1
|
Zhang M, Zuo Y, Chen S, Li Y, Xing Y, Yang L, Wang H, Guo R. Antibody-drug conjugates in urothelial carcinoma: scientometric analysis and clinical trials analysis. Front Oncol 2024; 14:1323366. [PMID: 38665947 PMCID: PMC11044263 DOI: 10.3389/fonc.2024.1323366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/12/2024] [Indexed: 04/28/2024] Open
Abstract
In 2020, bladder cancer, which commonly presents as urothelial carcinoma, became the 10th most common malignancy. For patients with metastatic urothelial carcinoma, the standard first-line treatment remains platinum-based chemotherapy, with immunotherapy serving as an alternative in cases of programmed death ligand 1 expression. However, treatment options become limited upon resistance to platinum and programmed death 1 or programmed death ligand 1 agents. Since the FDA's approval of Enfortumab Vedotin and Sacituzumab Govitecan, the therapeutic landscape has expanded, heralding a shift towards antibody-drug conjugates as potential first-line therapies. Our review employed a robust scientometric approach to assess 475 publications on antibody-drug conjugates in urothelial carcinoma, revealing a surge in related studies since 2018, predominantly led by U.S. institutions. Moreover, 89 clinical trials were examined, with 36 in Phase II and 13 in Phase III, exploring antibody-drug conjugates as both monotherapies and in combination with other agents. Promisingly, novel targets like HER-2 and EpCAM exhibit substantial therapeutic potential. These findings affirm the increasing significance of antibody-drug conjugates in urothelial carcinoma treatment, transitioning them from posterior-line to frontline therapies. Future research is poised to focus on new therapeutic targets, combination therapy optimization, treatment personalization, exploration of double antibody-coupled drugs, and strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Jilin University, Changchun, China
| | - Yuanye Zuo
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Siyi Chen
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yaonan Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Xing
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Rui Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Ghani S, Bandehpour M, Yarian F, Baghaei K, Kazemi B. Production of a Ribosome-Displayed Mouse scFv Antibody Against CD133, Analysis of Its Molecular Docking, and Molecular Dynamic Simulations of Their Interactions. Appl Biochem Biotechnol 2024; 196:1399-1418. [PMID: 37410352 DOI: 10.1007/s12010-023-04609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
The pentaspan transmembrane glycoprotein CD133, prominin-1, is expressed in cancer stem cells in many tumors and is promising as a novel target for the delivery of cytotoxic drugs to cancer-initiating cells. In this study, we prepared a mouse library of single-chain variable fragment (scFv) antibodies using mRNAs isolated from mice immunized with the third extracellular domain of a recombinant CD133 (D-EC3). First, the scFvs were directly exposed to D-EC3 to select a new specific scFv with high affinity against CD133 using the ribosome display method. Then, the selected scFv was characterized by the indirect enzyme-linked immunosorbent assay (ELISA), immunocytochemistry (ICC), and in silico analyses included molecular docking and molecular dynamics simulations. Based on ELISA results, scFv 2 had a higher affinity for recombinant CD133, and it was considered for further analysis. Next, the immunocytochemistry and flow cytometry experiments confirmed that the obtained scFv could bind to the CD133 expressing HT-29 cells. Furthermore, the results of in silico analysis verified the ability of the scFv 2 antibody to bind and detect the D-EC3 antigen through key residues employed in antigen-antibody interactions. Our results suggest that ribosome display could be applied as a rapid and valid method for isolation of scFv with high affinity and specificity. Also, studying the mechanism of interaction between CD133's scFv and D-EC3 with two approaches of experimental and in silico analysis has potential importance for the design and development of antibody with improved properties.
Collapse
Affiliation(s)
- Sepideh Ghani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Yarian
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Kaveh Baghaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Li K, Xie G, Deng X, Zhang Y, Jia Z, Huang Z. Antibody-drug conjugates in urinary tumors: clinical application, challenge, and perspectives. Front Oncol 2023; 13:1259784. [PMID: 38173833 PMCID: PMC10761427 DOI: 10.3389/fonc.2023.1259784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Urinary tumors primarily consist of kidney, urothelial, and prostate malignancies, which pose significant treatment challenges, particularly in advanced stages. Antibody-drug conjugates (ADCs) have emerged as a promising therapeutic approach, combining monoclonal antibody specificity with cytotoxic chemotherapeutic payloads. This review highlights recent advancements, opportunities, and challenges in ADC application for urinary tumors. We discuss the FDA-approved ADCs and other novel ADCs under investigation, emphasizing their potential to improve patient outcomes. Furthermore, we explore strategies to address challenges, such as toxicity management, predictive biomarker identification, and resistance mechanisms. Additionally, we examine the integration of ADCs with other treatment modalities, including immune checkpoint inhibitors, targeted therapies, and radiation therapy. By addressing these challenges and exploring innovative approaches, the development of ADCs may significantly enhance therapeutic options and outcomes for patients with advanced urinary tumor.
Collapse
Affiliation(s)
- Keqiang Li
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Guoqing Xie
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiyue Deng
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Zhang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhankui Jia
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenlin Huang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Mai Y, Su J, Yang C, Xia C, Fu L. The strategies to cure cancer patients by eradicating cancer stem-like cells. Mol Cancer 2023; 22:171. [PMID: 37853413 PMCID: PMC10583358 DOI: 10.1186/s12943-023-01867-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
Cancer stem-like cells (CSCs), a subpopulation of cancer cells, possess remarkable capability in proliferation, self-renewal, and differentiation. Their presence is recognized as a crucial factor contributing to tumor progression and metastasis. CSCs have garnered significant attention as a therapeutic focus and an etiologic root of treatment-resistant cells. Increasing evidence indicated that specific biomarkers, aberrant activated pathways, immunosuppressive tumor microenvironment (TME), and immunoevasion are considered the culprits in the occurrence of CSCs and the maintenance of CSCs properties including multi-directional differentiation. Targeting CSC biomarkers, stemness-associated pathways, TME, immunoevasion and inducing CSCs differentiation improve CSCs eradication and, therefore, cancer treatment. This review comprehensively summarized these targeted therapies, along with their current status in clinical trials. By exploring and implementing strategies aimed at eradicating CSCs, researchers aim to improve cancer treatment outcomes and overcome the challenges posed by CSC-mediated therapy resistance.
Collapse
Affiliation(s)
- Yansui Mai
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiyan Su
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
5
|
Singh AM, Guevara-Patino JA, Wang X, Li R, Sonpavde G, Jain RK. Antibody-Drug Conjugates in the Treatment of Urothelial Cancer. BioDrugs 2023:10.1007/s40259-023-00606-5. [PMID: 37256534 DOI: 10.1007/s40259-023-00606-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 06/01/2023]
Abstract
Antibody-drug conjugates (ADCs) have transformed the treatment landscape in oncology and become an essential therapeutic modality. In urothelial carcinoma (UC), the two ADCs that have been especially successful in clinical practice are enfortumab vedotin and sacituzumab govitecan. These drugs are currently approved as monotherapy for later lines of treatment in locally advanced or metastatic UC and have had a significant impact for patients with limited treatment options. Combinational trials, as well as additional ADCs, are currently being investigated in the treatment of UC for subsequent lines of therapy as overall survival rates remain dismal.
Collapse
Affiliation(s)
- Avani M Singh
- Department of Hematology and Oncology, University of South Florida/Moffitt Cancer Center, Tampa, FL, USA
| | | | - Xuefeng Wang
- Department of Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Roger Li
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL, 33647, USA
| | - Guru Sonpavde
- Division of Medical Oncology, Advent Health Cancer Institute, Orlando, FL, USA
| | - Rohit K Jain
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL, 33647, USA.
| |
Collapse
|
6
|
Dressler FF, Hinrichs S, Roesch MC, Perner S. EpCAM tumor specificity and proteoform patterns in urothelial cancer. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04809-9. [PMID: 37154925 PMCID: PMC10374485 DOI: 10.1007/s00432-023-04809-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND The role of the epithelial cell adhesion molecule (EpCAM) in cancer is still unclear. EpCAM cleavage through regulated intramembrane proteolysis results in fragments which interact with both oncogenic and tumor suppressive pathways. Additionally, the EpCAM molecule itself is used as a descriptive therapeutic target in urothelial cancer (UC), while data on its actual tumor specificity remain limited. METHODS Samples from diagnostic formalin-fixed paraffin-embedded (FFPE) UC tissue and fresh-frozen UC cells were immunoblotted and used for qualitative characterization of five different EpCAM fragments. These expression patterns were quantified across a cohort of 76 samples with 52 UC and 24 normal urothelial samples. Cell viability effects of the extracellular EpEX fragment were assessed in the UC cell lines T24 and HT1376. RESULTS The proteolytic EpCAM fragments could be identified in clinical FFPE tissue specimens too. Neither overall nor fragment-specific EpCAM expression showed relevant tumor specificity. EpEX and its deglycosylated variant showed an inverse relationship across healthy and tumor tissue with a decrease of deglycosylated EpEX in tumors. However, extracellular EpEX did not show a relevant effect in vitro. CONCLUSIONS EpCAM should not be regarded as tumor-specific in UC without patient-specific predictive testing. EpCAM fragment patterns indicate cancer-specific changes and could be involved in its complex tumor-biological role.
Collapse
Affiliation(s)
- Franz F Dressler
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
- Institute of Pathology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.
| | - Sofie Hinrichs
- Institute of Pathology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Marie C Roesch
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Sven Perner
- Institute of Pathology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Institute of Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- Institute of Pathology and Hematopathology, Hamburg, Germany
| |
Collapse
|
7
|
Ward K, Kitchen MO, Mathias SJ, Khanim FL, Bryan RT. Novel intravesical therapeutics in the treatment of non-muscle invasive bladder cancer: Horizon scanning. Front Surg 2022; 9:912438. [PMID: 35959122 PMCID: PMC9360612 DOI: 10.3389/fsurg.2022.912438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Non-muscle-invasive bladder cancer (NMIBC) is a common and heterogeneous disease; many patients develop recurrent or progress to muscle-invasive disease. Intravesical drug therapy is a pillar in the current management of NMIBC; notwithstanding, Mitomycin C (MMC) and Bacillus Calmette-Guérin (BCG) have numerous limitations including international supply issues, and local and systemic toxicity. Here we review novel intravesical therapeutic options and drug delivery devices with potential for clinical use in the treatment of NMIBC. Methods PubMed, ClinicalTrials.gov and Cochrane Library searches were undertaken. Systematic reviews, meta-analyses, randomised controlled trials, single-arm clinical trials and national/international conference proceedings were included. Results Novel intravesical drugs, including chemotherapeutic agents, immune checkpoint inhibitors, monoclonal antibodies and gene therapies, have demonstrated varying efficacy in the treatment of NMIBC. Current evidence for the majority of treatments is mostly limited to single-arm trials in patients with recurrent NMIBC. Various novel methods of drug delivery have also been investigated, with encouraging preliminary results supporting the intravesical delivery of hyperthermic MMC and MMC hydrogel formulations. Conclusions Novel therapeutic agents and drug delivery systems will be important in the future intravesical management of NMIBC. As our understanding of the molecular diversity of NMIBC develops, molecular subtyping will become fundamental in the personalisation of intravesical treatments. Further randomised studies are urgently required to investigate the efficacy of novel intravesical treatments and novel regimens, in comparison to current standards-of-care, particularly in the context of international BCG shortages.
Collapse
Affiliation(s)
- Kelly Ward
- The Bladder Cancer Research Centre, University of Birmingham, Birmingham, United Kingdom
| | - Mark O Kitchen
- School of Medicine, Keele University, Stoke-on-Trent, United Kingdom
| | - Suresh-Jay Mathias
- New Cross Hospital, The Royal Wolverhampton NHS Trust, Wolverhampton, United Kingdom
| | - Farhat L Khanim
- The Bladder Cancer Research Centre, University of Birmingham, Birmingham, United Kingdom
| | - Richard T Bryan
- The Bladder Cancer Research Centre, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
8
|
Ungaro A, Tucci M, Audisio A, Di Prima L, Pisano C, Turco F, Delcuratolo MD, Di Maio M, Scagliotti GV, Buttigliero C. Antibody-Drug Conjugates in Urothelial Carcinoma: A New Therapeutic Opportunity Moves from Bench to Bedside. Cells 2022; 11:803. [PMID: 35269424 PMCID: PMC8909578 DOI: 10.3390/cells11050803] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Significant progress has been achieved over the last decades in understanding the biology and mechanisms of tumor progression in urothelial carcinoma (UC). Although the therapeutic landscape has dramatically changed in recent years with the introduction of immune checkpoint inhibitors, advanced UC is still associated with rapidly progressing disease and poor survival. The increasing knowledge of the pathogenesis and molecular pathways underlying cancer development and progression is leading the introduction of target therapies, such as the recently approved FGFR inhibitor Erdafitinib, or the anti-nectin 4 antibody drug-conjugate Enfortumab vedotin. Antibody drug conjugates represent an innovative therapeutic approach that allows the combination of a tar get-specific monoclonal antibody covalently conjugated via a linker to a cytotoxic agent (payload). UC is a perfect candidate for this therapeutic approach since it is particularly enriched in antigen expression on its surface and each specific antigen can represent a potential therapeutic target. In this review we summarize the mechanism of action of ADCs, their applications in localized and metastatic UC, the main mechanisms of resistance, and future perspectives for their use in clinical practice.
Collapse
Affiliation(s)
- Antonio Ungaro
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10124 Turin, Italy; (A.U.); (A.A.); (L.D.P.); (C.P.); (F.T.); (M.D.D.); (G.V.S.)
| | - Marcello Tucci
- Department of Medical Oncology, Cardinal Massaia Hospital, 14100 Asti, Italy;
| | - Alessandro Audisio
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10124 Turin, Italy; (A.U.); (A.A.); (L.D.P.); (C.P.); (F.T.); (M.D.D.); (G.V.S.)
| | - Lavinia Di Prima
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10124 Turin, Italy; (A.U.); (A.A.); (L.D.P.); (C.P.); (F.T.); (M.D.D.); (G.V.S.)
| | - Chiara Pisano
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10124 Turin, Italy; (A.U.); (A.A.); (L.D.P.); (C.P.); (F.T.); (M.D.D.); (G.V.S.)
| | - Fabio Turco
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10124 Turin, Italy; (A.U.); (A.A.); (L.D.P.); (C.P.); (F.T.); (M.D.D.); (G.V.S.)
| | - Marco Donatello Delcuratolo
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10124 Turin, Italy; (A.U.); (A.A.); (L.D.P.); (C.P.); (F.T.); (M.D.D.); (G.V.S.)
| | - Massimo Di Maio
- Department of Oncology, University of Turin, A.O. Ordine Mauriziano, 10124 Turin, Italy;
| | - Giorgio Vittorio Scagliotti
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10124 Turin, Italy; (A.U.); (A.A.); (L.D.P.); (C.P.); (F.T.); (M.D.D.); (G.V.S.)
| | - Consuelo Buttigliero
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10124 Turin, Italy; (A.U.); (A.A.); (L.D.P.); (C.P.); (F.T.); (M.D.D.); (G.V.S.)
| |
Collapse
|
9
|
Deininger S, Törzsök P, Mitterberger M, Pallauf M, Oswald D, Deininger C, Lusuardi L. From Interferon to Checkpoint Inhibition Therapy-A Systematic Review of New Immune-Modulating Agents in Bacillus Calmette-Guérin (BCG) Refractory Non-Muscle-Invasive Bladder Cancer (NMIBC). Cancers (Basel) 2022; 14:694. [PMID: 35158964 PMCID: PMC8833656 DOI: 10.3390/cancers14030694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND In Bacillus Calmette-Guérin (BCG) refractory non-muscle-invasive bladder cancer (NMIBC), radical cystectomy is the gold standard. The advent of immune checkpoint inhibitors (CPIs) has permanently changed the therapy landscape of bladder cancer (BC). This article presents a systematic review of immune-modulating (IM) therapies (CPIs and others) in BCG-refractory NMIBC. METHODS In total, 406 articles were identified through data bank research in PubMed/Medline, with data cutoff in October 2021. Four full-text articles and four additional congress abstracts were included in the review. RESULTS Durvalumab plus Oportuzumab monatox, Pembrolizumab, and Nadofaragene firadenovec (NF) show complete response (CR) rates of 41.6%, 40.6%, and 59.6% after 3 months, with a long-lasting effect, especially for NF (12-month CR rate of 30.5%). Instillations with oncolytic viruses such as NF and CG0070 show good efficacy without triggering significant immune-mediated systemic adverse events. Recombinant BCG VPM1002BC could prove to be valid as an alternative to BCG in the future. The recombinant pox-viral vector vaccine PANVAC™ is not convincing in combination with BCG. Interleukin mediating therapies, such as ALT-803, are currently being studied. CONCLUSION CPIs and other IM agents now offer an increasing opportunity for bladder-preserving strategies. Studies on different substances are ongoing and will yield new findings.
Collapse
Affiliation(s)
- Susanne Deininger
- Department of Urology and Andrology, Salzburg University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria; (P.T.); (M.M.); (M.P.); (D.O.); (L.L.)
| | - Peter Törzsök
- Department of Urology and Andrology, Salzburg University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria; (P.T.); (M.M.); (M.P.); (D.O.); (L.L.)
| | - Michael Mitterberger
- Department of Urology and Andrology, Salzburg University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria; (P.T.); (M.M.); (M.P.); (D.O.); (L.L.)
| | - Maximilian Pallauf
- Department of Urology and Andrology, Salzburg University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria; (P.T.); (M.M.); (M.P.); (D.O.); (L.L.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - David Oswald
- Department of Urology and Andrology, Salzburg University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria; (P.T.); (M.M.); (M.P.); (D.O.); (L.L.)
| | - Christian Deininger
- Department of Orthopedics and Traumatology, Salzburg University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria;
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Institute of Tendon and Bone Regeneration, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Lukas Lusuardi
- Department of Urology and Andrology, Salzburg University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria; (P.T.); (M.M.); (M.P.); (D.O.); (L.L.)
| |
Collapse
|
10
|
Havaei SM, Aucoin MG, Jahanian-Najafabadi A. Pseudomonas Exotoxin-Based Immunotoxins: Over Three Decades of Efforts on Targeting Cancer Cells With the Toxin. Front Oncol 2021; 11:781800. [PMID: 34976821 PMCID: PMC8716853 DOI: 10.3389/fonc.2021.781800] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/16/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the prominent causes of death worldwide. Despite the existence of various modalities for cancer treatment, many types of cancer remain uncured or develop resistance to therapeutic strategies. Furthermore, almost all chemotherapeutics cause a range of side effects because they affect normal cells in addition to malignant cells. Therefore, the development of novel therapeutic agents that are targeted specifically toward cancer cells is indispensable. Immunotoxins (ITs) are a class of tumor cell-targeted fusion proteins consisting of both a targeting moiety and a toxic moiety. The targeting moiety is usually an antibody/antibody fragment or a ligand of the immune system that can bind an antigen or receptor that is only expressed or overexpressed by cancer cells but not normal cells. The toxic moiety is usually a protein toxin (or derivative) of animal, plant, insect, or bacterial origin. To date, three ITs have gained Food and Drug Administration (FDA) approval for human use, including denileukin diftitox (FDA approval: 1999), tagraxofusp (FDA approval: 2018), and moxetumomab pasudotox (FDA approval: 2018). All of these ITs take advantage of bacterial protein toxins. The toxic moiety of the first two ITs is a truncated form of diphtheria toxin, and the third is a derivative of Pseudomonas exotoxin (PE). There is a growing list of ITs using PE, or its derivatives, being evaluated preclinically or clinically. Here, we will review these ITs to highlight the advances in PE-based anticancer strategies, as well as review the targeting moieties that are used to reduce the non-specific destruction of non-cancerous cells. Although we tried to be as comprehensive as possible, we have limited our review to those ITs that have proceeded to clinical trials and are still under active clinical evaluation.
Collapse
Affiliation(s)
- Seyed Mehdi Havaei
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marc G. Aucoin
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Xu T, Vorobyeva A, Schulga A, Konovalova E, Vorontsova O, Ding H, Gräslund T, Tashireva LA, Orlova A, Tolmachev V, Deyev SM. Imaging-Guided Therapy Simultaneously Targeting HER2 and EpCAM with Trastuzumab and EpCAM-Directed Toxin Provides Additive Effect in Ovarian Cancer Model. Cancers (Basel) 2021; 13:3939. [PMID: 34439094 PMCID: PMC8393281 DOI: 10.3390/cancers13163939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 12/29/2022] Open
Abstract
Efficient treatment of disseminated ovarian cancer (OC) is challenging due to its heterogeneity and chemoresistance. Overexpression of human epidermal growth factor receptor 2 (HER2) and epithelial cell adhesion molecule (EpCAM) in approx. 30% and 70% of ovarian cancers, respectively, allows for co-targeted treatment. The clinical efficacy of the monoclonal antibody trastuzumab in patients with HER2-positive breast, gastric and gastroesophageal cancers makes it readily available as the HER2-targeting component. As the EpCAM-targeting component, we investigated the designed ankyrin repeat protein (DARPin) Ec1 fused to a truncated variant of Pseudomonas exotoxin A with reduced immunogenicity and low general toxicity (LoPE). Ec1-LoPE was radiolabeled, evaluated in ovarian cancer cells in vitro and its biodistribution and tumor-targeting properties were studied in vivo. The therapeutic efficacy of Ec1-LoPE alone and in combination with trastuzumab was studied in mice bearing EpCAM- and HER2-expressing SKOV3 xenografts. SPECT/CT imaging enabled visualization of EpCAM and HER2 expression in the tumors. Co-treatment using Ec1-LoPE and trastuzumab was more effective at reducing tumor growth and prolonged the median survival of mice compared with mice in the control and monotherapy groups. Repeated administration of Ec1-LoPE was well tolerated without signs of hepatic or kidney toxicity. Co-treatment with trastuzumab and Ec1-LoPE might be a potential therapeutic strategy for HER2- and EpCAM-positive OC.
Collapse
Affiliation(s)
- Tianqi Xu
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (O.V.)
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (O.V.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634 050 Tomsk, Russia; (A.S.); (A.O.); (S.M.D.)
| | - Alexey Schulga
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634 050 Tomsk, Russia; (A.S.); (A.O.); (S.M.D.)
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Elena Konovalova
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Olga Vorontsova
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (O.V.)
| | - Haozhong Ding
- Department of Protein Science, KTH Royal Institute of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden; (H.D.); (T.G.)
| | - Torbjörn Gräslund
- Department of Protein Science, KTH Royal Institute of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden; (H.D.); (T.G.)
| | - Liubov A. Tashireva
- Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Anna Orlova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634 050 Tomsk, Russia; (A.S.); (A.O.); (S.M.D.)
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 751 23 Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (O.V.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634 050 Tomsk, Russia; (A.S.); (A.O.); (S.M.D.)
| | - Sergey M. Deyev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634 050 Tomsk, Russia; (A.S.); (A.O.); (S.M.D.)
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
- Bio-Nanophotonic Lab, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University ‘MEPhI’, 115409 Moscow, Russia
- Center of Biomedical Engineering, Sechenov University, 119991 Moscow, Russia
| |
Collapse
|
12
|
Gires O, Pan M, Schinke H, Canis M, Baeuerle PA. Expression and function of epithelial cell adhesion molecule EpCAM: where are we after 40 years? Cancer Metastasis Rev 2020; 39:969-987. [PMID: 32507912 PMCID: PMC7497325 DOI: 10.1007/s10555-020-09898-3] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
EpCAM (epithelial cell adhesion molecule) was discovered four decades ago as a tumor antigen on colorectal carcinomas. Owing to its frequent and high expression on carcinomas and their metastases, EpCAM serves as a prognostic marker, a therapeutic target, and an anchor molecule on circulating and disseminated tumor cells (CTCs/DTCs), which are considered the major source for metastatic cancer cells. Today, EpCAM is reckoned as a multi-functional transmembrane protein involved in the regulation of cell adhesion, proliferation, migration, stemness, and epithelial-to-mesenchymal transition (EMT) of carcinoma cells. To fulfill these functions, EpCAM is instrumental in intra- and intercellular signaling as a full-length molecule and following regulated intramembrane proteolysis, generating functionally active extra- and intracellular fragments. Intact EpCAM and its proteolytic fragments interact with claudins, CD44, E-cadherin, epidermal growth factor receptor (EGFR), and intracellular signaling components of the WNT and Ras/Raf pathways, respectively. This plethora of functions contributes to shaping intratumor heterogeneity and partial EMT, which are major determinants of the clinical outcome of carcinoma patients. EpCAM represents a marker for the epithelial status of primary and systemic tumor cells and emerges as a measure for the metastatic capacity of CTCs. Consequentially, EpCAM has reclaimed potential as a prognostic marker and target on primary and systemic tumor cells.
Collapse
Affiliation(s)
- Olivier Gires
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer", Helmholtz Zentrum, Neuherberg, Germany.
| | - Min Pan
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Henrik Schinke
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Patrick A Baeuerle
- Institute for Immunology, LMU Munich, Grosshadernerstr. 9, 82152 Planegg, Martinsried, Germany
- MPM Capital, Cambridge MA, 450 Kendall Street, Cambridge, MA, 02142, USA
| |
Collapse
|
13
|
Lattanzi M, Rosenberg JE. The emerging role of antibody-drug conjugates in urothelial carcinoma. Expert Rev Anticancer Ther 2020; 20:551-561. [PMID: 32552213 PMCID: PMC7545404 DOI: 10.1080/14737140.2020.1782201] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION In December 2019, the US Food and Drug Administration granted accelerated approval to the novel nectin-4-targeting antibody-drug conjugate, enfortumab vedotin, for the treatment of platinum-refractory and immune checkpoint blockade-refractory locally advanced or metastatic urothelial carcinoma. Antibody-drug conjugates represent a new therapeutic modality in urothelial cancer; and beyond nectin-4, agents targeting Trop-2, HER2, and EpCAM are also in clinical development. AREAS COVERED This review outlines the biologic rationale and the clinical development of novel antibody-drug conjugates for the treatment of urothelial cancer across the spectrum of disease from non-muscle-invasive bladder cancer through treatment-refractory metastatic disease. EXPERT OPINION The high response rates observed with enfortumab vedotin - both as monotherapy and in combination with checkpoint blockade immunotherapy - suggest this and other antibody-drug conjugates may have efficacy similar to or even exceeding that of traditional cytotoxic chemotherapy. Ongoing clinical development of antibody-drug conjugates in urothelial cancer will address the optimal combination or sequencing strategy with anti-PD-1/L1 immunotherapy and platinum-based chemotherapy.
Collapse
Affiliation(s)
- Michael Lattanzi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan E Rosenberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
14
|
Li R, Sundi D, Zhang J, Kim Y, Sylvester RJ, Spiess PE, Poch MA, Sexton WJ, Black PC, McKiernan JM, Steinberg GD, Kamat AM, Gilbert SM. Systematic Review of the Therapeutic Efficacy of Bladder-preserving Treatments for Non-muscle-invasive Bladder Cancer Following Intravesical Bacillus Calmette-Guérin. Eur Urol 2020; 78:387-399. [PMID: 32143924 DOI: 10.1016/j.eururo.2020.02.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/14/2020] [Indexed: 12/17/2022]
Abstract
CONTEXT There is a critical need for effective bladder-sparing therapies for bacillus Calmette-Guérin (BCG)-unresponsive non-muscle-invasive bladder cancer (NMIBC). Owing to the current lack of effective agents that can be used as a control, the US Food and Drug Administration began to accept single-arm trials for patients with carcinoma in situ (CIS), using complete response rate (CRR) and duration of response as the primary endpoints to support marketing applications. Despite the ensuing growth of clinical trials in this space, no consensus exists on a clinically relevant benchmark for CRR. OBJECTIVE To elucidate the CRR and recurrence-free rate (RFR) using bladder-sparing agents after BCG failure in order to provide a frame of reference for future clinical trial results. EVIDENCE ACQUISITION We performed a systematic review of clinical trials utilizing bladder-sparing therapeutics for NMIBC recurring after intravesical BCG (PROSPERO CRD42019130553). The search was performed in MEDLINE, EMBASE, and Cochrane Library. Relevant studies identified from bibliography search and conference abstracts were searched to complement the systematic review. A total of 42 studies utilizing 24 treatment options and consisting of 2254 patients were included for final analysis. EVIDENCE SYNTHESIS Median CRRs in the treatment of CIS-containing tumors were 26% at 6 mo, 17% at 12 mo, and 8% at 24 mo after treatment. In comparison, median RFRs in the papillary-only studies were 67% at 6 mo, 44% at 12 mo, and 10% at 24 mo. Specifically in the BCG-unresponsive population, 6- and 12-mo CRRs in CIS-containing patients treated with Mycobacterium phlei cell wall-nucleic acid complex were 45% and 27%, respectively, and the median 6-, 12-, and 24-mo disease-free rates in the other studies were 43%, 35%, and 18%, respectively. The median progression-free rate was 91%: 95% in the CIS-containing studies and 89% in studies restricted to papillary-only recurrences. Toxicities of intravesical agents were generally mild, with very few dose limiting toxicities. CONCLUSIONS We demonstrate that, to date, bladder-sparing therapies achieved modest efficacy in patients with NMIBC after BCG. Results from the current study will serve as a frame of reference for emerging trial results in the BCG-unresponsive space. PATIENT SUMMARY In this study, we found that bladder-sparing therapies achieved modest efficacy in patients with non-muscle-invasive bladder cancer after bacillus Calmette-Guérin (BCG). These results will serve to inform future clinical trial results for salvage agents used to treat BCG-unresponsive bladder cancer.
Collapse
Affiliation(s)
- Roger Li
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| | - Debasish Sundi
- Department of Urology, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Jingsong Zhang
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Youngchul Kim
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Philippe E Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Michael A Poch
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Wade J Sexton
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Peter C Black
- Vancouver Prostate Center, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | | | | | - Ashish M Kamat
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott M Gilbert
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Urothelial carcinoma (UC) is a common malignancy with an urgent need for more effective and less toxic treatment strategies. Antibody-drug conjugate (ADC) represents a novel therapeutic approach, which combines the high specificity of monoclonal antibodies covalently linked with highly active cytotoxic agents. UC is an appropriate candidate for these drugs, as it expresses unique cell surface antigens that allow for specific targeting of these cells. We hereby present a review of the current literature and future perspectives of ADC treatment in early-stage and metastatic UC. RECENT FINDINGS Several ADCs are in advanced stages of development and approval, such as intravesical oportuzumab monatox in BCG-refractory non-muscle invasive bladder cancer and enfortumab vedotin and sacituzumab govitecan in pretreated metastatic UC. Other agents are in earlier stages of development, including some promising anti-Her2 agents. The favorable toxicity profile of these agents led to several combination strategies, especially with checkpoint inhibitors. In light of the encouraging results presented in this review and the recent FDA approval of enfortumab vedotin, ADCs will likely be incorporated in the management of UC in the near future.
Collapse
Affiliation(s)
- Michal Sarfaty
- Department of Medicine, Division of Solid Tumor Oncology, Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, USA. .,Oncology Department, Davidoff Cancer Center, Rabin Medical Center, Petah-Tikva, Israel. .,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Jonathan E Rosenberg
- Department of Medicine, Division of Solid Tumor Oncology, Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, USA. .,Weill Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
16
|
Jung M, Lee JH, Kim B, Park JH, Moon KC. Transcriptional Analysis of Immunohistochemically Defined Subgroups of Non-Muscle-Invasive Papillary High-Grade Upper Tract Urothelial Carcinoma. Int J Mol Sci 2019; 20:E570. [PMID: 30699951 PMCID: PMC6386996 DOI: 10.3390/ijms20030570] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 12/14/2022] Open
Abstract
Immunohistochemical (IHC) staining for CK5/6 and CK20 was reported to be correlated with the prognosis of early urothelial carcinoma in a way contrary to that of advanced tumors for unknown reasons. We aimed to characterize the gene expression profiles of subgroups of non-muscle-invasive papillary high-grade upper tract urothelial carcinoma (UTUC) classified by CK5/6 and CK20 expression levels: group 1 (CK5/6-high/CK20-low), group 2 (CK5/6-high/CK20-high), and group 3 (CK5/6-low/CK20-high). Expression of group 3 was predictive of worse prognosis of non-muscle-invasive papillary high-grade UTUC. Transcriptional analysis revealed 308 differentially expressed genes across the subgroups. Functional analyses of the genes identified cell adhesion as a common process differentially enriched in group 3 compared to the other groups, which could explain its high-risk phenotype. Late cell cycle/proliferation signatures were also enriched in group 3 and in some of the other groups, which may be used as a prognostic biomarker complementary to CK5/6 and CK20. Group 2, characterized by low levels of genes associated with mitogen-activated protein kinase and tumor necrosis factor signaling pathways, was hypothesized to represent the least cancerous subtype considering its normal urothelium-like IHC pattern. This study would facilitate the application of easily accessible prognostic biomarkers in practice.
Collapse
Affiliation(s)
- Minsun Jung
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Jeong Hoon Lee
- Seoul National University Biomedical Informatics (SNUBI), Division of Biomedical Informatics and Systems Biomedical Informatics National Core Research Center, Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Bohyun Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Jeong Hwan Park
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul 03080, Korea.
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea.
| |
Collapse
|
17
|
Vlachostergios PJ, Jakubowski CD, Niaz MJ, Lee A, Thomas C, Hackett AL, Patel P, Rashid N, Tagawa ST. Antibody-Drug Conjugates in Bladder Cancer. Bladder Cancer 2018; 4:247-259. [PMID: 30112436 PMCID: PMC6087439 DOI: 10.3233/blc-180169] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Urothelial carcinoma (UC) is characterized by expression of a plethora of cell surface antigens, thus offering opportunities for specific therapeutic targeting with use of antibody-drug conjugates (ADCs). ADCs are structured from two major constituents, a monoclonal antibody (mAb) against a specific target and a cytotoxic drug connected via a linker molecule. Several ADCs are developed against different UC surface markers, but the ones at most advanced stages of development include sacituzumab govitecan (IMMU-132), enfortumab vedotin (ASG-22CE/ASG-22ME), ASG-15ME for advanced UC, and oportuzumab monatox (VB4-845) for early UC. Several new targets are identified and utilized for novel or existing ADC testing. The most promising ones include human epidermal growth factor receptor 2 (HER2) and members of the fibroblast growth factor receptor axis (FGF/FGFR). Positive preclinical and early clinical results are reported in many cases, thus the next step involves further improving efficacy and reducing toxicity as well as testing combination strategies with approved agents.
Collapse
Affiliation(s)
| | | | - Muhammad J Niaz
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Aileen Lee
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Charlene Thomas
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Amy L Hackett
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Priyanka Patel
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Naureen Rashid
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Scott T Tagawa
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA.,Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.,Department of Urology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
18
|
Townsend MH, Shrestha G, Robison RA, O’Neill KL. The expansion of targetable biomarkers for CAR T cell therapy. J Exp Clin Cancer Res 2018; 37:163. [PMID: 30031396 PMCID: PMC6054736 DOI: 10.1186/s13046-018-0817-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022] Open
Abstract
Biomarkers are an integral part of cancer management due to their use in risk assessment, screening, differential diagnosis, prognosis, prediction of response to treatment, and monitoring progress of disease. Recently, with the advent of Chimeric Antigen Receptor (CAR) T cell therapy, a new category of targetable biomarkers has emerged. These biomarkers are associated with the surface of malignant cells and serve as targets for directing cytotoxic T cells. The first biomarker target used for CAR T cell therapy was CD19, a B cell marker expressed highly on malignant B cells. With the success of CD19, the last decade has shown an explosion of new targetable biomarkers on a range of human malignancies. These surface targets have made it possible to provide directed, specific therapy that reduces healthy tissue destruction and preserves the patient's immune system during treatment. As of May 2018, there are over 100 clinical trials underway that target over 25 different surface biomarkers in almost every human tissue. This expansion has led to not only promising results in terms of patient outcome, but has also led to an exponential growth in the investigation of new biomarkers that could potentially be utilized in CAR T cell therapy for treating patients. In this review, we discuss the biomarkers currently under investigation and point out several promising biomarkers in the preclinical stage of development that may be useful as targets.
Collapse
Affiliation(s)
- Michelle H. Townsend
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| | - Gajendra Shrestha
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
- Thunder Biotech, Highland, UT USA
| | - Richard A. Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| | - Kim L. O’Neill
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| |
Collapse
|
19
|
EpCAM Expression in Lymph Node Metastases of Urothelial Cell Carcinoma of the Bladder: A Pilot Study. Int J Mol Sci 2017; 18:ijms18081802. [PMID: 28820475 PMCID: PMC5578189 DOI: 10.3390/ijms18081802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 01/23/2023] Open
Abstract
In this retrospective pilot study, the feasibility of the epithelial cell adhesion molecule (EpCAM) as an imaging target for lymph node (LN) metastatic disease of urothelial cell carcinoma (UCC) of the bladder was investigated. LN metastases and LNs without metastases of patients who underwent pelvic lymph node dissection because of muscle invasive bladder cancer (MIBC) were used. Primary tumors of the same patients were used from cystectomy specimen, transurethral resections, and biopsies. A pathologist, blinded to clinical data, scored EpCAM immunoreactivity. This method determines a total immunostaining score, which is the product of a proportion score and an intensity score. EpCAM expression was observed in 19/20 (95%) LNs with UCC metastases and in 11/12 (92%) of the primary tumors. EpCAM expression was absent in 14/14 (100%) LNs without metastases. Median EpCAM expression (TIS) in LN metastases was 5 (IQR 2.0–8.0) and in the primary tumors 6 (IQR 2.3–11.0). Based on the absence of staining in LNs without metastases, EpCAM show high tumor distinctiveness. EpCAM seems to be a feasible imaging target in LN metastases of UCC of the bladder. Pre- and perioperative visualization of these metastases will improve disease staging and improve the complete resection of LN metastases in MIBC.
Collapse
|
20
|
Li M, Liu ZS, Liu XL, Hui Q, Lu SY, Qu LL, Li YS, Zhou Y, Ren HL, Hu P. Clinical targeting recombinant immunotoxins for cancer therapy. Onco Targets Ther 2017; 10:3645-3665. [PMID: 28790855 PMCID: PMC5530862 DOI: 10.2147/ott.s134584] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recombinant immunotoxins (RITs) are proteins that contain a toxin fused to an antibody or small molecules and are constructed by the genetic engineering technique. RITs can bind to and be internalized by cells and kill cancerous or non-cancerous cells by inhibiting protein synthesis. A wide variety of RITs have been tested against different cancers in cell culture, xenograft models, and human patients during the past several decades. RITs have shown activity in therapy of several kinds of cancers, but different levels of side effects, mainly related to vascular leak syndrome, were also observed in the treated patients. High immunogenicity of RITs limited their long-term or repeat applications in clinical cases. Recent advances in the design of immunotoxins, such as humanization of antibody fragment, PEGylation, and modification of human B- and T-cell epitopes, are overcoming the above mentioned problems, which predict the use of these immunotoxins as a potential therapeutic method to treat cancer patients.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun
| | - Zeng-Shan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun
| | - Xi-Lin Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun
| | - Qi Hui
- School of Pharmacy, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Shi-Ying Lu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun
| | - Lin-Lin Qu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun
| | - Yan-Song Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun
| | - Yu Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun
| | - Hong-Lin Ren
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun
| | - Pan Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun
| |
Collapse
|
21
|
Ang WX, Li Z, Chi Z, Du SH, Chen C, Tay JC, Toh HC, Connolly JE, Xu XH, Wang S. Intraperitoneal immunotherapy with T cells stably and transiently expressing anti-EpCAM CAR in xenograft models of peritoneal carcinomatosis. Oncotarget 2017; 8:13545-13559. [PMID: 28088790 PMCID: PMC5355119 DOI: 10.18632/oncotarget.14592] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/03/2017] [Indexed: 01/04/2023] Open
Abstract
The epithelial cell adhesion molecule (EpCAM) is overexpressed in a wide variety of tumor types, including peritoneal carcinomatosis (PC) from gastrointestinal and gynecological malignancies. To develop a chimeric antigen receptor T (CART) cell therapy approach to treat patients with end-stage PC, we constructed third generation CARs specific to EpCAM using the 4D5MOC-B single chain variable fragment. CART cells were generated with lentiviral transduction and exhibited specific in vitro killing activity against EpCAM-positive human ovarian and colorectal cancer cells. A single intraperitoneal injection of the CART cells eradicated established ovarian xenografts and resulted in significantly prolonged animal survival. Since EpCAM is also expressed on normal epithelium, anti-EpCAM CART cells were generated by mRNA electroporation that display a controlled cytolytic activity with a limited CAR expression duration. Multiple repeated infusions of these RNA CAR-modified T cells delayed disease progression in immunodeficient mice bearing well-established peritoneal ovarian and colorectal xenografts. Thus, our study demonstrates the effectiveness of using anti-EpCAM CAR-expressing T cells for local treatment of PC in mice. The possibility of using this approach for clinical treatment of EpCAM-positive gastrointestinal and gynecological malignancies warrants further validation.
Collapse
Affiliation(s)
- Wei Xia Ang
- Department of Biological Sciences, National University of Singapore 117543, Singapore
- Institute of Bioengineering and Nanotechnology 138669, Singapore
| | - Zhendong Li
- Department of Biological Sciences, National University of Singapore 117543, Singapore
| | - Zhixia Chi
- Department of Biological Sciences, National University of Singapore 117543, Singapore
| | - Shou-Hui Du
- Department of Biological Sciences, National University of Singapore 117543, Singapore
| | - Can Chen
- Tessa Therapeutics, Pte Ltd., 239351, Singapore
| | - Johan C.K. Tay
- Department of Biological Sciences, National University of Singapore 117543, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre, 169610, Singapore
| | - John E. Connolly
- Programme in Translational Immunology, Institute for Molecular and Cell Biology 138648, Singapore
| | - Xue Hu Xu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Shu Wang
- Department of Biological Sciences, National University of Singapore 117543, Singapore
- Institute of Bioengineering and Nanotechnology 138669, Singapore
| |
Collapse
|
22
|
Sweeney SK, Luo Y, O'Donnell MA, Assouline J. Nanotechnology and cancer: improving real-time monitoring and staging of bladder cancer with multimodal mesoporous silica nanoparticles. Cancer Nanotechnol 2016; 7:3. [PMID: 27217840 PMCID: PMC4846680 DOI: 10.1186/s12645-016-0015-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/07/2016] [Indexed: 11/21/2022] Open
Abstract
Background Despite being one of the most common cancers, bladder cancer is largely inefficiently and inaccurately staged and monitored. Current imaging methods detect cancer only when it has reached “visible” size and has significantly disrupted the structure of the organ. By that time, thousands of cells will have proliferated and perhaps metastasized. Repeated biopsies and scans are necessary to determine the effect of therapy on cancer growth. In this report, we describe a novel approach based on multimodal nanoparticle contrast agent technology and its application to a preclinical animal model of bladder cancer. The innovation relies on the engineering core of mesoporous silica with specific scanning contrast properties and surface modification that include fluorescence and magnetic resonance imaging (MRI) contrast. The overall dimensions of the nano-device are preset at 80–180 nm, depending on composition with a pore size of 2 nm. Methods To facilitate and expedite discoveries, we combined a well-known model of bladder cancer and our novel technology. We exposed nanoparticles to MB49 murine bladder cancer cells in vitro and found that 70 % of the cells were labeled by nanoparticles as measured by flow cytometry. The in vivo mouse model for bladder cancer is particularly well suited for T1- and T2-weighted MRI. Results Under our experimental conditions, we demonstrate that the nanoparticles considerably improve tumor definition in terms of volumetric, intensity and structural characteristics. Important bladder tumor parameters can be ascertained, non-invasively, repetitively, and with great accuracy. Furthermore, since the particles are not biodegradable, repetitive injection is not required. This feature allows follow-up diagnostic evaluations during cancer treatment. Changes in MRI signals show that in situ uptake of free particles has predilection to tumor cells relative to normal bladder epithelium. The particle distribution within the tumors was corroborated by fluorescent microscopy of sections of excised bladders. In addition, MRI imaging revealed fibrous finger-like projections into the tumors where particles insinuated themselves deeply. This morphological characteristic was confirmed by fluorescence microscopy. Conclusions These findings may present new options for therapeutic intervention. Ultimately, the combination of real-time and repeated MRI evaluation of the tumors enhanced by nanoparticle contrast may have the potential for translation into human clinical studies for tumor staging, therapeutic monitoring, and drug delivery.
Collapse
Affiliation(s)
- Sean K Sweeney
- Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA 52242 USA ; NanoMedTrix, LLC, 2500 Crosspark Road, Suite E119, Coralville, IA 52241-4710 USA
| | - Yi Luo
- Department of Urology, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, 3204 Medical Education Research Facility, 375 Newton Road, Iowa City, IA 52242 USA
| | - Michael A O'Donnell
- Department of Urology, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, 200 Hawkins Dr., Iowa City, IA 52242 USA
| | - Jose Assouline
- Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA 52242 USA ; NanoMedTrix, LLC, 2500 Crosspark Road, Suite E119, Coralville, IA 52241-4710 USA
| |
Collapse
|
23
|
Abstract
Recombinant immunotoxins (RITs) are chimeric proteins designed to treat cancer. They are made up of an Fv or Fab that targets an antigen on a cancer cell fused to a 38-kDa portion of Pseudomonas exotoxin A (PE38). Because PE38 is a bacterial protein, it is highly immunogenic in patients with solid tumors that have normal immune systems, but much less immunogenic in patients with hematologic malignancies where the immune system is suppressed. RITs have shown efficacy in refractory hairy cell leukemia and in some children with acute lymphoblastic leukemia, but have been much less effective in solid tumors, because neutralizing antibodies develop and prevent additional treatment cycles. In this paper we will (i) review data from clinical trials describing the immunogenicity of PE38 in different patient populations; (ii) review results from clinical trials using different immunosuppressive drugs; and (iii) describe our efforts to make new less-immunogenic RITs by identifying and removing T- and B-cell epitopes to hide the RIT from the immune system.
Collapse
Affiliation(s)
- Ronit Mazor
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Masanori Onda
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Bryan RT. Cell adhesion and urothelial bladder cancer: the role of cadherin switching and related phenomena. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140042. [PMID: 25533099 DOI: 10.1098/rstb.2014.0042] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cadherins are mediators of cell-cell adhesion in epithelial tissues. E-cadherin is a known tumour suppressor and plays a central role in suppressing the invasive phenotype of cancer cells. However, the abnormal expression of N- and P-cadherin ('cadherin switching', CS) has been shown to promote a more invasive and m̀alignant phenotype of cancer, with P-cadherin possibly acting as a key mediator of invasion and metastasis in bladder cancer. Cadherins are also implicated in numerous signalling events related to embryonic development, tissue morphogenesis and homeostasis. It is these wide ranging effects and the serious implications of CS that make the cadherin cell adhesion molecules and their related pathways strong candidate targets for the inhibition of cancer progression, including bladder cancer. This review focuses on CS in the context of bladder cancer and in particular the switch to P-cadherin expression, and discusses other related molecules and phenomena, including EpCAM and the development of the cancer stem cell phenotype.
Collapse
Affiliation(s)
- Richard T Bryan
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
25
|
Phase I trial of EpCAM-targeting immunotoxin MOC31PE, alone and in combination with cyclosporin. Br J Cancer 2015; 113:1548-55. [PMID: 26554649 PMCID: PMC4705890 DOI: 10.1038/bjc.2015.380] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 09/15/2015] [Accepted: 10/06/2015] [Indexed: 02/07/2023] Open
Abstract
Background: A phase I trial was performed to determine the maximum tolerated dose (MTD), safety, pharmacokinetics and immunogenicity of the anti-EpCAM immunotoxin (IT) MOC31PE in cancer patients. An important part of the study was to investigate whether the addition of Sandimmune (cyclosporin, CsA) suppressed the development of anti-IT antibodies. Methods: Patients with EpCAM-positive metastatic disease were eligible for treatment with intravenous MOC31PE using a modified Fibonacci dose escalation sequence. Maximum tolerated dose was first established without, then with intravenously administered CsA. Results: Sixty-three patients were treated with MOC31PE in doses ranging from 0.5 to 8 μg kg−1. Maximum tolerated dose was 8 μg kg−1 for MOC31PE alone, and 6.5 μg kg−1 when combined with CsA. The dose-limiting adverse event was reversible liver toxicity. No radiological complete or partial responses were observed, whereas stable disease was seen in 36% of the patients receiving MOC31PE only. The pharmacokinetic profile of MOC31PE was characterised by linear kinetics and with a half-life of ∼3 h. The addition of CsA delayed the generation of anti-IT antibodies. Conclusions: Intravenous infusion of MOC31PE can safely be administered to cancer patients. Immune suppression with CsA delays the development of anti-MOC31PE antibodies. The antitumour effect of MOC31PE warrants further evaluation in EpCAM-positive metastatic disease.
Collapse
|
26
|
Qi Y, Zhou F, Zhang L, Liu L, Xu H, Guo H. Construction of interference vector targeting Ep-CAM gene and its effects on colorectal cancer cell proliferation. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2647-52. [PMID: 26028961 PMCID: PMC4440878 DOI: 10.2147/dddt.s82917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Prior study indicates that abnormal protein expression and functional changes in the development and progression of colorectal cancer is related to gene expression. The aim of this study was to construct an interference plasmid targeting the Ep-CAM gene and to investigate its effects on the proliferation of colorectal cancer cells. METHODS In this study, HT-29 and HCT-116 colorectal cancer cell lines were selected as cell models. The double-stranded micro (mi)RNA oligo was inserted into the pcDNATM6.2-GW/EmGFPmiR vector, which is an expression of miRNA. Lipofectamine™ 2000 was used to transfer plasmid into the empty plasmid group (transfected pcDNATM6.2-GW/EmGFPmiR-neg) and the interference group (transfected pcDNATM6.2-GW/EmGFPmiR-Ep-CAM-1), respectively. Meanwhile, the nontransferred HT-29 and HCT-116 acts as the blank control group. Reverse transcription polymerase chain reaction (RT-PCR) was used to detect the transfection efficiency. Western blot was used to detect Ep-CAM protein expression. The cell proliferation in each group was detected by using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS The results indicated that the Ep-CAM messenger (m)RNA expression in the interference group was lower significantly compared with that of the empty plasmid group and control group (P<0.01). Western blot analysis results showed that Ep-CAM protein expression was significantly lower in interference group compared with that of the empty plasmid group and the control group (P<0.01). MTT assay results demonstrated that the proliferation ability of cells in the interference group was significantly inhibited compared with the two other groups (P<0.05). CONCLUSION Silencing of Ep-CAM can significantly inhibit the proliferation of colorectal cancer cells.
Collapse
Affiliation(s)
- Yanmei Qi
- Department of Gastroenterology, Binzhou People's Hospital, Binzhou, Shandong, People's Republic of China
| | - Fengqiang Zhou
- Department of General Surgery, Binzhou People's Hospital, Binzhou, Shandong, People's Republic of China
| | - Lu Zhang
- Department of General Surgery, Binzhou People's Hospital, Binzhou, Shandong, People's Republic of China
| | - Lei Liu
- Department of General Surgery, Binzhou People's Hospital, Binzhou, Shandong, People's Republic of China
| | - Hong Xu
- Department of General Surgery, Binzhou People's Hospital, Binzhou, Shandong, People's Republic of China
| | - Huiguang Guo
- Department of General Surgery, Binzhou People's Hospital, Binzhou, Shandong, People's Republic of China
| |
Collapse
|
27
|
Alewine C, Hassan R, Pastan I. Advances in anticancer immunotoxin therapy. Oncologist 2015; 20:176-85. [PMID: 25561510 PMCID: PMC4319635 DOI: 10.1634/theoncologist.2014-0358] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/25/2014] [Indexed: 12/26/2022] Open
Abstract
Immunotoxins are a novel class of antibody-conjugated therapeutics currently in clinical development for a variety of malignancies. They consist of an antibody-based targeting domain fused to a bacterial toxin payload for cell killing. Immunotoxins kill cells by inhibiting protein synthesis, a unique mechanism of action that is toxic to both dividing and nondividing cells. Recent advances in the design and administration of immunotoxins are overcoming historical challenges in the field, leading to renewed interest in these therapeutics.
Collapse
Affiliation(s)
- Christine Alewine
- Laboratory of Molecular Biology and Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Raffit Hassan
- Laboratory of Molecular Biology and Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ira Pastan
- Laboratory of Molecular Biology and Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Greater understanding of the biology and genetics of urothelial carcinoma is helping to identify and define the role of molecules and pathways appropriate for novel-targeted therapies. Here, we review the targeted therapies that have been reported or are in ongoing urothelial carcinoma clinical trials, and highlight molecular targets characterized in preclinical and clinical studies. RECENT FINDINGS Trials in nonmuscle-invasive bladder cancer are evaluating the role of immunotherapy and agents targeting vascular endothelial growth factor (VEGF) or fibroblast growth factor receptor-3. In muscle-invasive bladder cancer, neoadjuvant studies have focused on combining VEGF agents with chemotherapy; adjuvant studies are testing vaccines and agents targeting the human epidermal growth factor receptor 2, p53, and Hsp27. In the first-line treatment of metastatic urothelial carcinoma, tubulin, cytotoxic T-lymphocyte antigen 4, Hsp27, and p53 are novel targets in clinical trials. The majority of targeted agents studied in urothelial carcinoma are in the second-line setting; new targets include CD105, polo-like kinase-1, phosphatidylinositide 3-kinases (PI3K), transforming growth factor β receptor/activin receptor-like kinase β, estrogen receptor, and the hepatocyte growth factor receptor (HGFR or MET). SUMMARY Development of targeted therapies for urothelial carcinoma is still in early stages, consequently there have been no major therapeutic advances to date. However, greater understanding of urothelial carcinoma and solid tumor biology has resulted in a proliferation of clinical trials that could lead to significant advances in treatment strategies.
Collapse
Affiliation(s)
- Monalisa Ghosh
- Genitourinary Malignancies Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Sam J. Brancato
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Piyush K. Agarwal
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrea B. Apolo
- Genitourinary Malignancies Branch, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
29
|
Bryan RT, Shimwell NJ, Wei W, Devall AJ, Pirrie SJ, James ND, Zeegers MP, Cheng KK, Martin A, Ward DG. Urinary EpCAM in urothelial bladder cancer patients: characterisation and evaluation of biomarker potential. Br J Cancer 2013; 110:679-85. [PMID: 24292452 PMCID: PMC3915119 DOI: 10.1038/bjc.2013.744] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/11/2013] [Accepted: 11/05/2013] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Epithelial cell adhesion molecule is overexpressed in bladder tumours and released from bladder cancer cells in vitro. We test the hypotheses that urinary EpCAM could act as a biomarker for primary bladder cancer detection and risk stratification. METHODS Epithelial cell adhesion molecule was measured by ELISA in urine from 607 patients with primary bladder tumours and in urine from 53 non-cancer controls. Mann-Whitney tests and ROC analyses were used to determine statistical significance and discrimination between non-cancer controls and different stages and grades of disease. Multivariable modelling and Kaplan-Meier analyses were used to determine prognostic significance. The structure of urinary EpCAM was investigated by western blotting and mass spectrometry. RESULTS Urinary EpCAM levels increase with stage and grade of bladder cancer. Alongside grade and stage, elevated urinary EpCAM is an independent indicator of poor prognosis with a hazard ratio of 1.76 for bladder cancer-specific mortality. The soluble form of EpCAM in urine is the extracellular domain generated by cleavage between ala243 and gly244. Further studies are required to define the influence of other urinary tract malignancies and benign urological conditions on urinary EpCAM. CONCLUSION The extracellular domain of EpCAM is shed into urine by bladder tumours. Urinary EpCAM is a strong indicator of bladder cancer-specific survival, and may be useful within a multi-marker panel for disease detection or as a stand-alone marker to prioritise the investigation and treatment of patients. The mechanisms and effects of EpCAM cleavage in bladder cancer are worthy of further investigation, and may identify novel therapeutic targets.
Collapse
Affiliation(s)
- R T Bryan
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - N J Shimwell
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - W Wei
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - A J Devall
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - S J Pirrie
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - N D James
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - M P Zeegers
- 1] School of Health and Population Sciences, University of Birmingham, Birmingham B15 2TT, UK [2] Department of Complex Genetics, Cluster of Genetics and Cell Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - K K Cheng
- School of Health and Population Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - A Martin
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - D G Ward
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
30
|
Waldron NN, Barsky SH, Dougherty PR, Vallera DA. A bispecific EpCAM/CD133-targeted toxin is effective against carcinoma. Target Oncol 2013; 9:239-49. [PMID: 23900680 DOI: 10.1007/s11523-013-0290-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/21/2013] [Indexed: 01/06/2023]
Abstract
The discovery of chemoresistant cancer stem cells (CSCs) in carcinomas has created the need for therapies that specifically target these subpopulations of cells. Here, we characterized a bispecific targeted toxin that is composed of two antibody fragments and a catalytic protein toxin allowing it to bind two CSC markers on the same cell killing this resistant subpopulation. CD133 is a well-known CSC marker and has been successfully targeted and caused regression of head and neck squamous cell carcinoma (HNSCC) in vivo. To enable it to bind a broader range of CSCs, an anti-epithelial cell adhesion molecule (EpCAM) scFv was added to create dEpCAMCD133KDEL, a deimmunized bispecific targeted toxin on a single amino acid chain. This bispecific potently inhibited protein translation and proliferation in vitro in three different types of carcinoma. Furthermore, in a CSC spheroid model dEpCAMCD133KDEL eliminated Mary-X spheroids, an inflammatory breast carcinoma. Finally, this bispecific also caused tumor regression in an in vivo model of HNSCC. This represents the first bispecific CSC-targeted toxin and warrants further development as a possible therapy for carcinoma.
Collapse
Affiliation(s)
- Nate N Waldron
- Department of Pharmacology, University of Minnesota, 210 Delaware Street Southeast, Minneapolis, MN, 55455, USA
| | | | | | | |
Collapse
|
31
|
Sverrisson EF, Espiritu PN, Spiess PE. New therapeutic targets in the management of urothelial carcinoma of the bladder. Res Rep Urol 2013; 5:53-65. [PMID: 24400235 PMCID: PMC3826897 DOI: 10.2147/rru.s29131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Urothelial carcinoma of the bladder, despite the myriad of treatment approaches and our progressively increasing knowledge into its disease processes, remains one of the most clinically challenging problems in modern urological clinical practice. New therapies target biomolecular pathways and cellular mediators responsible for regulating cell growth and metabolism, both of which are frequently overexpressed in malignant urothelial cells, with the intent of inducing cell death by limiting cellular metabolism and growth, creating an immune response, or selectively delivering or activating a cytotoxic agent. These new and novel therapies may offer a potential for reduced toxicity and an encouraging hope for better treatment outcomes, particularly for a disease often refractory or not amenable to the current therapeutic approaches.
Collapse
Affiliation(s)
- Einar F Sverrisson
- Department of Genitourinary Oncology, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Patrick N Espiritu
- Department of Genitourinary Oncology, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Philippe E Spiess
- Department of Genitourinary Oncology, H Lee Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
32
|
Janthur WD, Cantoni N, Mamot C. Drug conjugates such as Antibody Drug Conjugates (ADCs), immunotoxins and immunoliposomes challenge daily clinical practice. Int J Mol Sci 2012; 13:16020-45. [PMID: 23443108 PMCID: PMC3546676 DOI: 10.3390/ijms131216020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/15/2012] [Accepted: 11/19/2012] [Indexed: 12/13/2022] Open
Abstract
Drug conjugates have been studied extensively in preclinical in vitro and in vivo models but to date only a few compounds have progressed to the clinical setting. This situation is now changing with the publication of studies demonstrating a significant impact on clinical practice and highlighting the potential of this new class of targeted therapies. This review summarizes the pharmacological and molecular background of the main drug conjugation systems, namely antibody drug conjugates (ADCs), immunotoxins and immunoliposomes. All these compounds combine the specific targeting moiety of an antibody or similar construct with the efficacy of a toxic drug. The aim of this strategy is to target tumor cells specifically while sparing normal tissue, thus resulting in high efficacy and low toxicity. Recently, several strategies have been investigated in phase I clinical trials and some have entered phase III clinical development. This review provides a detailed overview of various strategies and critically discusses the most relevant achievements. Examples of the most advanced compounds include T-DM1 and brentuximab vedotin. However, additional promising strategies such as immunotoxins and immunoliposmes are already in clinical development. In summary, targeted drug delivery by drug conjugates is a new emerging class of anti-cancer therapy that may play a major role in the future.
Collapse
Affiliation(s)
- Wolf-Dieter Janthur
- Division of Hematology/Oncology, Cantonal Hospital of Aarau, CH-5001 Aarau, Switzerland; E-Mails: (W.-D.J.); (N.C.)
| | - Nathan Cantoni
- Division of Hematology/Oncology, Cantonal Hospital of Aarau, CH-5001 Aarau, Switzerland; E-Mails: (W.-D.J.); (N.C.)
| | - Christoph Mamot
- Division of Hematology/Oncology, Cantonal Hospital of Aarau, CH-5001 Aarau, Switzerland; E-Mails: (W.-D.J.); (N.C.)
| |
Collapse
|
33
|
Effects of P-MAPA Immunomodulator on Toll-Like Receptors and p53: Potential Therapeutic Strategies for Infectious Diseases and Cancer. Infect Agent Cancer 2012; 7:14. [PMID: 22709446 PMCID: PMC3408364 DOI: 10.1186/1750-9378-7-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 06/18/2012] [Indexed: 12/14/2022] Open
Abstract
Background Compounds that can act as agonists for toll-like receptors (TLRs) may be promising candidates for the development of drugs against infectious diseases and cancer. The present study aimed to characterize the immunomodulatory effects of P-MAPA on TLRs in vitro and in vivo, as well as to investigate its potential as adjuvant therapy in infectious diseases and cancer. Methods For these purposes, the activity of P-MAPA on TLRs was assayed in vitro through NF-κB activation in HEK293 cells expressing a given TLR, and using an in vivo animal model for bladder cancer (BC). The antimicrobial activity of P-MAPA was tested against Mycobacterium tuberculosis (TB) in vitro in an MIC assay, and in vivo using an aerosol infection model of murine tuberculosis. Antitumor effects of P-MAPA were tested in an animal model with experimentally induced BC. Moxifloxacin (MXF) and Bacillus Calmette-Guerin (BCG) were used as positive controls in the animal models. Results The results showed that P-MAPA, administered alone or in combination with MXF, induced significant responses in vivo against TB. In contrast, the compound did not show antimicrobial activity in vitro. P-MAPA showed a significant stimulatory effect on human TLR2 and TLR4 in vitro. In BC, TLR2, TLR4 and p53 protein levels were significantly higher in the P-MAPA group than in the BCG group. The most common histopathological changes in each group were papillary carcinoma in BC group, low-grade intraepithelial neoplasia in BCG group and simple hyperplasia in P-MAPA group. Concerning the toxicological analysis performed during BC treatment, P-MAPA did not show evidence for hepatotoxicity and nephrotoxicity. Conclusions In conclusion, P-MAPA acted as TLR ligand in vitro and improved the immunological status in BC, increasing TLR2 and TLR4 protein levels. P-MAPA immunotherapy was more effective in restoring p53 and TLRs reactivities and showed significantly greater antitumor activity than BCG. The activation of TLRs and p53 may provide a hypothetical mechanism for the therapeutic effects in both cancer and infectious diseases. Taken together data obtained will encourage the further investigation of P-MAPA as a potential candidate for the treatment of cancer and infectious diseases.
Collapse
|
34
|
Yates DR, Rouprêt M. Contemporary management of patients with high-risk non-muscle-invasive bladder cancer who fail intravesical BCG therapy. World J Urol 2011; 29:415-22. [PMID: 21544661 DOI: 10.1007/s00345-011-0681-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 04/16/2011] [Indexed: 12/13/2022] Open
Abstract
It is advocated that patients with high-risk non-muscle-invasive bladder cancer (NMIBC) receive an adjuvant course of intravesical Bacille Calmette-Guerin (BCG) as first-line treatment. However, a substantial proportion of patients will 'fail' BCG, either early with persistent (refractory) disease or recur late after a long disease-free interval (relapsing). Guideline recommendation in the 'refractory' setting is radical cystectomy, but there are situations when extirpative surgery is not feasible due to competing co-morbidity, a patient's desire for bladder preservation or reluctance to undergo surgery. In this review, we discuss the contemporary management of NMIBC in patients who have failed prior BCG and are not suitable for radical surgery and highlight the potential options available. These options can be categorised as immunotherapy, chemotherapy, device-assisted therapy and combination therapy. However, the current data are still inadequate to formulate definitive recommendations, and data from ongoing trials and maturing studies will give us an insight into whether there is a realistic efficacious second-line treatment for patients who fail intravesical BCG but are not candidates for definitive surgery.
Collapse
Affiliation(s)
- D R Yates
- Academic Department of Urology of la Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, University Paris VI, Faculte de Medicine Pierre et Marie Curie and CeRePP, Centre d'Etudes et de Recherche sur les Pathologies Prostatiques, 47-83 Boulevard de l'Hopital, 75013, Paris, France
| | | |
Collapse
|