential therapeutic agent for the treatment of human HCC.
Collapse
Affiliation(s)
- Jia-Ru Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Tian-Zhu Li
- Molecular Medicine Research Center, School of Basic Medical Science, Chifeng University, Chifeng, 024000, China
| | - Cheng Wang
- Pharmacy Department, Daqing Oilfield General Hospital, Daqing, 163001, China
| | - Shu-Mei Li
- Hemodialysis Center, Daqing Oilfield General Hospital, Daqing, 163001, China
| | - Ying-Hua Luo
- Department of Grass Science, College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xian-Ji Piao
- Department of Gynaecology and Obstetrics, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, 163316, China
| | - Yu-Chao Feng
- Department of Food Science and Engineering, College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yi Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Tong Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Shi-Nong Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Hui Xue
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Hong-Xing Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Long-Kui Cao
- Department of Food Science and Engineering, College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China. .,National Coarse Cereals Engineering Research Center, Daqing, 163319, Heilongjiang, China.
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China. .,Department of Food Science and Engineering, College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China. .,National Coarse Cereals Engineering Research Center, Daqing, 163319, Heilongjiang, China.
| |
Collapse
|
35
|
Liu Y, Lin F, Chen Y, Wang R, Liu J, Jin Y, An R. Cryptotanshinone Inhibites Bladder Cancer Cell Proliferation and Promotes Apoptosis via the PTEN/PI3K/AKT Pathway. J Cancer 2020; 11:488-499. [PMID: 31897244 PMCID: PMC6930428 DOI: 10.7150/jca.31422] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 09/22/2019] [Indexed: 12/14/2022] Open
Abstract
Cryptotanshinone (CTT), extracted from the root of Salvia miltiorrhiza Bunge (Danshen), exhibits activities against a variety of human cancers in vitro and in vivo. The purpose of this study was to investigate the potential inhibitory effect of CTT on bladder cancer. In this study, we found that CTT inhibited bladder cancer cell proliferation, migration, and invasion and promoted apoptosis. In addition, CTT modulated the expression of proteins via the PI3K/AKT pathway, and the inhibition of PI3K/AKT signalling was due to induction of PTEN expression. Taken together, the results of the present study demonstrated the anticancer effect of CTT on bladder cancer cells, which might be associated with the downregulation of PI3K/AKT/mTOR and NF-κB signalling pathway proteins, and this inhibition was mediated by the induction of PTEN.
Collapse
Affiliation(s)
- Yadong Liu
- Department of Urology. The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Fanlu Lin
- Department of Urology. The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China.,Department of Urology. Linyi Central Hospital, Linyi, Shandong, 276400, People's Republic of China
| | - Yaodong Chen
- Department of ultrasonic imaging, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Rui Wang
- Department of Urology. The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Jiannan Liu
- Department of Urology. The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Yinshan Jin
- Department of Urology. The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Ruihua An
- Department of Urology. The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| |
Collapse
|
36
|
Wang C, Zheng M, Choi Y, Jiang J, Li L, Li J, Xu C, Xian Z, Li Y, Piao H, Li L, Yan G. Cryptotanshinone Attenuates Airway Remodeling by Inhibiting Crosstalk Between Tumor Necrosis Factor-Like Weak Inducer of Apoptosis and Transforming Growth Factor Beta 1 Signaling Pathways in Asthma. Front Pharmacol 2019; 10:1338. [PMID: 31780948 PMCID: PMC6859802 DOI: 10.3389/fphar.2019.01338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
The study is to investigate the effect of cryptotanshinone (CTS) on airway remodeling and the possible mechanism. Male BALB/c mice were pretreated with CTS or dexamethasone 30 min before nebulized inhalation of ovalbumin (OVA). CTS significantly inhibited OVA-induced increases of eosinophils and neutrophils infiltration of bronchoalveolar lavage fluids (BALFs), reduced airway resistance in asthmatic mice, decreased the accumulation of inflammatory cells, the hyperplasia of goblet cells and the deposition of collagen in asthmatic mice lung tissue, as well as markedly attenuated the leakage of inflammatory cells and the level of OVA-specific immunoglobulin E in BALFs. CTS also inhibited the expressions of alpha-smooth muscle actin, tumor necrosis factor-like weak inducer of apoptosis (TWEAK), Fn14, transforming growth factor (TGF)-β1, Smad4, and phosphorylation of Smad2/3 and STAT3 (Tyr705). In comparison to TWEAK inhibitor or TWEAK small interfering RNA (siRNA), which were used to inhibit TWEAK/STAT3 signaling pathways, CTS caused a similar effect as them on airway remodeling. Additionally, CTS also played a similar role as the TGF-β1 inhibitor or TGF-β1 siRNA in TGF-β1/STAT3 signaling pathways in airway remodeling. The anti-inflammatory effects of CTS against OVA-induced airway remodeling may be through inhibiting STAT3, which further suppresses TWEAK and TGF-β1 signaling cross talk in asthma. CTS may be a promising therapeutic reagent for asthma treatment.
Collapse
Affiliation(s)
- Chongyang Wang
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji, China
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji, China
| | - Mingyu Zheng
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji, China
- College of Pharmacy, Yanbian University, Yanji, China
| | - Yunho Choi
- Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, South Korea
| | - Jingzhi Jiang
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji, China
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji, China
| | - Li Li
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji, China
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji, China
| | - Junfeng Li
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji, China
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji, China
| | - Chang Xu
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji, China
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji, China
| | - Zhemin Xian
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji, China
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yan Li
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji, China
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, China
| | - Hongmei Piao
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji, China
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, China
| | - Liangchang Li
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji, China
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji, China
| | - Guanghai Yan
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji, China
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji, China
| |
Collapse
|
37
|
α7-Nicotinic Acetylcholine Receptor Promotes Cholangiocarcinoma Progression and Epithelial-Mesenchymal Transition Process. Dig Dis Sci 2019; 64:2843-2853. [PMID: 30949902 DOI: 10.1007/s10620-019-05609-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/27/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cholangiocarcinoma is one of the most deadly malignant tumors characterized by a tendency of local invasiveness and metastasis at the early phase, high recurrence rate, and difficulty in treatment. Alpha7-nicotinic acetylcholine receptor (α7-nAChR) is highly expressed in a variety of tumors, including cholangiocarcinoma, and may promote tumor progression, but the mechanisms are largely unknown. AIMS Our study is the first to expound upon the role that α7-nAChR plays in cholangiocarcinoma. METHODS We assessed 50 human cholangiocarcinoma tissue samples and 20 normal biliary samples using immunohistochemical staining to find the correlation between α7-nAChR expression and clinicopathological characteristics. We used human cholangiocarcinoma cell lines QBC939 and RBE and α7-nAChR gene knockdown RBE cell lines generated by shRNA lentivirus transfection to investigate the biological functions of α7-nAChR in proliferation, apoptosis, migration, and invasiveness in vitro. Further, western blotting was used to detect apoptosis and epithelial-mesenchymal transition (EMT)-related signaling proteins. Cholangiocarcinoma xenografts in nude mice were used for tumorigenicity assays in vivo. RESULTS The expression of α7-nAChR was high in cholangiocarcinoma tissues and was closely related to a shorter survival time in patients. α7-nAChR knockdown decreased cell proliferation ability, increased early apoptosis, and weakened cell migration and invasion. Apoptosis-related proteins and components of the EMT process were altered after α7-nAChR knockdown. Moreover, nude mice xenograft experiments confirmed that α7-nAChR could promote cholangiocarcinoma in vitro. CONCLUSIONS Overexpression of α7-nAChR induces cholangiocarcinoma progression by blocking apoptosis and promoting the EMT process. As an effective molecular biomarker and prognostic factor, α7-nAChR is a promising therapeutic target in cholangiocarcinoma.
Collapse
|
38
|
Luo Y, Feng Y, Song L, He GQ, Li S, Bai SS, Huang YJ, Li SY, Almutairi MM, Shi HL, Wang Q, Hong M. A network pharmacology-based study on the anti-hepatoma effect of Radix Salviae Miltiorrhizae. Chin Med 2019; 14:27. [PMID: 31406500 PMCID: PMC6685170 DOI: 10.1186/s13020-019-0249-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Radix Salviae Miltiorrhizae (RSM), a well-known traditional Chinese medicine, has been shown to inhibit tumorigenesis in various human cancers. However, the anticancer effects of RSM on human hepatocellular carcinoma (HCC) and the underlying mechanisms of action remain to be fully elucidated. METHODS In this study, we aimed to elucidate the underlying molecular mechanisms of RSM in the treatment of HCC using a network pharmacology approach. In vivo and in vitro experiments were also performed to validate the therapeutic effects of RSM on HCC. RESULTS In total, 62 active compounds from RSM and 72 HCC-related targets were identified through network pharmacological analysis. RSM was found to play a critical role in HCC via multiple targets and pathways, especially the EGFR and PI3K/AKT signaling pathways. In addition, RSM was found to suppress HCC cell proliferation, and impair cancer cell migration and invasion in vitro. Flow cytometry analysis revealed that RSM induced cell cycle G2/M arrest and apoptosis, and western blot analysis showed that RSM up-regulated the expression of BAX and down-regulated the expression of Bcl-2 in MHCC97-H and HepG2 cells. Furthermore, RSM administration down-regulated the expression of EGFR, PI3K, and p-AKT proteins, whereas the total AKT level was not altered. Finally, the results of our in vivo experiments confirmed the therapeutic effects of RSM on HCC in nude mice. CONCLUSIONS We provide an integrative network pharmacology approach, in combination with in vitro and in vivo experiments, to illustrate the underlying therapeutic mechanisms of RSM action on HCC.
Collapse
Affiliation(s)
- Yi Luo
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Yu Feng
- Department of Traumatology, General Hospital of Ningxia Medical University, Yinchuan, 750004 China
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lei Song
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Gan-Qing He
- Department of Gastroenterology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 501260 China
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sha-Sha Bai
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Yu-Jie Huang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Si-Ying Li
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS USA
| | | | - Hong-Lian Shi
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS USA
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Ming Hong
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| |
Collapse
|
39
|
Yan W, Wang X, Liu T, Chen L, Han L, Xu J, Jin G, Harada K, Lin Z, Ren X. Expression of endoplasmic reticulum oxidoreductase 1-α in cholangiocarcinoma tissues and its effects on the proliferation and migration of cholangiocarcinoma cells. Cancer Manag Res 2019; 11:6727-6739. [PMID: 31410063 PMCID: PMC6650092 DOI: 10.2147/cmar.s188746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 06/13/2019] [Indexed: 12/24/2022] Open
Abstract
Abstract Endoplasmic reticulum oxidoreductase 1-α (ERO1A) is a kind of hypoxia-induced endoplasmic reticulum oxidase that regulates translation and folding of oxidized proteins. This study aimed to explore the clinicopathological significance of ERO1A and the effect on the biological behavior of cholangiocarcinoma (CCA) cells. Methods Immunohistochemical staining was used to detect the expression of ERO1A, carcinoembryonic antigen (CEA), and carbohydrate antigen 19–9 (CA19-9) in cholangiocarcinoma. Immunofluorescence staining was performed to detect the subcellular localization of ERO1A in CCA cells. The expression of ERO1A in CAA cells after depletion or overexpression was verified by Western blot assay. Then, the effect of ERO1A on proliferation in CCA cells was verified by MTT assay and colony formation assay. Wound healing assays and migration assays were performed to detect the effect of ERO1A on cell migration ability. Finally, we explored the role of ERO1A in EMT and Akt/mTOR signaling pathway. Results In this study, our data demonstrated that ERO1A, CEA, and CA19-9 were expressed in cholangiocarcinoma tissues, and the positive rates were 95%, 95%, and 55%, respectively. The high expression of ERO1A is associated with clinical stage and pathological stage of CCA. In vitro data indicate that deletion of ERO1A can inhibit the proliferation and migration of CCA cells and vice versa. In addition, ERO1A has been shown to be closely related to EMT and Akt/mTOR pathways. Conclusion In summary, we found that high expression of ERO1A is associated with poor prognosis in patients, and ERO1A can promote the proliferation and migration of CCA cells. In conclusion, ERO1A can be used as an independent biomarker for predicting the prognosis of CCA.
Collapse
Affiliation(s)
- Wendi Yan
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, People's Republic of China
| | - Xue Wang
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, People's Republic of China
| | - Tesi Liu
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, People's Republic of China
| | - Liyan Chen
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji 133002, People's Republic of China
| | - Longzhe Han
- Department of Yanbian University Affiliated Hospital, Yanji 133002, People's Republic of China
| | - Jing Xu
- Department of Shanxi Medical University Medical College, Taiyuan 030001, People's Republic of China
| | - Guihua Jin
- Department of Immunology and Pathogenic Biology, Yanbian University College of Medicine, Yanji 133002, People's Republic of China
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa 920-8640, Japan
| | - Zhenhua Lin
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, People's Republic of China
| | - Xiangshan Ren
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, People's Republic of China.,Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji 133002, People's Republic of China
| |
Collapse
|
40
|
Shi G, Zhang H, Yu Q, Hu C, Ji Y. GATA1 gene silencing inhibits invasion, proliferation and migration of cholangiocarcinoma stem cells via disrupting the PI3K/AKT pathway. Onco Targets Ther 2019; 12:5335-5354. [PMID: 31456644 PMCID: PMC6620705 DOI: 10.2147/ott.s198750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/12/2019] [Indexed: 12/14/2022] Open
Abstract
Background/aims: Intrahepatic cholangiocarcinoma (CCA) is the second most prevalent type primary liver malignancy, accompanied by an increasing global incidence and mortality rate. Research has documented the contribution of the GATA binding protein-1 (GATA1) in the progression of liver cancer. Here, we aim to investigate the role of GATA1 in CCA stem cells via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. Methods: Initially, microarray-based gene expression profiling was employed to identify the differentially expressed genes associated with CCA. Subsequently, an investigation was conducted to explore the potential biological significance behind the silencing of GATA1 and the regulatory mechanism between GATA1 and PI3K/AKT pathway. CCA cell lines QBC-939 and RBE were selected and treated with siRNA against GATA1 or/and a PI3K/AKT pathway inhibitor LY294002. In vivo experiment was also conducted to confirm in vitro findings. Results: GATA1 exhibited higher expression in CCA samples and was predicted to affect the progression of CCA through blockade of the PI3K/AKT pathway. siRNA-mediated downregulation of GATA1 and LY294002 treatment resulted in reduced proliferation, migration and invasion abilities of CCA stem cells, together with impeded tumor growth, and led to increased cell apoptosis and primary cilium expression. Additionally, the siRNA-mediated GATA1 downregulation had an inhibitory effect on the PI3K/AKT pathway. LY294002 was manifested to enhance the inhibitory effects of GATA1 inhibition on CCA progression. These in vitro findings were reproduced in vivo on siRNA against GATA1 or LY294002 injected nude mice. Conclusion: Altogether, the present study highlighted that downregulation of GATA1 via blockade of the PI3K/AKT pathway could inhibit the CCA stem cell proliferation, migration and invasion, and tumor growth, and promote cell apoptosis, primary cilium expression.
Collapse
Affiliation(s)
- Guang Shi
- Department of Hematology and Oncology, the Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Hong Zhang
- Department of Clinical Medicine, Changchun Medical College, Changchun 130031, People's Republic of China
| | - Qiong Yu
- Department of Hematology and Oncology, the Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Chunmei Hu
- Department of Hematology and Oncology, the Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Youbo Ji
- Department of Pain, the Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| |
Collapse
|
41
|
Zhang W, Suo M, Yu G, Zhang M. Antinociceptive and anti-inflammatory effects of cryptotanshinone through PI3K/Akt signaling pathway in a rat model of neuropathic pain. Chem Biol Interact 2019; 305:127-133. [DOI: 10.1016/j.cbi.2019.03.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 01/18/2023]
|
42
|
Fouassier L, Marzioni M, Afonso MB, Dooley S, Gaston K, Giannelli G, Rodrigues CMP, Lozano E, Mancarella S, Segatto O, Vaquero J, Marin JJG, Coulouarn C. Signalling networks in cholangiocarcinoma: Molecular pathogenesis, targeted therapies and drug resistance. Liver Int 2019; 39 Suppl 1:43-62. [PMID: 30903728 DOI: 10.1111/liv.14102] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/13/2022]
Abstract
Cholangiocarcinoma (CCA) is a deadly disease. While surgery may attain cure in a minor fraction of cases, therapeutic options in either the adjuvant or advanced setting are limited. The possibility of advancing the efficacy of therapeutic approaches to CCA relies on understanding its molecular pathogenesis and developing rational therapies aimed at interfering with oncogenic signalling networks that drive and sustain cholangiocarcinogenesis. These efforts are complicated by the intricate biology of CCA, which integrates not only the driving force of tumour cell-intrinsic alterations at the genetic and epigenetic level but also pro-tumorigenic cues conveyed to CCA cells by different cell types present in the rich tumour stroma. Herein, we review our current understanding of the mechanistic bases underpinning the activation of major oncogenic pathways causative of CCA pathogenesis. We subsequently discuss how this knowledge is being exploited to implement rationale-based and genotype-matched therapeutic approaches that predictably will radically transform CCA clinical management in the next decade. We conclude by highlighting the mechanisms of therapeutic resistance in CCA and reviewing innovative approaches to combat resistance at the preclinical and clinical level.
Collapse
Affiliation(s)
- Laura Fouassier
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ospedali Riuniti - University Hospital, Ancona, Italy
| | - Marta B Afonso
- Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Steven Dooley
- Department of Medicine II, Molecular Hepatology Section, Heidelberg University, Mannheim, Germany
| | - Kevin Gaston
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Bari, Italy
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Elisa Lozano
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Serena Mancarella
- National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Bari, Italy
| | - Oreste Segatto
- Unit of Oncogenomics and Epigenetics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Javier Vaquero
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Sorbonne Université, CNRS, Ecole Polytech., Univ. Paris-Sud, Observatoire de Paris, Université Paris-Saclay, PSL Research University, Paris, France
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Cédric Coulouarn
- Inserm, Univ Rennes, Inra, Institut NuMeCan (Nutrition Metabolisms and Cancer), Rennes, France
| |
Collapse
|
43
|
Ahn KS, Kang KJ, Kim YH, Kim TS, Song BI, Kim HW, O'Brien D, Roberts LR, Lee JW, Won KS. Genetic features associated with 18F-FDG uptake in intrahepatic cholangiocarcinoma. Ann Surg Treat Res 2019; 96:153-161. [PMID: 30941318 PMCID: PMC6444048 DOI: 10.4174/astr.2019.96.4.153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/23/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose In intrahepatic cholangiocarcinoma (iCCA), genetic characteristics on 18F-fluorodeoxyglucose (18F-FDG)-PET scans are not yet clarified. If specific genetic characteristics were found to be related to FDG uptake in iCCA, we can predict molecular features based on the FDG uptake patterns and to distinguish different types of treatments. In this purpose, we analyzed RNA sequencing in iCCA patients to evaluate gene expression signatures associated with FDG uptake patterns. Methods We performed RNA sequencing of 22 cases iCCA who underwent preoperative 18F-FDG-PET, and analyzed the clinical and molecular features according to the maximum standard uptake value (SUVmax). Genes and biological pathway which are associated with SUVmax were analyzed. Results Patients with SUVmax higher than 9.0 (n = 9) had poorer disease-free survival than those with lower SUVmax (n = 13, P = 0.035). Genes related to glycolysis and gluconeogenesis, phosphorylation and cell cycle were significantly correlated with SUVmax (r ≥ 0.5). RRM2, which is related to the toxicity of Gemcitabine was positively correlated with SUVmax, and SLC27A2 which is associated with Cisplastin response was negatively correlated with SUVmax. According to the pathway analysis, cell cycle, cell division, hypoxia, inflammatory, and metabolism-related pathways were enriched in high SUVmax patients. Conclusion The genomic features of gene expression and pathways can be predicted by FDG uptake features in iCCA. Patients with high FDG uptake have enriched cell cycle, metabolism and hypoxic pathways, which may lead to a more rational targeted treatment approach.
Collapse
Affiliation(s)
- Keun Soo Ahn
- Department of Surgery, Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Korea.,Institute for Cancer Research, Keimyung University, Daegu, Korea
| | - Koo Jeong Kang
- Department of Surgery, Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Korea
| | - Yong Hoon Kim
- Department of Surgery, Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Korea
| | - Tae-Seok Kim
- Department of Surgery, Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Korea
| | - Bong-Il Song
- Department of Nuclear Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea
| | - Hae Won Kim
- Department of Nuclear Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea
| | - Daniel O'Brien
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Jeong Woo Lee
- Department of Surgery, Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Korea
| | - Kyoung Sook Won
- Department of Nuclear Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea
| |
Collapse
|
44
|
Wang R, Xu J, Xu J, Zhu W, Qiu T, Li J, Zhang M, Wang Q, Xu T, Guo R, Lu K, Yin Y, Gu Y, Zhu L, Huang P, Liu P, Liu L, De W, Shu Y. MiR-326/Sp1/KLF3: A novel regulatory axis in lung cancer progression. Cell Prolif 2019; 52:e12551. [PMID: 30485570 PMCID: PMC6495967 DOI: 10.1111/cpr.12551] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 09/27/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES To investigate the function and regulatory mechanism of Krüppel-like factor 3 (KLF3) in lung cancer. MATERIALS AND METHODS KLF3 expression was analysed by qRT-PCR and Western blot assays. The proliferation, migration, invasion, cycle and apoptosis were measured by CCK-8 and EdU, wound-healing and Transwell, and flow cytometry assays. The tumour growth was detected by nude mouse tumorigenesis assay. In addition, the interaction between KLF3 and Sp1 was accessed by luciferase reporter, EMSA and ChIP assay. JAK2, STAT3, PI3K and p-AKT levels were evaluated by Western blot and IHC assays. RESULTS The results indicated that KLF3 expression was elevated in lung cancer tissues. Knockdown of KLF3 inhibited lung cancer cell proliferation, migration and invasion, and induced cell cycle arrest and apoptosis. In addition, the downregulation of KLF3 suppressed tumour growth in vivo. KLF3 was transcriptionally activated by Sp1. miR-326 could bind to 3'UTR of Sp1 but not KLF3 and decreased the accumulation of Sp1, which further indirectly reduced KLF3 expression and inactivated JAK2/STAT3 and PI3K/AKT signaling pathways in vitro and in vivo. CONCLUSIONS Our data demonstrate that miR-326/Sp1/KLF3 regulatory axis is involved in the development of lung cancer, which hints the potential target for the further therapeutic strategy against lung cancer.
Collapse
Affiliation(s)
- Rong Wang
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Jiali Xu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Jing Xu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Wei Zhu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Tianzhu Qiu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Jun Li
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Meiling Zhang
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Qianqian Wang
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Tongpeng Xu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Renhua Guo
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Kaihua Lu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Yongmei Yin
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Yanhong Gu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Lingjun Zhu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Puwen Huang
- Department of OncologyLiyang people's Hospital of Jiangsu ProvinceLiyangChina
| | - Ping Liu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Lianke Liu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Wei De
- Department of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjingChina
| | - Yongqian Shu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| |
Collapse
|
45
|
Ji Y, Liu Y, Xue N, Du T, Wang L, Huang R, Li L, Yan C, Chen X. Cryptotanshinone inhibits esophageal squamous-cell carcinoma in vitro and in vivo through the suppression of STAT3 activation. Onco Targets Ther 2019; 12:883-896. [PMID: 30774375 PMCID: PMC6357882 DOI: 10.2147/ott.s187777] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose Esophageal squamous-cell carcinoma (ESCC) is the most common subtype of esophageal cancer, with a poor clinical outcome. Cryptotanshinone (CTS) is the main bioactive compound from the root of Salvia miltiorrhiza Bunge. Our study aimed to investigate the anti-cancer effects and molecular mechanisms of CTS on ESCC. Materials and methods We investigated the anti-tumor activity of CTS on ESCC in vitro and in vivo. Activation of the STAT3 signaling pathway was evaluated in ESCC and HEK-Blue™ IL-6 cells. Cell viability was assessed by the MTT assay. Apoptosis and cell cycle arrest were assessed using flow cytometry. Cell migration was detected by a scratch wound assay. Results CTS inhibited STAT3 expression and IL-6-mediated STAT3 activation in esophageal cancer cells. Subsequently, CTS dose-dependently inhibited the proliferation of esophageal cancer cells via induction of cell apoptosis. Furthermore, CTS suppressed the migration of esophageal cancer cells. In vivo, CTS inhibited tumor growth of EC109 cell in xenograft mice without any obvious effect on body weight. Conclusion Our results indicated that STAT3 inhibition may be a therapeutic target for esophageal cancer. CTS could provide a potential approach for esophageal cancer therapy by influencing the janus kinase-2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yubin Ji
- Research Center on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin 150076, People's Republic of China
| | - Yichen Liu
- Research Center on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin 150076, People's Republic of China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China,
| | - Nina Xue
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China,
| | - Tingting Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China,
| | - Liyuan Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China,
| | - Rui Huang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China,
| | - Ling Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China,
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University, Augusta, GA, USA,
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China,
| |
Collapse
|
46
|
Zhang L, Chen C, Duanmu J, Wu Y, Tao J, Yang A, Yin X, Xiong B, Gu J, Li C, Liu Z. Cryptotanshinone inhibits the growth and invasion of colon cancer by suppressing inflammation and tumor angiogenesis through modulating MMP/TIMP system, PI3K/Akt/mTOR signaling and HIF-1α nuclear translocation. Int Immunopharmacol 2018; 65:429-437. [PMID: 30388517 DOI: 10.1016/j.intimp.2018.10.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022]
Abstract
The aim of this study was to evaluate the pharmacological effects of CPT on CT26 colon cancer cells in vivo and in vitro, and to reveal the potential mechanism. CPT suppressed the proliferation and growth of CT26 colon cancer in vitro and in vivo. CPT inhibited the invasion of CT26 cells in vitro, and decreased the protein expressions of matrix metalloproteinase-2 (MMP-2) and MMP-9 but increased those of tissue inhibitor of metallopeptidase-1 (TIMP-1) and TIMP-2 in vitro and in vivo. It also inhibited tumor cell-induced angiogenesis of endothelial cells in vitro and rat aortic ring angiogenesis ex vivo, and possibly by suppressing angiogenesis-associated factors. CPT suppressed the expressions of inflammatory factors in vivo and in vitro. Mechanism studies showed that CPT inhibited the PI3K/AKT/mTOR signaling pathway, as evidenced by decreased expressions of phospho-PI3K (p-PI3K), p-Akt and p-mTOR. Moreover, CPT significantly suppressed the nuclear expression but increased the cytosolic expression of hypoxia inducible factor-1α (HIF-1α). Collectively, CPT inhibited the growth, invasion, inflammation and angiogenesis in CT26 colon cancer, and at least partly, by regulating the PI3K/Akt/mTOR signaling and the nuclear translocation of HIF-1α.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Chang Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Jiaxin Duanmu
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Yan Wu
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jinhua Tao
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Aihua Yang
- Department of Clinical Pharmacy, Nantong Maternal and Child Health Hospital Affiliated to Nantong University, Nantong, Jiangsu 226018, China
| | - Xiaoqin Yin
- Department of pharmacy, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Biao Xiong
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Jingya Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Chunling Li
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Zhaoguo Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China.
| |
Collapse
|
47
|
Kim SA, Kang OH, Kwon DY. Cryptotanshinone Induces Cell Cycle Arrest and Apoptosis of NSCLC Cells through the PI3K/Akt/GSK-3β Pathway. Int J Mol Sci 2018; 19:E2739. [PMID: 30217003 PMCID: PMC6163873 DOI: 10.3390/ijms19092739] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022] Open
Abstract
Cryptotanshinone (CTT) is a natural product and a quinoid diterpene isolated from the root of the Asian medicinal plant, Salvia miltiorrhizabunge. Notably, CTT has a variety of anti-cancer actions, including the activation of apoptosis, anti-proliferation, and reduction in angiogenesis. We further investigated the anti-cancer effects of CTT using MTS, LDH, and Annexin V assay, DAPI staining, cell cycle arrest, and Western blot analysis in NSCLC cell lines. NSCLC cells treated with CTT reduced cell growth through PI3K/Akt/GSK3β pathway inhibition, G0/G1 cell cycle arrest, and the activation of apoptosis. CTT induced an increase of caspase-3, caspase-9, poly-ADP-ribose polymerase (PARP), and Bax, as well as inhibition of Bcl-2, survivin, and cellular-inhibitor of apoptosis protein 1 and 2 (cIAP-1 and -2). It also induced G0/G1 phase cell cycle arrest by decreasing the expression of the cyclin A, cyclin D, cyclin E, Cdk 2, and Cdk 4. These results highlight anti-proliferation the latent of CTT as natural therapeutic agent for NSCLC. Therefore, we investigated the possibility of CTT as an anti-cancer agent by comparing with GF, which is a representative anti-cancer drug.
Collapse
Affiliation(s)
- Sang-A Kim
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749, Korea.
| | - Ok-Hwa Kang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749, Korea.
| | - Dong-Yeul Kwon
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749, Korea.
| |
Collapse
|
48
|
Yang Y, Cao Y, Chen L, Liu F, Qi Z, Cheng X, Wang Z. Cryptotanshinone suppresses cell proliferation and glucose metabolism via STAT3/SIRT3 signaling pathway in ovarian cancer cells. Cancer Med 2018; 7:4610-4618. [PMID: 30094960 PMCID: PMC6143944 DOI: 10.1002/cam4.1691] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is the most malignant gynecologic cancer among women worldwide. Cryptotanshinone (CT), isolated from Salvia miltiorrhiza Bunge, has been identified as a potential therapeutic agent in treating several malignant tumors, but the molecular mechanism of CT in ovarian cancer still remains illustrated. Here, we sought to elucidate the regulatory function of CT on cell glucose metabolism in ovarian cancer. The treatment of CT on ovarian cancer cells effectively inhibited glucose uptake and lactate production in ovarian cancer cells. The expression levels of glycolysis-related proteins, such as GLUT1, LDHA, and HK2, were decreased by the treatment of CT detected by qRT-PCR and immunoblotting. Mechanistically, CT exerted its anti-tumor effect by targeting STAT3/SIRT3/HIF-1α signaling pathway in vitro and in vivo, which could be rescued by the introduction of SIRT3 shRNA in ovarian cancer cells. The clinical data showed that the expression level of STAT3 in ovarian cancer patients' sera and tissues was positively correlated with those of GLUT1, LDHA, HK2 and HIF-1α, but negatively with that of SIRT3These findings provide evidence that CT inhibited cellular glycolysis-induced cell growth and proliferation through repression of STAT3/SIRT3/HIF-1α signaling pathway, indicating that CT may be developed as a chemotherapeutic agent to treat ovarian cancer.
Collapse
Affiliation(s)
- Yufei Yang
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Department of Gynecological OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Yue Cao
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
| | - Lihua Chen
- Department of Gynecological OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Fei Liu
- Department of Gynecological OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Zihao Qi
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
| | - Xi Cheng
- Department of Gynecological OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Ziliang Wang
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
49
|
Hou Y, Wang K, Wan W, Cheng Y, Pu X, Ye X. Resveratrol provides neuroprotection by regulating the JAK2/STAT3/PI3K/AKT/mTOR pathway after stroke in rats. Genes Dis 2018; 5:245-255. [PMID: 30320189 PMCID: PMC6176158 DOI: 10.1016/j.gendis.2018.06.001] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is a common disease with high mortality and morbidity worldwide. One of the important pathophysiological effects of ischemic stroke is apoptosis. A neuroprotective effect is defined as the inhibition of neuronal apoptosis to rescue or delay the infarction in the surviving ischemic penumbra. Resveratrol is a natural polyphenol that reportedly prevents cerebral ischemia injury by regulating the expression of PI3K/AKT/mTOR. Therefore, this study aimed to elucidate the neuroprotective effect of resveratrol on cerebral ischemia/reperfusion injury and to investigate the signaling pathways and mechanisms through which resveratrol regulates apoptosis in the ischemic penumbra. Rats were subjected to middle cerebral artery occlusion for 2 h followed by 24 h reperfusion. Cerebral infarct volume was measured using 2% TTC staining. TUNEL staining was conducted to evaluate neuronal apoptosis. Western blotting and immunohistochemistry were used to detect the proteins involved in the JAK2/STAT3/PI3K/AKT/mTOR pathway. The results suggested that resveratrol significantly improved neurological function, reduced cerebral infarct volume, decreased neuronal damage, and markedly attenuated neuronal apoptosis; these effects were attenuated by the inhibition of PI3K/AKT with LY294002 and JAK2/STAT3 with AG490. We also found that resveratrol significantly upregulated the expression of p-JAK2, p-STAT3, p-AKT, p-mTOR, and BCL-2 and downregulated expression of cleaved caspase-3 and BAX, which was partially reversed by LY294002 and AG490. These results suggested that resveratrol provides a neuroprotective effect against cerebral ischemia/reperfusion injury, which is partially mediated by the activation of JAK2/STAT3 and PI3K/AKT/mTOR. Resveratrol may indirectly upregulate the PI3K/AKT/mTOR pathway by activating JAK2/STAT3.
Collapse
Affiliation(s)
- Yongying Hou
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China.,Institute of Neuroscience, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China
| | - Ke Wang
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China.,Institute of Neuroscience, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China
| | - Weijun Wan
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China.,Institute of Neuroscience, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China
| | - Yue Cheng
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China
| | - Xia Pu
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China
| | - Xiufeng Ye
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, China.,Institute of Neuroscience, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
50
|
Zhang Y, Cong L, He J, Wang Y, Zou Y, Yang Z, Hu Y, Zhang S, He X. Photothermal treatment with EGFRmAb-AuNPs induces apoptosis in hypopharyngeal carcinoma cells via PI3K/AKT/mTOR and DNA damage response pathways. Acta Biochim Biophys Sin (Shanghai) 2018; 50:567-578. [PMID: 29718150 DOI: 10.1093/abbs/gmy046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Indexed: 02/07/2023] Open
Abstract
Hypopharyngeal carcinoma (HC) is one of the most malignant tumors in the upper aerodigestive tract. Currently, there are no effective treatments for HC. Gold nanoparticles (AuNPs) are a promising tool that can be used for plasmonic photothermal therapy (PPTT), which refers to the use of electromagnetic radiation, most often in near infrared (NIR) region, for the treatment of various medical conditions including cancer. AuNPs have been proved to be a promising tool for NIR spectroscopy-mediated photothermal therapies. In this study, we chemically conjugated AuNPs with a monoclonal antibody (mAb) targeting the epidermal growth factor receptor (EGFR), a cell-surface receptor that is overexpressed in many cancers. We then assessed the effect of NIR photothermal treatment with the EGFRmAb-AuNPs in FaDu HC cells. Our data showed that nanoparticle conjugation with the EGFRmAb improved the specific targeting towards FaDu cells and reduced cytotoxicity towards normal (293 T) cells which do not overexpress the EGFR. A significant amount of our EGFRmAb-conjugated AuNPs could enter the nucleus. Moreover, the expression levels of double strand DNA break repair proteins, including p-ATR, p-CHK1, and p-CHK2 were increased following AuNPs treatment, indicating the presence of DNA damage. These findings suggest that the AuNPs can potentially disrupt genome integrity and induce apoptosis. In addition, EGFRmAb-AuNPs+NIR could induce FaDu cell apoptosis, accompanied by the inhibition of the PI3K/AKT/mTOR pathway and stimulation of DNA damage response. Based on these data, PPTT using the EGFRmAb-AuNPs could be a new promising treatment for HC.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Linhai Cong
- Department of ENT, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Jiayan He
- Department of Head and Neck Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Yu Wang
- Department of Head and Neck Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Yingying Zou
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Zhihong Yang
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Yuexin Hu
- Experiment Center for Medical Science Research, Kunming Medical University, Kunming 650032, China
| | - Shiwen Zhang
- Department of Head and Neck Surgery, The Third affiliated hospital of Kunming Medical University (Tumor hospital of Yunnan Province), Kunming 650032, China
| | - Xiaoguang He
- Department of Head and Neck Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| |
Collapse
|