1
|
Liang J, Yang F, Li Z, Li Q. Epigenetic regulation of the inflammatory response in stroke. Neural Regen Res 2025; 20:3045-3062. [PMID: 39589183 DOI: 10.4103/nrr.nrr-d-24-00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/20/2024] [Indexed: 11/27/2024] Open
Abstract
Stroke is classified as ischemic or hemorrhagic, and there are few effective treatments for either type. Immunologic mechanisms play a critical role in secondary brain injury following a stroke, which manifests as cytokine release, blood-brain barrier disruption, neuronal cell death, and ultimately behavioral impairment. Suppressing the inflammatory response has been shown to mitigate this cascade of events in experimental stroke models. However, in clinical trials of anti-inflammatory agents, long-term immunosuppression has not demonstrated significant clinical benefits for patients. This may be attributable to the dichotomous roles of inflammation in both tissue injury and repair, as well as the complex pathophysiologic inflammatory processes in stroke. Inhibiting acute harmful inflammatory responses or inducing a phenotypic shift from a pro-inflammatory to an anti-inflammatory state at specific time points after a stroke are alternative and promising therapeutic strategies. Identifying agents that can modulate inflammation requires a detailed understanding of the inflammatory processes of stroke. Furthermore, epigenetic reprogramming plays a crucial role in modulating post-stroke inflammation and can potentially be exploited for stroke management. In this review, we summarize current findings on the epigenetic regulation of the inflammatory response in stroke, focusing on key signaling pathways including nuclear factor-kappa B, Janus kinase/signal transducer and activator of transcription, and mitogen-activated protein kinase as well as inflammasome activation. We also discuss promising molecular targets for stroke treatment. The evidence to date indicates that therapeutic targeting of the epigenetic regulation of inflammation can shift the balance from inflammation-induced tissue injury to repair following stroke, leading to improved post-stroke outcomes.
Collapse
Affiliation(s)
- Jingyi Liang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fei Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| | - Qian Li
- Laboratory for Clinical Medicine, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Ding JM, Zhong HM, Huang K, Zeng W, Chen L. Apoptosis and long non-coding RNAs: Focus on their roles in ischemic stroke. Brain Res 2025; 1849:149346. [PMID: 39581527 DOI: 10.1016/j.brainres.2024.149346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Ischemic stroke (IS) is a severe and sudden cerebrovascular event, associated with notably high rates of mortality and morbidity. The process of apoptosis, a genetically orchestrated form of programmed cell death, is divided into two pathways: intrinsic and extrinsic. The intricate involvement of long non-coding RNA (lncRNA) in the pathobiology of IS, particularly in modulating neuronal apoptosis, is a burgeoning area of research. This review synthesizes the current understanding of the regulatory mechanisms of lncRNA on neuronal apoptosis in the context of ischemic stroke. Specifically, we highlight the roles of lncRNA such as ANRIL, C2dat1/2, H19, TUG1, MEG3, SNHG, and GAS5, which have been implicated in the facilitation of neuronal apoptosis. Conversely, the lncRNA N1LR has been shown to exert an inhibitory effect on this process. The role of MALAT1 in neuronal apoptosis remains a subject of ongoing debate, as its function oscillates between pro-apoptotic and anti-apoptotic roles, thus highlighting the need for further elucidation.
Collapse
Affiliation(s)
- Jia Min Ding
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Hui Min Zhong
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Kuan Huang
- Anesthesia Surgical Center The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Wen Zeng
- Department of Anesthesiology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Li Chen
- Anesthesia Surgical Center The First Affiliated Hospital of Gannan Medical University, Ganzhou, China; Anesthesia Key Laboratory of Gannan Medical University, Ganzhou, China; Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education, Gannan Medical University, Ganzhou 34100, China.
| |
Collapse
|
3
|
Liu W, Shen Y, Pan R, Qi X. mir-330-5p from mesenchymal stem cell-derived exosomes targets SETD7 to reduce inflammation in rats with cerebral ischemia-reperfusion injury. J Mol Histol 2024; 56:63. [PMID: 39738925 DOI: 10.1007/s10735-024-10347-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
This study was to investigate the role of microRNA (miR)-330-5p derived from mesenchymal stem cells-secreted exosomes (MSCs-Exo) in cerebral ischemia-reperfusion injury (CI/RI) through targeting lysine N-methyltransferase SET domain containing 7 (SETD7). MSCs-Exo were separated and identified. MSCs-Exo were used to treat the middle cerebral artery occlusion (MCAO) rat model. By using the nerve injury score, Nissl, hematoxylin and eosin, and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining, the neural function, pathological alterations, and neuronal death in MCAO rats were examined. Using an enzyme-linked immunosorbent test, tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 in brain homogenate were tested. Rat brain expression levels of SETD7 and miR-330-5p were examined. Subsequently, the effects of MSCs-Exo, miR-330-5p, and SETD7 on neurological function and pathological alterations were assessed using gain and loss function tests. miR-330-5p expression was decreased and SETD7 expression was increased in the brain tissue of MCAO rats. Both MSCs-Exo and MSCs-Exo-derived miR-330-5p reduced inflammation in MCAO rats. miR-330-5p targeted SETD7, and SETD7 upregulation blocked the therapeutic effect of MSCs-Exo-derived miR-330-5p on MCAO rats. MSCs-Exo-derived miR-330-5p targets SETD7 to reduce inflammation in MCAO rats, providing a new therapeutic target for CI/RI therapy.
Collapse
Affiliation(s)
- WenTao Liu
- The Second Clinical Medical College, Southern Medical University, Guangzhou City, Guangdong Province, 510515, China
- Department of Emergency Medicine, Hohhot First Hospital, Inner Mongolia Autonomous Region, Hohhot City, 010030, China
- Department of Neurology, The Sixth Medical Centre of PLA General Hospital, No.6, Fucheng Road, Haidian District, Beijing City, 100048, China
| | - YouJin Shen
- Department of Neurology, Deqing County People's Hospital, Zhaoqing City, Guangdong Province, 526600, China
| | - RuiChun Pan
- Department of Neurology, Hebei Yanda Hospital, Langfang City, Hebei Province, 065201, China
| | - XiaoKun Qi
- The Second Clinical Medical College, Southern Medical University, Guangzhou City, Guangdong Province, 510515, China.
- Department of Neurology, The Sixth Medical Centre of PLA General Hospital, No.6, Fucheng Road, Haidian District, Beijing City, 100048, China.
| |
Collapse
|
4
|
Zhao G, Hu Y. Mechanistic insights into intrauterine adhesions. Semin Immunopathol 2024; 47:3. [PMID: 39613882 DOI: 10.1007/s00281-024-01030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024]
Abstract
Intrauterine adhesions (IUA), also known as Asherman's syndrome, arise from damage to the basal layer of the endometrium, frequently caused by intrauterine interventions. This damage leads to nonregenerative healing of endometrium resulting in replacement by fibrous connective tissue, which bring about the adherence of opposing endometrium to render the uterine cavity and/or cervical canal partially or completely obliterated. IUA is a common cause of the refractory uterine infertility. Hysteroscopy is the gold standard for diagnosis of IUA. However, the method of accurately predicting the likelihood of achieving a live birth in the future remains established. Classical treatments have shown limited success, particularly in severe cases. Therefore, utilizing new research methods to deepen the understanding of the pathogenesis of IUA will facilitate the new treatment approaches to be found. In this article we briefly described the advances in the pathogenesis of IUA, with focus on inflammation and parenchymal cellular homeostasis disruption, defects in autophagy and the role of ferroptosis, and we also outlined the progress in IUA therapy.
Collapse
Affiliation(s)
- Guangfeng Zhao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
5
|
Mo J, Li Z, Yang Z, Huang Z, Guo P, Gao J, xiao H, Ye P, Qin H, Zhou T, Jiang J. M6A Modification and Transcription Analysis of LncRNA in Cerebral Ischemia/Reperfusion Injury. Int J Genomics 2024; 2024:4596974. [PMID: 39397896 PMCID: PMC11470819 DOI: 10.1155/2024/4596974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/03/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
LncRNA is a major factor in the occurrence and development of many diseases. However, its mechanism in cerebral ischemia/reperfusion injury (CIRI) is yet unknown. In this study, the transcriptional level and methylation modification level of LncRNAs before and after mechanical thrombectomy were compared by high-throughput sequencing. Venn diagram, Spearman correlation analysis, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, TargetScan, and miRanda were used to analyze the experimental data. The results showed that four key LncRNAs changed at both transcription and methylation levels. Specifically, LncRNA FAR2, LINC02431, and AL357060.1 were downregulated and hypomethylated, while LncRNA FOXD2-AS1 was upregulated and hypomethylated. Moreover, positive regulation of angiogenesis, protein domain-specific binding, autophagy pathway, PPAR signaling pathway, and MAPK signaling pathway were co-enriched between LncRNAs with different expression levels and different methylation levels. Finally, a LncRNA-miRNA-mRNA network was constructed. Therefore, this study explored the potential key LncRNAs and regulatory mechanisms of CIRI.
Collapse
Affiliation(s)
- Jierong Mo
- Department of Emergency, The First People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Zhiquan Li
- Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Zhengfei Yang
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510000, China
| | - Zuhua Huang
- Department of Emergency, The First People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Pengpeng Guo
- Department of Emergency, The First People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Jianfeng Gao
- Department of Emergency, The First People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Haiqiong xiao
- Department of Emergency, The First People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Ping Ye
- Department of Emergency, The First People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Haini Qin
- Department of Emergency, The First People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Tianen Zhou
- Department of Emergency, The First People's Hospital of Foshan, Foshan, Guangdong 528000, China
- Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Jun Jiang
- Department of Emergency, The First People's Hospital of Foshan, Foshan, Guangdong 528000, China
- Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| |
Collapse
|
6
|
Liu B, Yao X, Huang Q, Fan Y, Yu B, Wang J, Wu W, Dai J. STAT6/LINC01637 axis regulates tumor growth via autophagy and pharmacological targeting STAT6 as a novel strategy for uveal melanoma. Cell Death Dis 2024; 15:713. [PMID: 39353898 PMCID: PMC11445459 DOI: 10.1038/s41419-024-07115-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024]
Abstract
Compelling evidence has revealed a novel function of the STAT pathway in the pathophysiology of uveal melanoma (UM); however, its regulatory mechanisms remain unclear. Here, we analyzed the clinical prognostic value of STAT family genes in UM patients using bioinformatics approaches and found that high STAT6 expression is associated with poor prognosis. Furthermore, cellular experiments and a nude mouse model demonstrated that STAT6 promotes UM progression through the autophagy pathway both in vivo and in vitro. Next, RIP-PCR revealed that STAT6 protein binds to LINC01637 mRNA, which in turn regulates STAT6 expression to promote UM growth. Finally, molecular docking indicated that STAT6 is a target of Zoledronic Acid, which can delay UM tumorigenicity by inhibiting STAT6 expression. Taken together, our results indicate that the STAT6/LINC01637 axis promotes UM progression via autophagy and may serve as a potential therapeutic target for UM.
Collapse
Affiliation(s)
- Bo Liu
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
- The Eye Hospital, School of Ophthalmology &Optometry, Wenzhou Medical University, Wenzhou, China
| | - Xueting Yao
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinying Huang
- The Eye Hospital, School of Ophthalmology &Optometry, Wenzhou Medical University, Wenzhou, China
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yichao Fan
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Bo Yu
- The Eye Hospital, School of Ophthalmology &Optometry, Wenzhou Medical University, Wenzhou, China
| | - Jing Wang
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China.
| | - Wencan Wu
- The Eye Hospital, School of Ophthalmology &Optometry, Wenzhou Medical University, Wenzhou, China.
| | - Jinhui Dai
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Dong Q, Fu H, Jiang H. The role of exosome-shuttled miRNAs in heavy metal-induced peripheral tissues and neuroinflammation in Alzheimer's disease. Biomed Pharmacother 2024; 176:116880. [PMID: 38850652 DOI: 10.1016/j.biopha.2024.116880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Heavy metal-induced neuroinflammation is a significant pathophysiologic mechanism in Alzheimer's disease (AD). Microglia-mediated neuroinflammation plays a crucial role in the pathogenesis of AD. Multiple miRNAs are differentially expressed in peripheral tissues after heavy metal exposure, and increasing evidence suggests that they are involved in AD progression by regulating microglial homeostasis. Exosomes, which are capable of loading miRNAs and crossing the bloodbrain barrier, serve as mediators of communication between peripheral tissues and the brain. In this review, we summarize the current evidence on the link between miRNAs in peripheral tissues and neuroinflammation in AD after heavy metal exposure and propose a role for miRNAs in the microglial neurodegenerative phenotype (MGnD) of AD. This study will help to elucidate the link between peripheral tissue damage and MGnD-mediated neuroinflammation in AD after heavy metal exposure. Additionally, we summarize the regulatory effects of natural compounds on peripheral tissue-derived miRNAs, which could be potential therapeutic targets for natural compounds to regulate peripheral tissue-derived exosomal miRNAs to ameliorate heavy metal-induced MGnD-mediated neuroinflammation in patients with AD after heavy metal exposure.
Collapse
Affiliation(s)
- Qing Dong
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Huanyong Fu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Hong Jiang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
8
|
Liu M, Meng J, Chen X, Wang F, Han Z. Long non-coding RNA Small Nucleolar RNA Host Gene 4 ameliorates cigarette smoke-induced proliferation, apoptosis, inflammation, and airway remodeling in alveolar epithelial cells through the modulation of the mitogen-activated protein kinase signaling pathway via the microRNA-409-3p/Four and a Half LIM Domains 1 axis. Eur J Med Res 2024; 29:309. [PMID: 38831471 PMCID: PMC11149209 DOI: 10.1186/s40001-024-01872-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
The long non-coding RNA (lncRNA) Small Nucleolar RNA Host Gene 4 (SNHG4) has been demonstrated to be significantly downregulated in various inflammatory conditions, yet its role in chronic obstructive pulmonary disease (COPD) remains elusive. This study aims to elucidate the biological function of SNHG4 in COPD and to unveil its potential molecular targets. Our findings reveal that both SNHG4 and Four and a Half LIM Domains 1 (FHL1) were markedly downregulated in COPD, whereas microRNA-409-3p (miR-409-3p) was upregulated. Importantly, SNHG4 exhibited a negative correlation with inflammatory markers in patients with COPD, but a positive correlation with forced expiratory volume in 1s percentage (FEV1%). SNHG4 distinguished COPD patients from non-smokers with high sensitivity, specificity, and accuracy. Overexpression of SNHG4 ameliorated cigarette smoke extract (CSE)-mediated inflammation, apoptosis, oxidative stress, and airway remodeling in 16HBE bronchial epithelial cells. These beneficial effects of SNHG4 overexpression were reversed by the overexpression of miR-409-3p or the silencing of FHL1. Mechanistically, SNHG4 competitively bound to miR-409-3p, mediating the expression of FHL1, and consequently improving inflammation, apoptosis, oxidative stress, and airway remodeling in 16HBE cells. Additionally, SNHG4 regulated the miR-409-3p/FHL1 axis to inhibit the activation of the mitogen-activated protein kinase (MAPK) pathway induced by CSE. In a murine model of COPD, knockdown of SNHG4 exacerbated CSE-induced pulmonary inflammation, apoptosis, and oxidative stress. In summary, our data affirm that SNHG4 mitigates pulmonary inflammation, apoptosis, and oxidative damage mediated by COPD through the regulation of the miR-409-3p/FHL1 axis.
Collapse
Affiliation(s)
- Meng Liu
- Department of Respiratory and Critical Care Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, 100037, China
| | - JiGuang Meng
- Department of Respiratory and Critical Care Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, 100037, China
| | - XuXin Chen
- Department of Respiratory and Critical Care Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, 100037, China
| | - Fan Wang
- Department of Respiratory and Critical Care Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, 100037, China
| | - ZhiHai Han
- Department of Respiratory and Critical Care Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, 100037, China.
| |
Collapse
|
9
|
Li L, Zhang Y, Yang K, Liu W, Zhou Z, Xu Y. miRNA-449c-5p regulates the JAK-STAT pathway in inhibiting cell proliferation and invasion in human breast cancer cells by targeting ERBB2. Cancer Rep (Hoboken) 2024; 7:e1974. [PMID: 38351535 PMCID: PMC10864726 DOI: 10.1002/cnr2.1974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/24/2023] [Accepted: 12/28/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Breast cancer is a highly prevalent disease worldwide, and early diagnosis and treatment could reduce the mortality rate of breast cancer patients. microRNAs (miRNA) have been shown to regulate the occurrences and progression of many types of cancers. Thus, it is crucial to find novel biomarkers in breast cancer. miR-449c-5p acted as a biomarker in non-small cell lung cancer, gastric carcinoma, and so forth. ERBB2 is an ideal target for breast cancer therapy. However, the molecular mechanisms between miR-449c-5p and ERBB2 in breast cancer remain poorly understood. Our study focused on the regulatory role of miR-449c-5p in breast cancer and its targeting relationship with ERBB2. METHODS The miR-449c-5p expression in breast cancer tissue and normal tissue was searched from the online database (Starbase). The clinical prognosis of miR-449c-5p and ERBB2 was predicted by using the Kaplan-Meier analysis method. The expression of miR-449c-5p mimics and inhibitors was measured by qRT-PCR. T47D cells were transfected with miR-449c-5p mimics and miR-449c-5p inhibitors. After that, CCK-8, colony formation assays and Transwell assays were used to evaluate the cell proliferation ability, migration and invasion. Whether ERBB2 was the target gene of the miR-449c-5p was predicted by Starbase and verified by dual-luciferase activity assay. In addition, protein levels and the relationship between signalling pathways were measured and validated using western blotting analysis. RESULTS We confirmed that miR-449c-5p was highly expressed in breast cancer tissue, and its downregulation was linked with poor prognosis. Overexpression of miR-449c-5p inhibited the proliferation, migration and invasion of breast cancer cells. ERBB2 was a target of miR-449c-5p. The invasion, migration, and proliferation of breast cancer cells were inhibited by miR-449c-5p/ERBB2 through JAK-STAT. CONCLUSION This study demonstrated that miR-449c-5p inhibits breast cancer cell proliferation, migration and invasion by targeting ERBB2 via JAK/STAT, which means miR-449c-5p, is a potential biomarker for breast cancer and provides a novel insight for diagnosis.
Collapse
Affiliation(s)
- Li Li
- Department of Breast and Thyroid SurgeryThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Medical College, Kunming University of Science and TechnologyKunmingChina
| | - Yangqiurong Zhang
- Department of Breast and Thyroid SurgeryThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Medical College, Kunming University of Science and TechnologyKunmingChina
| | - Kunxian Yang
- Department of Breast and Thyroid SurgeryThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Medical College, Kunming University of Science and TechnologyKunmingChina
| | - Wei Liu
- Department of Breast and Thyroid SurgeryThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Medical College, Kunming University of Science and TechnologyKunmingChina
| | - Ziting Zhou
- Department of Breast and Thyroid SurgeryThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Medical College, Kunming University of Science and TechnologyKunmingChina
| | - Ying Xu
- Department of Breast and Thyroid SurgeryThe First People's Hospital of Yunnan Province, The Affiliated Hospital of Medical College, Kunming University of Science and TechnologyKunmingChina
| |
Collapse
|
10
|
Peng X, Zhu Y, Wang T, Wang S, Sun J. Integrative analysis links autophagy to intrauterine adhesion and establishes autophagy-related circRNA-miRNA-mRNA regulatory network. Aging (Albany NY) 2023; 15:8275-8297. [PMID: 37616056 PMCID: PMC10497020 DOI: 10.18632/aging.204969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/06/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Intrauterine adhesion (IUA) is a troublesome complication characterized with endometrial fibrosis after endometrial trauma. Increasing number of investigations focused on autophagy and non-coding RNA in the pathogenesis of uterine adhesion, but the underlying mechanism needs to be further studied. METHODS mRNA expression profile and miRNA expression profile were obtained from Gene Expression Omnibus database. The autophagy related genes were low. Venn diagram was used to set the intersection of autophagy genes and DEGs to obtain ARDEGs. Circbank was used to select hub autophagy-related circRNAs based on ARDEMs. Then, the differentially expressed autophagy-related genes, miRNAs and circRNAs were analyzed by functional enrichment analysis, and protein-protein interaction network analysis. Finally, the expression levels of hub circRNAs and hub miRNAs were validated through RT-PCR of clinical intrauterine adhesion samples. In vitro experiments were investigated to explore the effect of hub ARCs on cell autophagy, myofibroblast transformation and collagen deposition. RESULTS 11 autophagy-related differentially expressed genes (ARDEGs) and 41 differentially expressed miRNA (ARDEMs) compared between normal tissues and IUA were identified. Subsequently, the autophagy-related miRNA-mRNA network was constructed and hub ARDEMs were selected. Furthermore, the autophagy-related circRNA-miRNA-mRNA network was established. According to the ranking of number of regulated ARDEMs, hsa-circ-0047959, hsa-circ-0032438, hsa-circ-0047301 were regarded as the hub ARCs. In comparison of normal endometrial tissue, all three hub ARCs were upregulated in IUA tissue. All hub ARDEMs were downregulated except has-miR-320c. CONCLUSIONS In the current study, we firstly constructed autophagy-related circRNA-miRNA-mRNA regulatory network and identified hub ARCs and ARDEMs had not been reported in IUA.
Collapse
Affiliation(s)
- Xiaotong Peng
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yiping Zhu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Tao Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shuo Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jing Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
11
|
Kunze R, Fischer S, Marti HH, Preissner KT. Brain alarm by self-extracellular nucleic acids: from neuroinflammation to neurodegeneration. J Biomed Sci 2023; 30:64. [PMID: 37550658 PMCID: PMC10405513 DOI: 10.1186/s12929-023-00954-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/22/2023] [Indexed: 08/09/2023] Open
Abstract
Neurological disorders such as stroke, multiple sclerosis, as well as the neurodegenerative diseases Parkinson's or Alzheimer's disease are accompanied or even powered by danger associated molecular patterns (DAMPs), defined as endogenous molecules released from stressed or damaged tissue. Besides protein-related DAMPs or "alarmins", numerous nucleic acid DAMPs exist in body fluids, such as cell-free nuclear and mitochondrial DNA as well as different species of extracellular RNA, collectively termed as self-extracellular nucleic acids (SENAs). Among these, microRNA, long non-coding RNAs, circular RNAs and extracellular ribosomal RNA constitute the majority of RNA-based DAMPs. Upon tissue injury, necrosis or apoptosis, such SENAs are released from neuronal, immune and other cells predominantly in association with extracellular vesicles and may be translocated to target cells where they can induce intracellular regulatory pathways in gene transcription and translation. The majority of SENA-induced signaling reactions in the brain appear to be related to neuroinflammatory processes, often causally associated with the onset or progression of the respective disease. In this review, the impact of the diverse types of SENAs on neuroinflammatory and neurodegenerative diseases will be discussed. Based on the accumulating knowledge in this field, several specific antagonistic approaches are presented that could serve as therapeutic interventions to lower the pathological outcome of the indicated brain disorders.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Ruprecht-Karls-University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Hugo H. Marti
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Ruprecht-Karls-University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Klaus T. Preissner
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
- Kerckhoff-Heart-Research-Institute, Department of Cardiology, Medical School, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
12
|
Tozihi M, Shademan B, Yousefi H, Avci CB, Nourazarian A, Dehghan G. Melatonin: a promising neuroprotective agent for cerebral ischemia-reperfusion injury. Front Aging Neurosci 2023; 15:1227513. [PMID: 37600520 PMCID: PMC10436333 DOI: 10.3389/fnagi.2023.1227513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Cerebral ischemia-reperfusion (CIR) injury is initiated by the generation of reactive oxygen species (ROS), which leads to the oxidation of cellular proteins, DNA, and lipids as an initial event. The reperfusion process impairs critical cascades that support cell survival, including mitochondrial biogenesis and antioxidant enzyme activity. Failure to activate prosurvival signals may result in increased neuronal cell death and exacerbation of CIR damage. Melatonin, a hormone produced naturally in the body, has high concentrations in both the cerebrospinal fluid and the brain. However, melatonin production declines significantly with age, which may contribute to the development of age-related neurological disorders due to reduced levels. By activating various signaling pathways, melatonin can affect multiple aspects of human health due to its diverse range of activities. Therefore, understanding the underlying intracellular and molecular mechanisms is crucial before investigating the neuroprotective effects of melatonin in cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Majid Tozihi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Yousefi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Türkiye
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
13
|
Szaflik T, Romanowicz H, Szyłło K, Smolarz B. Long Non-Coding RNA SNHG4 Expression in Women with Endometriosis: A Pilot Study. Genes (Basel) 2023; 14:152. [PMID: 36672893 PMCID: PMC9859099 DOI: 10.3390/genes14010152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Endometriosis is a chronic disease of the genital organs that mainly affects women of reproductive age. The analysis of long non-coding RNA (lncRNA) in endometriosis is a novel field of science. Recently, attention has been drawn to SNHG4, which is incorrectly expressed in various human diseases, including endometriosis. AIM The aim of this pilot study was to analyze the expression of lncRNA small nucleolar RNA host gene 4 (SNHG4) and to investigate its significance in endometriosis. MATERIAL AND METHODS LncRNA SNHG4 expression was investigated in paraffin blocks in endometriosis patients (n = 100) and in endometriosis-free controls (n = 100) using a real-time PCR assay. RESULTS This study revealed a higher expression of SNHG4 in endometriosis patients than in controls. A statistically significant relationship between expression level and SNHG4 was found in relation to The Revised American Society for Reproductive Medicine classification of endometriosis, 1996, in the group of patients with endometriosis. CONCLUSION This pilot study has revealed that gene expression in SNHG4 plays an important role in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Tomasz Szaflik
- Department of Gynaecology, Oncological Gynaecology and Endometriosis Treatment, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| | - Krzysztof Szyłło
- Department of Gynaecology, Oncological Gynaecology and Endometriosis Treatment, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland
| | - Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| |
Collapse
|
14
|
Fan W, Qin Y, Tan J, Li B, Liu Y, Rong J, Shi W, Yu B. RGD1564534 represses NLRP3 inflammasome activity in cerebral injury following ischemia-reperfusion by impairing miR-101a-3p-mediated Dusp1 inhibition. Exp Neurol 2023; 359:114266. [PMID: 36336032 DOI: 10.1016/j.expneurol.2022.114266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Mitochondrial autophagy, the elimination of damaged mitochondria through autophagy, contributes to neuron survival in cerebral ischemia. Long non-coding RNAs (lncRNAs)/microRNAs (miRNAs)/mRNAs are important regulatory networks implicated in various biological processes, including cerebral ischemia-reperfusion (I/R) injury. Therefore, this work clarifies a novel RGD1564534-mediated regulatory network on mitochondrial autophagy in cerebral I/R injury. METHODS Differentially expressed lncRNAs in cerebral I/R injury were predicted by bioinformatics analysis. Expression of RGD1564534 was examined in the established middle cerebral artery occlusion (MCAO) rats and oxygen glucose deprivation/reoxygenation (OGD/R)-exposed neurons. We conducted luciferase activity, RNA pull-down and RIP assays to illustrate the interaction among RGD1564534, miR-101a-3p and Dusp1. Gain- or loss-of-function approaches were used to manipulate RGD1564534 and Dusp1 expression. The mechanism of RGD1564534 in cerebral I/R injury was evaluated both in vivo and in vitro. RESULTS RGD1564534 was poorly expressed in the MCAO rats and OGD/R-treated cells, while its high expression attenuated nerve damage, cognitive dysfunction, brain white matter and small vessel damage in MCAO rats. In addition, RGD1564534 promoted mitochondrial autophagy and inhibited NLRP3 inflammasome activity. RGD1564534 competitively bound to miR-101a-3p and attenuated its binding to Dusp1, increasing the expression of Dusp1 in neurons. By this mechanism, RGD1564534 enhanced mitochondrial autophagy, reduced NLRP3 inflammasome activity and suppressed the neuron apoptosis induced by OGD/R. CONCLUSION Altogether, RGD1564534 elevates the expression of Dusp1 by competitively binding to miR-101a-3p, which facilitates mitochondrial autophagy-mediated inactivation of NLRP3 inflammasome and thus retards cerebral I/R injury.
Collapse
Affiliation(s)
- Weijian Fan
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, PR China; Department of Vascular Surgery, Huashan Hospital of Fudan University, Shanghai, PR China
| | - Yuanyuan Qin
- Department of Pharmacy, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, PR China
| | - Jinyun Tan
- Department of Vascular Surgery, Huashan Hospital of Fudan University, Shanghai, PR China
| | - Bo Li
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Yizhi Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Jianjie Rong
- Department of Vascular Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, PR China.
| | - Weihao Shi
- Department of Vascular Surgery, Huashan Hospital of Fudan University, Shanghai, PR China.
| | - Bo Yu
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, PR China; Department of Vascular Surgery, Huashan Hospital of Fudan University, Shanghai, PR China.
| |
Collapse
|
15
|
Zhao P, Lu Y, Wang Z. Naringenin attenuates cerebral ischemia/reperfusion injury by inhibiting oxidative stress and inflammatory response via the activation of SIRT1/FOXO1 signaling pathway in vitro. Acta Cir Bras 2023; 38:e380823. [PMID: 37132753 PMCID: PMC10158850 DOI: 10.1590/acb380823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/06/2023] [Indexed: 05/04/2023] Open
Abstract
PURPOSE To explore the protection of naringenin against oxygen-glucose deprivation/reperfusion (OGD/R)-induced HT22 cell injury, a cell model of cerebral ischemia/reperfusion (I/R) injury in vitro, focusing on SIRT1/FOXO1 signaling pathway. METHODS Cytotoxicity, apoptosis, reactive oxygen species (ROS) generation, malondialdehyde (MDA) content, 4-hydroxynonenoic acid (4-HNE) level, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) activities were measured by commercial kits. Inflammatory cytokines levels were determined by enzyme-linked immunosorbent assay (ELISA). The protein expressions were monitored by Western blot analysis. RESULTS Naringenin significantly ameliorated OGD/R-induced cytotoxicity and apoptosis in HT22 cells. Meanwhile, naringenin promoted SIRT1 and FOXO1 protein expressions in OGD/R-subjected HT22 cells. In addition, naringenin attenuated OGD/R-induced cytotoxicity, apoptosis, oxidative stress (the increased ROS, MDA and 4-HNE levels, and the decreased SOD, GSH-Px and CAT activities) and inflammatory response (the increased tumor necrosis factor-α, interleukin [IL]-1β, and IL-6 levels and the decreased IL-10 level), which were blocked by the inhibition of the SIRT1/FOXO1 signaling pathway induced by SIRT1-siRNA transfection. CONCLUSIONS Naringenin protected HT22 cells against OGD/R injury depending on its antioxidant and anti-inflammatory activities via promoting the SIRT1/FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Peng Zhao
- Tianjin First Central Hospital - Department of Neurology - Tianjin, China
| | - Yi Lu
- Tianjin First Central Hospital - Department of Neurology - Tianjin, China
| | - Zhiyun Wang
- Tianjin First Central Hospital - Department of Neurology - Tianjin, China
| |
Collapse
|
16
|
Long Noncoding RNA SNHG4 Attenuates the Injury of Myocardial Infarction via Regulating miR-148b-3p/DUSP1 Axis. Cardiovasc Ther 2022; 2022:1652315. [PMID: 36545243 PMCID: PMC9744614 DOI: 10.1155/2022/1652315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 12/12/2022] Open
Abstract
Objective Long noncoding RNAs (lncRNAs), including some members of small nucleolar RNA host gene (SNHG), are important regulators in myocardial injury, while the role of SNHG4 in myocardial infarction (MI) is rarely known. This study is aimed at exploring the regulatory role and mechanisms of SNHG4 on MI. Methods Cellular and rat models of MI were established. The expression of relating genes was measured by qRT-PCR and/or western blot. In vitro, cell viability was detected by MTT assay, and cell apoptosis was assessed by caspase-3 level, Bax/Bcl-2 expression, and/or flow cytometry. The inflammation was evaluated by TNF-α, IL-1β, and IL-6 levels. The myocardial injury in MI rats was evaluated by echocardiography, TTC/HE/MASSON/TUNEL staining, and immunohistochemistry (Ki67). DLR assay was performed to confirm the target relationships. Results SNHG4 was downregulated in hypoxia-induced H9c2 cells and MI rats, and its overexpression enhanced cell viability and inhibited cell apoptosis and inflammation both in vitro and in vivo. SNHG4 overexpression also decreased infarct and fibrosis areas, relieved pathological changes, and improved heart function in MI rats. In addition, miR-148b-3p was an action target of SNHG4, and its silencing exhibited consistent results with SNHG4 overexpression in vitro. DUSP1 was a target of miR-148b-3p, which inhibited the apoptosis of hypoxia-induced H9c2 cells. Both miR-148b-3p overexpression and DUSP1 silencing weakened the effects of SNHG4 overexpression on protecting H9c2 cells against hypoxia. Conclusions Overexpression of SNHG4 relieved MI through regulating miR-148b-3p/DUSP1, providing potential therapeutic targets.
Collapse
|
17
|
Yang K, Zeng L, Ge A, Wang S, Zeng J, Yuan X, Mei Z, Wang G, Ge J. A systematic review of the research progress of non-coding RNA in neuroinflammation and immune regulation in cerebral infarction/ischemia-reperfusion injury. Front Immunol 2022; 13:930171. [PMID: 36275741 PMCID: PMC9585453 DOI: 10.3389/fimmu.2022.930171] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022] Open
Abstract
Cerebral infarction/ischemia-reperfusion injury is currently the disease with the highest mortality and disability rate of cardiovascular disease. Current studies have shown that nerve cells die of ischemia several hours after ischemic stroke, which activates the innate immune response in the brain, promotes the production of neurotoxic substances such as inflammatory cytokines, chemokines, reactive oxygen species and − nitrogen oxide, and mediates the destruction of blood-brain barrier and the occurrence of a series of inflammatory cascade reactions. Meanwhile, the expression of adhesion molecules in cerebral vascular endothelial cells increased, and immune inflammatory cells such as polymorphonuclear neutrophils, lymphocytes and mononuclear macrophages passed through vascular endothelial cells and entered the brain tissue. These cells recognize antigens exposed by the central nervous system in the brain, activate adaptive immune responses, and further mediate secondary neuronal damage, aggravating neurological deficits. In order to reduce the above-mentioned damage, the body induces peripheral immunosuppressive responses through negative feedback, which increases the incidence of post-stroke infection. This process is accompanied by changes in the immune status of the ischemic brain tissue in local and systemic systems. A growing number of studies implicate noncoding RNAs (ncRNAs) as novel epigenetic regulatory elements in the dysfunction of various cell subsets in the neurovascular unit after cerebral infarction/ischemia-reperfusion injury. In particular, recent studies have revealed advances in ncRNA biology that greatly expand the understanding of epigenetic regulation of immune responses and inflammation after cerebral infarction/ischemia-reperfusion injury. Identification of aberrant expression patterns and associated biological effects of ncRNAs in patients revealed their potential as novel biomarkers and therapeutic targets for cerebral infarction/ischemia-reperfusion injury. Therefore, this review systematically presents recent studies on the involvement of ncRNAs in cerebral infarction/ischemia-reperfusion injury and neuroimmune inflammatory cascades, and elucidates the functions and mechanisms of cerebral infarction/ischemia-reperfusion-related ncRNAs, providing new opportunities for the discovery of disease biomarkers and targeted therapy. Furthermore, this review introduces clustered regularly interspaced short palindromic repeats (CRISPR)-Display as a possible transformative tool for studying lncRNAs. In the future, ncRNA is expected to be used as a target for diagnosing cerebral infarction/ischemia-reperfusion injury, judging its prognosis and treatment, thereby significantly improving the prognosis of patients.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Liuting Zeng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiao Yuan
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Guozuo Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, China
- *Correspondence: Jinwen Ge,
| |
Collapse
|
18
|
Tang Z, Tang C, Sun C, Ying X, Shen R. Long noncoding RNA-LINC00478 promotes the progression of clear cell renal cell carcinoma through PBX3. J Biochem Mol Toxicol 2022; 36:e23214. [PMID: 36086865 DOI: 10.1002/jbt.23214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/28/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022]
Abstract
Long noncoding RNAs play an important regulatory role in the development and progression of tumors. Our study found that LINC00478 was upregulated in clear cell renal cell carcinoma (ccRCC), so we made an in-depth exploration into its mechanism. In Caki-2 cells, we established the oe-LINC00478 cell line overexpressing LINC00478, and established underexpressing sh-LINC00478 cell line by short hairpin RNA silencing. The abilities of oe-LINC00478 cell invasion and metastasis were significantly enhanced, and the cell proliferative potential was also improved. The cellular expressions of PBX3, CDCA8, and CDK2 were upregulated, while in the sh-LINC00478 cells, the proliferative potential and metastatic and invasive abilities were weakened. Similarly, we established the PBX3-overexpressing oe-PBX3 cell line and the PBX3-underexpressing sh-PBX3 cell line, finding that the PBX3 overexpression enhanced the metastatic and invasive abilities of Caki-2 cells. When we overexpressed LINC00478 in PBX3-knockout Caki-2-PBX3- / - cells, no significant changes were noted in the metastatic or invasive ability. Through RNA pull-down and RNA-binding protein immunoprecipitation assays, we found that LINC00478 could facilitate the transcription-translation processes of PBX3 by binding to it, thus further promoting the expression of downstream cyclins to exert its action. In animal experimentation, the oe-LINC00478 and sh-LINC00478 Caki-2 cells were separately seeded, revealing that the tumor volume was significantly larger in the oe-LINC00478 group than in the sh-LINC00478 group. This study finds that by promoting the PBX3 transcription, LINC00478 can further regulate the expressions of downstream cyclins, thereby facilitating the metastasis and invasion of ccRCC.
Collapse
Affiliation(s)
- Zhiling Tang
- Department of Urology Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chenye Tang
- Department of Urology Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chun Sun
- Department of Urology Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiangjun Ying
- Department of Urology Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Ruilin Shen
- Department of Urology Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
19
|
Identification of Hypothalamic Long Noncoding RNAs Associated with Hypertension and the Behavior/Neurological Phenotype of Hypertensive ISIAH Rats. Genes (Basel) 2022; 13:genes13091598. [PMID: 36140769 PMCID: PMC9498762 DOI: 10.3390/genes13091598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 12/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play an important role in the control of many physiological and pathophysiological processes, including the development of hypertension and other cardiovascular diseases. Nonetheless, the understanding of the regulatory function of many lncRNAs is still incomplete. This work is a continuation of our earlier study on the sequencing of hypothalamic transcriptomes of hypertensive ISIAH rats and control normotensive WAG rats. It aims to identify lncRNAs that may be involved in the formation of the hypertensive state and the associated behavioral features of ISIAH rats. Interstrain differences in the expression of seven lncRNAs were validated by quantitative PCR. Differential hypothalamic expression of lncRNAs LOC100910237 and RGD1562890 between hypertensive and normotensive rats was shown for the first time. Expression of four lncRNAs (Snhg4, LOC100910237, RGD1562890, and Tnxa-ps1) correlated with transcription levels of many hypothalamic genes differentially expressed between ISIAH and WAG rats (DEGs), including genes associated with the behavior/neurological phenotype and hypertension. After functional annotation of these DEGs, it was concluded that lncRNAs Snhg4, LOC100910237, RGD1562890, and Tnxa-ps1 may be involved in the hypothalamic processes related to immune-system functioning and in the response to various exogenous and endogenous factors, including hormonal stimuli. Based on the functional enrichment analysis of the networks, an association of lncRNAs LOC100910237 and Tnxa-ps1 with retinol metabolism and an association of lncRNAs RGD1562890 and Tnxa-ps1 with type 1 diabetes mellitus are proposed for the first time. Based on a discussion, it is hypothesized that previously functionally uncharacterized lncRNA LOC100910237 is implicated in the regulation of hypothalamic processes associated with dopaminergic synaptic signaling, which may contribute to the formation of the behavioral/neurological phenotype and hypertensive state of ISIAH rats.
Collapse
|
20
|
Gao X, Cao Z, Tan H, Li P, Su W, Wan T, Guo W. LncRNA, an Emerging Approach for Neurological Diseases Treatment by Regulating Microglia Polarization. Front Neurosci 2022; 16:903472. [PMID: 35860297 PMCID: PMC9289270 DOI: 10.3389/fnins.2022.903472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Neurological disorders cause untold human disability and death each year. For most neurological disorders, the efficacy of their primary treatment strategies remains suboptimal. Microglia are associated with the development and progression of multiple neurological disorders. Targeting the regulation of microglia polarization has emerged as an important therapeutic strategy for neurological disorders. Their pro-inflammatory (M1)/anti-inflammatory (M2) phenotype microglia are closely associated with neuronal apoptosis, synaptic plasticity, blood-brain barrier integrity, resistance to iron death, and astrocyte regulation. LncRNA, a recently extensively studied non-coding transcript of over 200 nucleotides, has shown great value to intervene in microglia polarization. It can often participate in gene regulation of microglia by directly regulating transcription or sponging downstream miRNAs, for example. Through proper regulation, microglia can exert neuroprotective effects, reduce neurological damage and improve the prognosis of many neurological diseases. This paper reviews the progress of research linking lncRNAs to microglia polarization and neurological diseases.
Collapse
Affiliation(s)
- Xiaoyu Gao
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zilong Cao
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Haifeng Tan
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Peiling Li
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Wenen Su
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Teng Wan
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
- Teng Wan,
| | - Weiming Guo
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- *Correspondence: Weiming Guo,
| |
Collapse
|
21
|
Yang T, Shen J. Small nucleolar RNAs and SNHGs in the intestinal mucosal barrier: Emerging insights and current roles. J Adv Res 2022; 46:75-85. [PMID: 35700920 PMCID: PMC10105082 DOI: 10.1016/j.jare.2022.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Previous studies have focused on the involvement of small nucleolar RNAs (snoRNAs) and SNHGs in tumor cell proliferation, apoptosis, invasion, and metastasis via multiple pathways, including phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT), Wnt/β catenin, and mitogen-activated protein kinase (MAPK). These molecular mechanisms affect the integrity of the intestinal mucosal barrier. AIM OF REVIEW Current evidence regarding snoRNAs and SNHGs in the context of the mucosal barrier and modulation of homeostasis is fragmented. In this review, we collate the established information on snoRNAs and SNHGs as well as discuss the major pathways affecting the mucosal barrier. KEY SCIENTIFIC CONCEPTS OF REVIEW Intestinal mucosal immunity, microflora, and the physical barrier are altered in non-neoplastic diseases such as inflammatory bowel diseases. Dysregulated snoRNAs and SNHGs may impact the intestinal mucosal barrier to promote the pathogenesis and progression of multiple diseases. SnoRNAs or SNHGs has been shown to be associated with poor disease behaviors, indicating that they may be exploited as prognostic biomarkers. Additionally, clarifying the complicated interactions between snoRNAs or SNHGs and the mucosal barrier may provide novel insights for the therapeutic treatment targeting strengthen the intestinal mucosal barrier.
Collapse
Affiliation(s)
- Tian Yang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center. Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160# Pu Jian Ave, Shanghai 200127, China; Shanghai Institute of Digestive Disease, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center. Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160# Pu Jian Ave, Shanghai 200127, China; Shanghai Institute of Digestive Disease, China.
| |
Collapse
|
22
|
Chen Y, He Y, Zhao S, He X, Xue D, Xia Y. Hypoxic/Ischemic Inflammation, MicroRNAs and δ-Opioid Receptors: Hypoxia/Ischemia-Sensitive Versus-Insensitive Organs. Front Aging Neurosci 2022; 14:847374. [PMID: 35615595 PMCID: PMC9124822 DOI: 10.3389/fnagi.2022.847374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/21/2022] [Indexed: 11/15/2022] Open
Abstract
Hypoxia and ischemia cause inflammatory injury and critically participate in the pathogenesis of various diseases in various organs. However, the protective strategies against hypoxic and ischemic insults are very limited in clinical settings up to date. It is of utmost importance to improve our understanding of hypoxic/ischemic (H/I) inflammation and find novel therapies for better prevention/treatment of H/I injury. Recent studies provide strong evidence that the expression of microRNAs (miRNAs), which regulate gene expression and affect H/I inflammation through post-transcriptional mechanisms, are differentially altered in response to H/I stress, while δ-opioid receptors (DOR) play a protective role against H/I insults in different organs, including both H/I-sensitive organs (e.g., brain, kidney, and heart) and H/I-insensitive organs (e.g., liver and muscle). Indeed, many studies have demonstrated the crucial role of the DOR-mediated cyto-protection against H/I injury by several molecular pathways, including NLRP3 inflammasome modulated by miRNAs. In this review, we summarize our recent studies along with those of others worldwide, and compare the effects of DOR on H/I expression of miRNAs in H/I-sensitive and -insensitive organs. The alternation in miRNA expression profiles upon DOR activation and the potential impact on inflammatory injury in different organs under normoxic and hypoxic conditions are discussed at molecular and cellular levels. More in-depth investigations into this field may provide novel clues for new protective strategies against H/I inflammation in different types of organs.
Collapse
Affiliation(s)
- Yimeng Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yichen He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shuchen Zhao
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
- *Correspondence: Dong Xue,
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
- Ying Xia,
| |
Collapse
|
23
|
Mao R, Zong N, Hu Y, Chen Y, Xu Y. Neuronal Death Mechanisms and Therapeutic Strategy in Ischemic Stroke. Neurosci Bull 2022; 38:1229-1247. [PMID: 35513682 PMCID: PMC9554175 DOI: 10.1007/s12264-022-00859-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke caused by intracranial vascular occlusion has become increasingly prevalent with considerable mortality and disability, which gravely burdens the global economy. Current relatively effective clinical treatments are limited to intravenous alteplase and thrombectomy. Even so, patients still benefit little due to the short therapeutic window and the risk of ischemia/reperfusion injury. It is therefore urgent to figure out the neuronal death mechanisms following ischemic stroke in order to develop new neuroprotective strategies. Regarding the pathogenesis, multiple pathological events trigger the activation of cell death pathways. Particular attention should be devoted to excitotoxicity, oxidative stress, and inflammatory responses. Thus, in this article, we first review the principal mechanisms underlying neuronal death mediated by these significant events, such as intrinsic and extrinsic apoptosis, ferroptosis, parthanatos, pyroptosis, necroptosis, and autophagic cell death. Then, we further discuss the possibility of interventions targeting these pathological events and summarize the present pharmacological achievements.
Collapse
Affiliation(s)
- Rui Mao
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Ningning Zong
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yujie Hu
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Ying Chen
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
- The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, 210008, China.
- Nanjing Neurology Clinic Medical Center, Nanjing, 210008, China.
| |
Collapse
|
24
|
Cao X, Ma J, Li S. Mechanism of lncRNA SNHG16 in oxidative stress and inflammation in oxygen-glucose deprivation and reoxygenation-induced SK-N-SH cells. Bioengineered 2022; 13:5021-5034. [PMID: 35170375 PMCID: PMC8974115 DOI: 10.1080/21655979.2022.2026861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cerebral ischemia-reperfusion injury imposes a clinical challenge for physicians in the wake of ischemic stroke. Meanwhile, recent evidence has come to light eliciting the neuroprotective function of SNHG16 in cerebrovascular diseases. Accordingly, the current study sought to analyze the regulatory mechanism of long non-coding RNA small nucleolar RNA host gene16 (SNHG16) in oxidative stress (OS) injury and cell inflammation. Firstly, models of oxygen-glucose deprivation and reoxygenation (OGD/R) were established in SK-N-SH cells. Cell proliferation and apoptosis were appraised using cell counting kit-8 and flow cytometry. Additionally, SNHG16, X-linked inhibitor of apoptosis protein (XIAP), microRNA (miR-421), reactive oxygen species (ROS), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), tumor necrosis factor -α, interleukin (IL)-1β, and IL-10 expression patterns were determined. In addition, we determined and validated the subcellular localization of SNHG16 and the binding relationships between SNHG16 and miR-421, and miR-421 and XIAP. It was found that SNHG16 was poorly-expressed in OGD/R-treated cells. On the other hand, SNHG16 over-expression enhanced cell proliferation, inhibited apoptosis, and alleviated OS and cell inflammation. Furthermore, SNHG16 bound to miR-421 to facilitate the expression of XIAP. Up-regulation of miR-421 or down-regulation of XIAP could reverse the suppressive effects of SNHG16 on OS and cell inflammation. Collectively, our findings indicated that SNHG16 bound to miR-421 to facilitate XIAP expression, thus alleviating OS injury and inflammation in OGD/R-induced SK-N-SH cells.
Collapse
Affiliation(s)
- Xiangyuan Cao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Clinical Medical College of Nanjing Medical University, Shanghai, China
| | - Jingjing Ma
- School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Shaohua Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Clinical Medical College of Nanjing Medical University, Shanghai, China
| |
Collapse
|
25
|
Knockdown of lncRNA MIAT attenuated lipopolysaccharide-induced microglial cells injury by sponging miR-613. Mamm Genome 2022; 33:471-479. [DOI: 10.1007/s00335-022-09946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
|
26
|
Fang L, Xu X, Lu Y, Wu Y, Li J. Long noncoding RNA SNHG8 accelerates acute gouty arthritis development by upregulating AP3D1 in mice. Bioengineered 2021; 12:9803-9815. [PMID: 34874227 PMCID: PMC8810013 DOI: 10.1080/21655979.2021.1995579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gout can affect the quality of life of patients due to monosodium urate monohydrate (MSU) crystals. Numerous studies have proposed that long noncoding RNAs (lncRNAs) regulate gout. We aimed to reveal the function of lncRNA small nucleolar RNA host gene 8 (SNHG8) in acute gouty arthritis (GA). A GA mouse model was established by injection of MSU into footpads. The levels of SNHG8, miR-542-3p and adaptor-related protein complex 3 subunit delta 1 (AP3D1) in footpads were detected via polymerase chain reaction analysis. Hematoxylin–eosin staining revealed the paw swelling in mice. Enzyme-linked immunosorbent assay and western blot analysis were applied to determine the concentrations of proinflammatory cytokines. SNHG8 expression was identified to be upregulated after MSU treatment. Ablation of SNHG8 decreased the MSU-induced enhancement of paw swelling and foot thickness. In addition, SNHG8 depletion decreased the protein levels of proinflammatory factors in GA mice. Mechanically, SNHG8 was verified to be a sponge of miR-542-3p, and miR-542-3p targeted AP3D1 3ʹ untranslated region. SNHG8 competitively bound with miR-542-3p to upregulate AP3D1 expression. Finally, results of rescue assays illustrated that AP3D1 upregulation offset the SNHG8-mediated inhibition on paw swelling and protein levels of proinflammatory factors in GA mice. In conclusion, SNHG8 accelerates acute GA development by upregulating AP3D1 in an miR-542-3p-dependent way in mice, providing an effective therapeutic approach to treat acute GA.
Collapse
Affiliation(s)
- Li Fang
- Department of Rheumatology and Immunology, Zhoushan Hospital of Zhejiang Province, Zhoushan, Zhejiang, China
| | - Xiangfeng Xu
- Department of Rheumatology and Immunology, Zhoushan Hospital of Zhejiang Province, Zhoushan, Zhejiang, China
| | - Yao Lu
- Department of Rheumatology and Immunology, Zhoushan Hospital of Zhejiang Province, Zhoushan, Zhejiang, China
| | - Yanying Wu
- Department of Rheumatology and Immunology, Zhoushan Hospital of Zhejiang Province, Zhoushan, Zhejiang, China
| | - Jiajia Li
- Department of Rheumatology and Immunology, Zhoushan Hospital of Zhejiang Province, Zhoushan, Zhejiang, China
| |
Collapse
|
27
|
Chu Q, Gu X, Zheng Q, Guo Z, Shan D, Wang J, Zhu H. Long noncoding RNA SNHG4: a novel target in human diseases. Cancer Cell Int 2021; 21:583. [PMID: 34717631 PMCID: PMC8557547 DOI: 10.1186/s12935-021-02292-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022] Open
Abstract
Recently, long noncoding RNAs (lncRNAs) have attracted great attention from researchers. LncRNAs are non-protein-coding RNAs of more than 200 nucleotides in length. Multiple studies have been published on the relationship between lncRNA expression and the progression of human diseases. LncRNA small nucleolar RNA host gene 4 (SNHG4), a member of the lncRNA SNHG family, is abnormally expressed in a variety of human diseases, including gastric cancer, renal cell carcinoma, glioblastoma, neuroblastoma, prostate cancer, colorectal cancer, osteosarcoma, cervical cancer, liver cancer, lung cancer, non-small-cell lung cancer, neonatal pneumonia, diabetic retinopathy, neuropathic pain, acute cerebral infarction, acute myeloid leukaemia, and endometriosis. In this paper, the structure of SNHG4 is first introduced, and then studies in humans, animal models and cells are summarized to highlight the expression and function of SNHG4 in the above diseases. In addition, the specific mechanism of SNHG4 as a competing endogenous RNA (ceRNA) is discussed. The findings indicate that SNHG4 can be used as a biomarker for disease prognosis evaluation and as a potential target for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Zixuan Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Dandan Shan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, NO. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
28
|
Xu K, Jiang X, Ariston Gabriel AN, Li X, Wang Y, Xu S. Evolving Landscape of Long Non-coding RNAs in Cerebrospinal Fluid: A Key Role From Diagnosis to Therapy in Brain Tumors. Front Cell Dev Biol 2021; 9:737670. [PMID: 34692695 PMCID: PMC8529119 DOI: 10.3389/fcell.2021.737670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a type of non-coding RNAs that act as molecular fingerprints and modulators of many pathophysiological processes, particularly in cancer. Specifically, lncRNAs can be involved in the pathogenesis and progression of brain tumors, affecting stemness/differentiation, replication, invasion, survival, DNA damage response, and chromatin dynamics. Furthermore, the aberrations in the expressions of these transcripts can promote treatment resistance, leading to tumor recurrence. The development of next-generation sequencing technologies and the creation of lncRNA-specific microarrays have boosted the study of lncRNA etiology. Cerebrospinal fluid (CSF) directly mirrors the biological fluid of biochemical processes in the brain. It can be enriched for small molecules, peptides, or proteins released by the neurons of the central nervous system (CNS) or immune cells. Therefore, strategies that identify and target CSF lncRNAs may be attractive as early diagnostic and therapeutic options. In this review, we have reviewed the studies on CSF lncRNAs in the context of brain tumor pathogenesis and progression and discuss their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Kanghong Xu
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Xinquan Jiang
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | | | - Xiaomeng Li
- Department of Hematology, Jining First People's Hospital, Jining, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Shuo Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
29
|
Chen M, Lai X, Wang X, Ying J, Zhang L, Zhou B, Liu X, Zhang J, Wei G, Hua F. Long Non-coding RNAs and Circular RNAs: Insights Into Microglia and Astrocyte Mediated Neurological Diseases. Front Mol Neurosci 2021; 14:745066. [PMID: 34675776 PMCID: PMC8523841 DOI: 10.3389/fnmol.2021.745066] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023] Open
Abstract
Microglia and astrocytes maintain tissue homeostasis in the nervous system. Both microglia and astrocytes have pro-inflammatory phenotype and anti-inflammatory phenotype. Activated microglia and activated astrocytes can contribute to several neurological diseases. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), two groups of non-coding RNAs (ncRNAs), can function as competing endogenous RNAs (ceRNAs) to impair the microRNA (miRNA) inhibition on targeted messenger RNAs (mRNAs). LncRNAs and circRNAs are involved in various neurological disorders. In this review, we summarized that lncRNAs and circRNAs participate in microglia dysfunction, astrocyte dysfunction, neuron damage, and inflammation. Thereby, lncRNAs and circRNAs can positively or negatively regulate neurological diseases, including spinal cord injury (SCI), traumatic brain injury (TBI), ischemia-reperfusion injury (IRI), stroke, neuropathic pain, epilepsy, Parkinson’s disease (PD), multiple sclerosis (MS), and Alzheimer’s disease (AD). Besides, we also found a lncRNA/circRNA-miRNA-mRNA regulatory network in microglia and astrocyte mediated neurological diseases. Through this review, we hope to cast light on the regulatory mechanisms of lncRNAs and circRNAs in microglia and astrocyte mediated neurological diseases and provide new insights for neurological disease treatment.
Collapse
Affiliation(s)
- Miaomiao Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China.,First Clinical Medical College, Nanchang University, Nanchang, China
| | - Xingning Lai
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xifeng Wang
- Department of Anesthesiology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Bin Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xing Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Gen Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| |
Collapse
|
30
|
Zhang D, Pan N, Jiang C, Hao M. LncRNA SNHG8 sponges miR-449c-5p and regulates the SIRT1/FoxO1 pathway to affect microglia activation and blood-brain barrier permeability in ischemic stroke. J Leukoc Biol 2021; 111:953-966. [PMID: 34585441 DOI: 10.1002/jlb.1a0421-217rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ischemic stroke (IS) can cause disability and death, and microglia as the immune component of the CNS can release inflammatory factors and participate in blood-brain barrier (BBB) dysfunction. This study aimed to investigate the effects of long noncoding RNA (lncRNA) SNHG8 on microglia activation and BBB permeability in IS. A rat model of permanent middle cerebral artery occlusion (p-MCAO) and a cell model of oxygen and glucose deprivation (OGD) in microglia were established, followed by evaluation of neurobehavioral function, BBB permeability, brain edema, and pathologic changes of microglia in brain tissue. The activation status of microglia and expressions of inflammatory factors were detected. Cell viability and integrity of microglia membrane were assessed. The downstream microRNA (miR), gene, and pathway of SNHG8 were analyzed. LncRNA SNHG8 was down-regulated in MCAO rats. Overexpression of SNHG8 improved the neural function defect, reduced brain water content, BBB permeability, brain tissue damage and inflammation, and inhibited microglia activation. In OGD-induced microglia, overexpression of SNHG8 or miR-449c-5p down-regulation increased cell viability and decreased lactate dehydrogenase activity. Moreover, SNHG8 sponged miR-449c-5p to regulate SIRT1. Overexpression of SNHG8 increased the expression of SIRT1 and FoxO1. MiR-449c-5p mimic could annul the effect of SNHG8 overexpression on ischemic microglia. Collectively, SNHG8 inhibits microglia activation and BBB permeability via the miR-449c-5p/SIRT1/FoxO1 pathway, thus eliciting protective effects on ischemic brain injury.
Collapse
Affiliation(s)
- Duobin Zhang
- Department of Neurology, No.1 People's Hospital, Wuhu, Anhui, China
| | - Ning Pan
- Department of Neurology, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuan Jiang
- Department of Neurology, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Maolin Hao
- Department of Neurology, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
31
|
Pan Y, Jiao Q, Wei W, Zheng T, Yang X, Xin W. Emerging Role of LncRNAs in Ischemic Stroke-Novel Insights into the Regulation of Inflammation. J Inflamm Res 2021; 14:4467-4483. [PMID: 34522116 PMCID: PMC8434908 DOI: 10.2147/jir.s327291] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022] Open
Abstract
As a crucial kind of pervasive gene, long noncoding RNAs (lncRNAs) are abundant and key players in brain function as well as numerous neurological disorders, especially ischemic stroke. The mechanisms underlying ischemic stroke include angiogenesis, autophagy, apoptosis, cell death, and neuroinflammation. Inflammation plays a vital role in the pathological process of ischemic stroke, and systemic inflammation affects the patient’s prognosis. Although a great deal of research has illustrated that various lncRNAs are closely relevant to regulate neuroinflammation and microglial activation in ischemic stroke, the specific interactional relationships and mechanisms between lncRNAs and neuroinflammation have not been described clearly. This review aimed to summarize the therapeutic effects and action mechanisms of lncRNAs on ischemia by regulating inflammation and microglial activation. In addition, we emphasize that lncRNAs have the potential to modulate inflammation by inhibiting and activating various signaling pathways, such as microRNAs, NF‐κB and ERK.
Collapse
Affiliation(s)
- Yongli Pan
- Department of Neurology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Qingzheng Jiao
- Second Department of Internal Medicine, Gucheng County Hospital, Gucheng, Hebei, People's Republic of China
| | - Wei Wei
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People's Republic of China
| | - Tianyang Zheng
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Wenqiang Xin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| |
Collapse
|
32
|
Li SX, Yan W, Liu JP, Zhao YJ, Chen L. Long noncoding RNA SNHG4 remits lipopolysaccharide-engendered inflammatory lung damage by inhibiting METTL3 - Mediated m 6A level of STAT2 mRNA. Mol Immunol 2021; 139:10-22. [PMID: 34450538 DOI: 10.1016/j.molimm.2021.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/22/2021] [Accepted: 08/12/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Emerging evidence suggests that long non coding RNA (lncRNA) small nucleolar RNA host gene 4 (SNHG4) has become a new insight into lipopolysaccharide (LPS)-induced microglia inflammation, its role in neonatal pneumonia (NP) remains to be largely unrevealed. METHODS RT-qPCR was used to determine the expression of SNHG4 and METTL3 in the serum from NP patients and normal volunteers, as well as in LPS treated-WI-38 cells. The SNHG4 overexpression vector (pcDNA-SNHG4) was transfected into LPS-treated cells. CCK-8, Transwell, annexin V-FITC/PI, ELISA and Western blot assays were used to determine cell proliferation, migration, apoptosis, contents of IL-6, TNF-α, SOD and MDA, as well as the expression levels of NF-κB pathway proteins, respectively. The enrichment of SNHG4 in the METTL3 promoter region was assessed with RIP assay. m6A quantitative analysis illustrated the m6A level with or without SNHG4 overexpression or METTL3 silencing. Bioinformatics analysis and RIP-PCR were used to predict and validate YTHDF1-mediated m6A levels on signal transducer and activator of transcription 2 (STAT2) mRNA in METTL3 inhibited cells. Then rescue experiments were performed to explore effects of SNHG4 and METTL3 or STAT2 on LPS-treated cell functions. Subsequently, in vivo functional experiments were performed to investigate the role of SNHG4 in LPS induced pneumonia in mice. RESULTS SNHG4 was downregulated, and METTL3 was upregulated in NP patients and LPS-treated cells. SNHG4 overexpression facilitated cell proliferation, migration and SOD concentration, as well as inhibited cell apoptosis and production of IL-6, TNF-α and MDA, and suppressed the expression of NF-κB pathway proteins. Mechanistically, SNHG4 bound with METTL3 and downregulated METTL3 expression. Besides, total m6A level was lower in the SNHG4 overexpressed or METTL3 inhibited cells. METTL3 interference reduced m6A levels of STAT2 mRNA, decreased STAT2 mRNA stability and promoted STAT2 translation level. Upregulation of METTL3 or STAT2 reversed the effects of SNHG4 overexpression on LPS-treated cell functions. CONCLUSIONS This study reveals that SNHG4 promotes LPS induced inflammation in human lung fibroblasts and mouse lung tissues in vitro and in vivo by inhibiting METTL3-mediated m6A level of STAT2 mRNA, which may provide a potential therapeutic mechanism for NP.
Collapse
Affiliation(s)
- Si-Xiu Li
- Neonatal Intensive Care Unite, Children's Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710003, China
| | - Wen Yan
- Neonatal Department, Children's Hospital Affiliate to Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710003, China
| | - Jian-Ping Liu
- Neonatal Intensive Care Unite, Children's Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710003, China
| | - Yu-Juan Zhao
- Neonatal Department, Children's Hospital Affiliate to Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710003, China
| | - Lu Chen
- Neonatal Department, Children's Hospital Affiliate to Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710003, China.
| |
Collapse
|
33
|
Liu X, Guo H, Wang X, Jiao H, Li L, Zheng J. c-myc protects mice from ischemia stroke through elevating microRNA-200b-5p-regulated SIRT1 expression. Brain Res Bull 2021; 176:76-84. [PMID: 34371139 DOI: 10.1016/j.brainresbull.2021.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE c-myc has been reported to attenuate ischemia stroke (IS). We initiated the research to uncover the molecular mechanism of c-myc with regard to microRNA (miR)-200b-5p/Sirtuin1 (SIRT1) axis. METHODS An IS mouse model was prepared by middle cerebral artery occlusion (MCAO). Measurements of c-myc, miR-200b-5p and SIRT1 levels in MCAO mice were conducted. c-myc, miR-200b-5p and SIRT1 expression levels in MCAO mice were detected. The neurological function, production of inflammatory cytokines, neuronal apoptosis, brain tissue pathology and neuronal survival of MCAO mice were observed. RESULTS c-myc and SIRT1 levels went downward while miR-200b-5p expression went upward in MCAO mice. Elevation of c-myc or suppression of miR-200b-5p improved neurological function, reduced inflammation and neuronal apoptosis, and attenuated brain tissue pathology and neuronal survival of MCAO mice. Enhancement of miR-200b-5p or knockdown of SIRT1 weakened c-myc-induced protection against MCAO-induced brain injury in mice. CONCLUSION Overall, c-myc protects mice from IS through elevating miR-200b-5p-targeted SIRT1 expression.
Collapse
Affiliation(s)
- Xiaodan Liu
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Heng Guo
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Xiao Wang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Hong Jiao
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Lei Li
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Jiaolin Zheng
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.
| |
Collapse
|