1
|
Desenko SM, Gorobets MY, Lipson VV, Sakhno YI, Chebanov VA. Dihydroazolopyrimidines: Past, Present and Perspectives in Synthesis, Green Chemistry and Drug Discovery. CHEM REC 2024; 24:e202300244. [PMID: 37668291 DOI: 10.1002/tcr.202300244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Dihydroazolopyrimidines are an important class of heterocycles that are isosteric to natural purines and are therefore of great interest primarily as drug-like molecules. In contrast to the heteroaromatic analogs, synthetic approaches to these compounds were developed much later, and their chemical properties and biological activity have not been studied in detail until recently. In the review, different ways to build dihydroazolopyrimidine systems from different building blocks are described - via the initial formation of a partially hydrogenated pyrimidine ring or an azole ring, as well as a one-pot assembly of azole and azine fragments. Special attention is given to modern approaches: multicomponent reactions, green chemistry, and the use of non-classical activation methods. Information on the chemical properties of dihydroazolopyrimidines and the prospects for their use in the design of drugs of various profiles are also summarized in this review.
Collapse
Affiliation(s)
- Serhiy M Desenko
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
| | - Mykola Yu Gorobets
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
| | - Victoria V Lipson
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
- Faculty of Chemistry, V.N. Karazin Kharkiv National University, Svobody sq. 4, Kharkiv, Ukraine, 61022
- Department of Medicinal Chemistry, State Institution "V. Ya. Danilevsky Institute for Endocrine Pathology Problems" NAMS of Ukraine, Alchevskikh St. 10, Kharkiv, Ukraine, 61002
| | - Yana I Sakhno
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
| | - Valentyn A Chebanov
- Department of Organic and Bioorganic Chemistry, State Scientific Institution "Institute for Single Crystals" NAS of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
- Faculty of Chemistry, V.N. Karazin Kharkiv National University, Svobody sq. 4, Kharkiv, Ukraine, 61022
| |
Collapse
|
2
|
El-Senduny FF, Elgazar AA, Alwasify HA, Abed A, Foda M, Abouzeid S, Lewerenz L, Selmar D, Badria F. Bio-evaluation of Untapped Alkaloids from Vinca minor Enriched by Methyl-jasmonate-induced Stress: an Integrated Approach. PLANTA MEDICA 2023; 89:964-978. [PMID: 36940927 DOI: 10.1055/a-2058-3863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The low amount of metabolites isolated from natural products is one of the challenges preventing their biological evaluation. The modulation of biosynthetic pathways by stimulating stress-induced responses in plants was proven to be a valuable tool for diversification of already known natural products. Recently, we reported the dramatic effect of methyl jasmonate (MeJA) on Vinca minor alkaloids distribution. In this study, three compounds identified as 9-methoxyvincamine, minovincinine, and minovincine are successfully isolated in good yield and subjected to several bioassays based on a network pharmacology study. The extracts and isolated compounds show weak to moderate antimicrobial and cytotoxic activities. Also, they are found to significantly promote wound healing in scratch assay, and transforming growth factor-β (TGF-β) modulation is suggested to be the potential pathway based on bioinformatic analysis. Hence, Western blotting is used to assess the expression of several markers related to this pathway and wound healing. The extracts and isolated compounds are able to increase the expression of Smad3 and Phosphatidylinositol-3-kinase (PI3K), while downregulating the levels of cyclin D1 and the mammalian target of rapamycin (mTOR) except for minovincine, which increases the mTOR expression, inferring that it might act through a different mechanism. Molecular docking is used to give insights on the ability of isolated compounds to bind with different active sites in mTOR. Collectively, the integrated phytochemical, in silico, and molecular biology approach reveal that V. minor and its metabolite could be repurposed for the management of dermatological disorders where these markers are dysregulated, which opens the gate to develop new therapeutics in the future.
Collapse
Affiliation(s)
- Fardous F El-Senduny
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
- Department of Pathology & Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, United States
| | - Abdullah A Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Heba Allah Alwasify
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Alaa Abed
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mohamed Foda
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Sara Abouzeid
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Institute for Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Laura Lewerenz
- Institute for Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dirk Selmar
- Institute for Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Farid Badria
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
The Role of PI3K/AKT/mTOR Signaling in Hepatocellular Carcinoma Metabolism. Int J Mol Sci 2023; 24:ijms24032652. [PMID: 36768977 PMCID: PMC9916527 DOI: 10.3390/ijms24032652] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths in the world. Metabolic reprogramming is considered a new hallmark of cancer, but it remains unclearly described in HCC. The dysregulation of the PI3K/AKT/mTOR signaling pathway is common in HCC and is, therefore, a topic of further research and the concern of developing a novel target for liver cancer therapy. In this review, we illustrate mechanisms by which this signaling network is accountable for regulating HCC cellular metabolism, including glucose metabolism, lipid metabolism, amino acid metabolism, pyrimidine metabolism, and oxidative metabolism, and summarize the ongoing clinical trials based on the inhibition of the PI3K/AKT/mTOR pathway in HCC.
Collapse
|
4
|
Feng Y, Wu W, Li M. Metal-organic frameworks for hepatocellular carcinoma therapy and mechanism. Front Pharmacol 2022; 13:1025780. [PMID: 36225574 PMCID: PMC9549350 DOI: 10.3389/fphar.2022.1025780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
In recent years, metal organic frameworks (MOFs) have attracted increasing attention in cancer therapy, because they can enhance the anticancer efficacy of photodynamic therapy (PDT), photothermal therapy (PTT), photoacoustic imaging, and drug delivery. Owing to stable chemical adjustability, MOFs can be used as carriers to provide excellent loading sites and protection for small-molecule drugs. In addition, MOFs can be used to combine with a variety of therapeutic drugs, including chemotherapeutics drugs, photosensitizers, and radiosensitizers, to efficiently deliver drugs to tumor tissue and achieve desired treatment. There is hardly any review regarding the application of MOFs in hepatocellular carcinoma. In this review, the design, structure, and potential applications of MOFs as nanoparticulate systems in the treatment of hepatocellular carcinoma are presented. Systematic Review Registration: website, identifier registration number
Collapse
|
5
|
Wang Z, Chen X, Zhou L, Zhao X, Ge C, Zhao F, Xie H, Chen T, Tian H, Li H, Li J. FBXO9 Mediates the Cancer-Promoting Effects of ZNF143 by Degrading FBXW7 and Facilitates Drug Resistance in Hepatocellular Carcinoma. Front Oncol 2022; 12:930220. [PMID: 35847937 PMCID: PMC9280481 DOI: 10.3389/fonc.2022.930220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
F-box proteins are critical for malignancy because they control the turnover of key proteins that govern multiple cellular processes. F-box protein 9 (FBXO9) belongs to the F-box protein family and exhibits oncogenic properties in hematological malignancies. However, the function and molecular mechanism of FBXO9 in hepatocellular carcinoma (HCC) remain unclear. Here, we report that FBXO9 was remarkably overexpressed in HCC. Loss- and gain-of-function experiments showed that FBXO9 facilitates HCC cell proliferation and metastasis both in vitro and in vivo. Mechanistically, as a direct upstream transcription factor, FBXO9 is regulated by zinc finger protein 143 (ZNF143) and accelerates tumor growth and metastasis by targeting the F-box and WD repeat domain containing 7 (FBXW7) for ubiquitination and degradation. Additionally, we found that with FBXO9 knockdown, HCC cells were more sensitive to treatment with lenvatinib and sorafenib. In summary, our results demonstrate that a ZNF143-FBXO9-FBXW7 signaling regulatory axis may be involved in tumor progression in HCC, and suggest that FBXO9 could be a potential biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxia Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lianer Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinge Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyang Xie
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Taoyang Chen
- Department of Pathology, Qi Dong Liver Cancer Institute, Qidong, China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jinjun Li,
| |
Collapse
|
6
|
Song L, Liu S, Zhao S. Everolimus (RAD001) combined with programmed death-1 (PD-1) blockade enhances radiosensitivity of cervical cancer and programmed death-ligand 1 (PD-L1) expression by blocking the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR)/S6 kinase 1 (S6K1) pathway. Bioengineered 2022; 13:11240-11257. [PMID: 35485300 PMCID: PMC9208494 DOI: 10.1080/21655979.2022.2064205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer (CC) is the 4th most prevalent malignancy in females. This study explored the mechanism of everolimus (RAD001) combined with programmed death-1 (PD-1) blockade on radiosensitivity by phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway and autophagy in CC cells. Low-radiosensitive CaSki cells were selected as study objects. After RAD001 treatment, PI3K/AKT/mTOR pathway activation, autophagy, migration and invasion abilities, autophagy-related proteins (LC3-I, LC3-II, and p62), and PD-L1 expression in CC cells were detected. After triple treatment of radiotherapy (RT), RAD001, and PD-1 blockade to the CC mouse models, tumor weight and volume were recorded. Ki67 expression, the number of CD8 + T cells, and the ability to produce IFN-γ and TNF-α in tumor tissues were determined. RAD001 promoted autophagy by repressing PI3K/AKT/mTOR pathway, augmented RT-induced apoptosis, and weakened migration and invasion, thereby increasing CC cell radiosensitivity. RAD001 elevated RT-induced PD-L1 level. RT combined with RAD001 and PD-1 blockade intensified the inhibitory effect of RT on tumor growth, reduced the amount of Ki67-positive cells, enhanced radiosensitivity of CC mice, and increased the quantity and killing ability of CD8 + T cells. Briefly, RAD001 combined with PD-1 blockade increases radiosensitivity of CC by impeding the PI3K/AKT/mTOR pathway and potentiating cell autophagy.
Collapse
Affiliation(s)
- Lili Song
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shikai Liu
- Department of Obstetrics and Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Sufen Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
7
|
Liu YY, Ding CZ, Chen JL, Wang ZS, Yang B, Wu XM. A Novel Small Molecular Inhibitor of DNMT1 Enhances the Antitumor Effect of Radiofrequency Ablation in Lung Squamous Cell Carcinoma Cells. Front Pharmacol 2022; 13:863339. [PMID: 35401185 PMCID: PMC8983860 DOI: 10.3389/fphar.2022.863339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
Radiofrequency ablation (RFA) is a relatively new and effective therapeutic strategy for treating lung squamous cell carcinomas (LSCCs). However, RFA is rarely used in the clinic for LSCC which still suffers from a lack of effective comprehensive treatment strategies. In the present work, we investigate iDNMT, a novel small molecular inhibitor of DNMT1 with a unique structure. In clinical LSCC specimens, endogenous DNMT1 was positively associated with methylation rates of miR-27-3p's promoter. Moreover, endogenous DNMT1 was negatively correlated with miR-27-3p expression which targets PSEN-1, the catalytic subunit of γ-secretase, which mediates the cleavage and activation of the Notch pathway. We found that DNMT1 increased activation of the Notch pathway in clinical LSCC samples while downregulating miR-27-3p expression and hypermethylation of miR-27-3p's promoter. In addition of inhibiting activation of the Notch pathway by repressing methylation of the miR-27-3p promoter, treatment of LSCC cells with iDNMT1 also enhanced the sensitivity of LSCC tumor tissues to RFA treatment. These data suggest that iDNMT-induced inhibition of DNMT-1 enhances miR-27-3p expression in LSCC to inhibit activation of the Notch pathway. Furthermore, the combination of iDNMT and RFA may be a promising therapeutic strategy for LSCC.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- Department of Thoracic Surgery, He Nan Provincial Chest Hospital, Zhengzhou, China
| | - Cheng-Zhi Ding
- Department of Thoracic Surgery, He Nan Provincial Chest Hospital, Zhengzhou, China
| | - Jia-Ling Chen
- Department of Thoracic Surgery, He Nan Provincial Chest Hospital, Zhengzhou, China
| | - Zheng-Shuai Wang
- Department of Traditional Chinese Medicine, Zhengzhou Xinhua Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Bin Yang
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-Ming Wu
- Department of Thoracic Surgery, He Nan Provincial Chest Hospital, Zhengzhou, China
| |
Collapse
|
8
|
Zou XZ, Zhou XH, Feng YQ, Hao JF, Liang B, Jia MW. Novel inhibitor of OCT1 enhances the sensitivity of human esophageal squamous cell carcinoma cells to antitumor agents. Eur J Pharmacol 2021; 907:174222. [PMID: 34087221 DOI: 10.1016/j.ejphar.2021.174222] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most fatal malignancies of the digestive system, and shows an especially high incidence in some regions of China. Octamer transcription factors are a family of transcription factors whose DNA-binding domain is a POU domain. OCT transcription factors (OCT-TFs) mediate maintenance of the pluripotency of embryonic stem cells. We measured expression of OCT-TFs in ESCC clinical specimens. Among the OCTs tested, OCT1 showed the highest expression in ESCC tissues. Using molecular docking, we discovered a small-molecule inhibitor, which we named "novel inhibitor of OCT1" (NIO-1), for OCT1. Treatment with NIO-1 inhibited recruitment of OCT1 to the promoter region of its downstream genes and, consequently, repressed OCT1 activation. Treatment with NIO-1 enhanced the susceptibility of ESCC cells to chemotherapeutic agents. Therefore, OCT1 may be a valuable target for ESCC treatment, and NIO-1 could be a promising therapeutic agent.
Collapse
Affiliation(s)
- Xiao-Zheng Zou
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning Province, PR China.
| | - Xiu-Hua Zhou
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning Province, PR China.
| | - Ying-Qi Feng
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning Province, PR China.
| | - Jun-Feng Hao
- Department of Nephrology, Jin Qiu Hospital of Liaoning Province / Geriatric Hospital of Liaoning Province, Shenyang, 110016, Liaoning Province, PR China.
| | - Bing Liang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning Province, PR China.
| | - Meng-Wei Jia
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning Province, PR China.
| |
Collapse
|
9
|
Wu Q, Liu TY, Hu BC, Li X, Wu YT, Sun XT, Jiang XW, Wang S, Qin XC, Ding HW, Zhao QC. CK-3, A Novel Methsulfonyl Pyridine Derivative, Suppresses Hepatocellular Carcinoma Proliferation and Invasion by Blocking the PI3K/AKT/mTOR and MAPK/ERK Pathways. Front Oncol 2021; 11:717626. [PMID: 34395292 PMCID: PMC8355706 DOI: 10.3389/fonc.2021.717626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/12/2021] [Indexed: 01/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive tumor with a poor prognosis that highly expresses phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (ERK). The PI3K/AKT/mTOR and MAPK/ERK signaling pathways play a crucial role in HCC tumor formation, cell cycle, apoptosis and survival. However, no effective targeted therapies against these pathways is available, mainly due to the extensive and complex negative feedback loops between them. Here we used CK-3, a dual blocker of the PI3K/AKT/mTOR and MAPK/ERK pathways, against HCC cell lines to verify its anti-tumor activity in vitro. CK-3 exhibited cytotoxic activity against HCC, as demonstrated with MTT and colony formation assays. The anti-metastatic potential of CK-3 was demonstrated with wound healing and cell invasion assays. The ability of CK-3 to block both the PI3K/AKT/mTOR and MAPK/ERK pathways was also confirmed. CK-3 induced the apoptosis of Hep3B cells, while Bel7402 cells died via mitotic catastrophe (MC). Oral administration of CK-3 also inhibited the subcutaneous growth of BEL7402 cells in nude mice. Simultaneous PI3K/AKT/mTOR and MAPK/ERK pathway inhibition with CK-3 may be superior to single pathway monotherapies by inhibiting their feedback-regulation, and represents a potential treatment for HCC.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China.,Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Tian-Yi Liu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China.,Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Bai-Chun Hu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiang Li
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China.,Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu-Ting Wu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiao-Tong Sun
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiao-Wen Jiang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Shu Wang
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China.,Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiao-Chun Qin
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Huai-Wei Ding
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Qing-Chun Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China.,Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
10
|
Jiang Q, Ma Y, Han J, Chu J, Ma X, Shen L, Liu B, Li BA, Hou J, Bi Q. MDM2 Binding Protein Induces the Resistance of Hepatocellular Carcinoma Cells to Molecular Targeting Agents via Enhancing the Transcription Factor Activity of the Pregnane X Receptor. Front Oncol 2021; 11:715193. [PMID: 34249768 PMCID: PMC8264664 DOI: 10.3389/fonc.2021.715193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022] Open
Abstract
The MDM2 binding protein (MTBP) has been considered an important regulator of human malignancies. In this study, we demonstrate that the high level of MTBP’s endogenous expression is correlated with poor prognosis of advanced hepatocellular carcinoma (HCC) patients who received sorafenib. MTBP interacted with the Pregnane X receptor (PXR) and enhanced the transcription factor activity of PXR. Moreover, MTBP enhanced the accumulation of PXR in HCC cells’ nuclear and the recruitment of PXR to its downstream gene’s (cyp3a4’s) promoter region. Mechanically, the knockdown of MTBP in MHCC97-H cells with high levels of MTBP decelerated the clearance or metabolism of sorafenib in HCC cells and led to the resistance of HCC cells to sorafenib. Whereas overexpression of MTBP in in MHCC97-L cells with low levels of MTBP showed the opposite trend. By establishing the interaction between MTBP and PXR, our results indicate that MTBP could function as a co-activator of PXR and could be a promising therapeutic target to enhance the sensitivity of HCC cells to molecular targeting agents.
Collapse
Affiliation(s)
- Qiyu Jiang
- Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Ma
- Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jingjing Han
- Department of Gastroenterology, Sangzhi County National Hospital, Zhangjiajie City, China
| | - Jingdong Chu
- Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xuemei Ma
- Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lijun Shen
- Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bo Liu
- Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bo-An Li
- Department of Clinical Laboratory, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jun Hou
- Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qian Bi
- Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Jie Y, Liu G, E M, Li Y, Xu G, Guo J, Li Y, Rong G, Li Y, Gu A. Novel small molecule inhibitors of the transcription factor ETS-1 and their antitumor activity against hepatocellular carcinoma. Eur J Pharmacol 2021; 906:174214. [PMID: 34116044 DOI: 10.1016/j.ejphar.2021.174214] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022]
Abstract
The transcription factor ETS-1 (E26 transformation specific sequence 1) is the key regulator for malignant tumor cell proliferation and invasion by mediating the transcription of the invasion/migration related factors, e.g. MMPs (matrix metalloproteinases). This work aims to identify the novel small molecule inhibitors of ETS-1 using a small molecule compound library and to study the inhibitors' antitumor activity against hepatocellular carcinoma (HCC). The luciferase reporter is used to examine the inhibition and activation of ETS-1's transcription factor activity in HCC cells, including a highly invasive HCC cell line, MHCC97-H, and five lines of patient-derived cells. The inhibition of the proliferation of HCC cells is examined using the MTT assay, while the invasion of HCC cells is examined using the transwell assay. The anti-tumor activity of the selected compound on HCC cells is also examined in a subcutaneous tumor model or intrahepatic tumor model in nude mice. The results show that for the first time, four compounds, EI1~EI-4, can inhibit the transcription factor activation of ETS-1 and the proliferation or invasion of HCC cells. Among the four compounds, EI-4 has the best activation. The results from this paper contribute to expanding our understanding of ETS-1 and provide alternative, the safer and more effective, HCC molecular therapy strategies.
Collapse
Affiliation(s)
- Yamin Jie
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Guijun Liu
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine Harbin, Heilongjiang, 150040, China.
| | - Mingyan E
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150040, China.
| | - Ying Li
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Guo Xu
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Jingjing Guo
- Department of Out-patient Clinic, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yinyin Li
- Department of Liver Disease, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| | - Guanghua Rong
- Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| | - Yongwu Li
- Department of Radiology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| | - Anxin Gu
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|
12
|
Zhao M, Sun B, Wang Y, Qu G, Yang H, Wang P. miR-27-3p Enhances the Sensitivity of Triple-Negative Breast Cancer Cells to the Antitumor Agent Olaparib by Targeting PSEN-1, the Catalytic Subunit of Γ-Secretase. Front Oncol 2021; 11:694491. [PMID: 34169001 PMCID: PMC8217819 DOI: 10.3389/fonc.2021.694491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022] Open
Abstract
Olaparib has been used in the treatment of triple-negative breast cancer (TNBC) with BRCA mutations. In the present study, we demonstrated the effect of miR-27-3p on the γ-secretase pathway by regulating the sensitivity of TNBC cells to olaparib. miR-27-3p, a microRNA with the potential to target PSEN-1, the catalytic subunit of γ-secretase mediating the second step of the cleavage of the Notch protein, was identified by the online tool miRDB and found to inhibit the expression of PSEN-1 by directly targeting the 3'-untranslated region (3'-UTR) of PSEN-1. The overexpression of miR-27-3p inhibited the activation of the Notch pathway via the inhibition of the cleavage of the Notch protein, mediated by γ-secretase, and, in turn, enhanced the sensitivity of TNBC cells to the antitumor agent olaparib. Transfection with PSEN-1 containing mutated targeting sites for miR-27-3p or the expression vector of the Notch protein intracellular domain (NICD) almost completely blocked the effect of miR-27-3p on the Notch pathway or the sensitivity of TNBC cells to olaparib, respectively. Therefore, our results suggest that the miR-27-3p/γ-secretase axis participates in the regulation of TNBC and that the overexpression of miR-27-3p represents a potential approach to enhancing the sensitivity of TNBC to olaparib.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Breast Surgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Baisheng Sun
- Emergency Department, Fifth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Yan Wang
- Department of Breast Surgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Gengbao Qu
- Department of Breast Surgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Hua Yang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding City, China
| | - Pilin Wang
- Department of Breast Surgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Pérez-Romasanta LA, González-Del Portillo E, Rodríguez-Gutiérrez A, Matías-Pérez Á. Stereotactic Radiotherapy for Hepatocellular Carcinoma, Radiosensitization Strategies and Radiation-Immunotherapy Combination. Cancers (Basel) 2021; 13:cancers13020192. [PMID: 33430362 PMCID: PMC7825787 DOI: 10.3390/cancers13020192] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Radiotherapy is rapidly turning into a crucial component of multidisciplinary treatment for liver cancer because many patients are not surgical treatment candidates. Thanks to technical developments, radiotherapy have achieved high precision treatments, making it possible to eliminate tumor cells without severe damage to the liver and other organs. Stereotactic Body Radiation Therapy is an advanced radiotherapy technique able to eradicate malignant tumors wherever they are located in properly selected patients. The best use of radiotherapy, the most fruitful radiotherapy strategy, and the best way to combine it with other treatments for liver cancer are largely unknown. Radiosensitizers, agents that can potentiate radiotherapy, could broaden the radiotherapeutic landscape. Radiotherapy potentiation can be achieved with diverse treatments, not only drugs but also nanoparticles. In order to clear up the performance of radiotherapy in liver cancer management in the future and the best ways to potentiate its effects, considerable medical research is needed. Abstract Stereotactic body radiotherapy (SBRT) is an emerging ablative modality for hepatocellular carcinoma (HCC). Most patients with HCC have advanced disease at the time of diagnosis, and therefore, are not candidates for definitive-intent therapies such as resection or transplantation. For this reason, various alternative local and regional therapies have been used to prevent disease progression, palliate symptoms, and delay liver failure. Stereotactic body radiation therapy is a non-invasive technique of delivering ablative doses of radiation to tumors while sparing normal or non-tumor hepatic tissue. Incorporation of SBRT in multidisciplinary HCC management is gradual, initially applied when other liver-directed therapies have failed or are contraindicated, and tried in combination with other locoregional or systemic therapies for more unfavorable conditions by more experienced teams. In order to improve SBRT therapeutic ratio, there has been much interest in augmenting the effect of radiation on tumors by combining it with chemotherapy, molecularly targeted therapeutics, nanoparticles, and immunotherapy. This review aims to synthesize available evidence to evaluate the clinical feasibility and efficacy of SBRT for HCC, and to explore novel radio-potentiation concepts by combining SBRT with novel therapeutics. It is expected that those approaches would result in improved therapeutic outcomes, even though many questions remain with regard to the optimal way to assemble treatments. Further trials are needed to evaluate and consolidate these promising therapies for HCC.
Collapse
|