1
|
Ren Y, Hu X, Qi M, Zhu W, Li J, Yang S, Dai C. Tangningtongluo Tablet ameliorates pancreatic damage in diabetic mice by inducing autophagy and inhibiting the PI3K/Akt/mTOR signaling pathway. Int Immunopharmacol 2024; 142:113032. [PMID: 39236456 DOI: 10.1016/j.intimp.2024.113032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/20/2024] [Accepted: 08/25/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Diabetes is a metabolic disease characterized by hyperglycaemia. Tangningtongluo Tablet (TNTL) is an inpatient formula extensively utilized to treat diabetes mellitus (DM), but the protective mechanism is not clear. This study aimed to investigate the relevant mechanisms by which TNTL affects pancreatic damage in diabetic mice and autophagy. METHODS The impact of TNTL on pancreatic damage in diabetic mice in vitro and in vivo was investigated via glucose and lipid metabolism analyses, HE staining, CCK-8, TUNEL staining, Annexin V/PI, and Western blotting. Molecular docking and Western blotting were used to verify the results of network pharmacological analysis, which was carried out to explore the mechanism by which TNTL affects DM. The autophagosome levels were visualized via RFP-GFP-LC3 and transmission electron microscopy, and lysosomal function was evaluated via Lysotracker red staining. Western blot, immunohistochemistry and immunofluorescence staining were used to detect the expression of the autophagy proteins LC3, p62 and LAMP2. RESULTS Compared with the model group, TNTL protected pancreas from oxidative stress, decreased the level of MDA, increased the levels of SOD and GSH-px, induced the occurrence of autophagy and decreased the levels of apoptotic factors. Moreover, TNTL inhibited the protein expression of p-PI3K, p-Akt and p-mTOR, increased the levels of LC3 and LAMP2 and decreased the level of p62, and the autophagy inhibitor CQ blocked the protective effect of TNTL on pancreatic damage in diabetic mice. CONCLUSION These results demonstrated that TNTL ameliorated pancreatic damage in diabetic mice by inhibiting the PI3K/Akt/mTOR signaling and regulating autophagy.
Collapse
Affiliation(s)
- Ying Ren
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Xiangka Hu
- Institute of Materia Medica, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Mushuang Qi
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Wanjun Zhu
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Jin Li
- The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, China; School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Shuyu Yang
- The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, China; School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
| | - Chunmei Dai
- Institute of Materia Medica, Jinzhou Medical University, Jinzhou, Liaoning 121001, China.
| |
Collapse
|
2
|
Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:413-444. [PMID: 38937158 DOI: 10.1016/j.joim.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
The property theory of traditional Chinese medicine (TCM) has been practiced for thousands of years, playing a pivotal role in the clinical application of TCM. While advancements in energy metabolism, chemical composition analysis, machine learning, ion current modeling, and supercritical fluid technology have provided valuable insight into how aspects of TCM property theory may be measured, these studies only capture specific aspects of TCM property theory in isolation, overlooking the holistic perspective inherent in TCM. To systematically investigate the modern interpretation of the TCM property theory from multidimensional perspectives, we consulted the Chinese Pharmacopoeia (2020 edition) to compile a list of Chinese materia medica (CMM). Then, using the Latin names of each CMM and gut microbiota as keywords, we searched the PubMed database for relevant research on gut microbiota and CMM. The regulatory patterns of different herbs on gut microbiota were then summarized from the perspectives of the four natures, the five flavors and the meridian tropism. In terms of the four natures, we found that warm-natured medicines promoted the colonization of specific beneficial bacteria, while cold-natured medicines boosted populations of some beneficial bacteria while suppressing pathogenic bacteria. Analysis of the five flavors revealed that sweet-flavored and bitter-flavored CMMs positively influenced beneficial bacteria while inhibiting harmful bacteria. CMMs with different meridian tropism exhibited complex modulative patterns on gut microbiota, with Jueyin (Liver) and Taiyin (Lung) meridian CMMs generally exerting a stronger effect. The gut microbiota may be a biological indicator for characterizing the TCM property theory, which not only enhances our understanding of classic TCM theory but also contributes to its scientific advancement and application in healthcare. Please cite this article as: Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. J Integr Med 2024; 22(4): 413-445.
Collapse
Affiliation(s)
- Ya-Nan Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jia-Guo Zhan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chong-Ming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Sati P, Dhyani P, Sharma E, Attri DC, Jantwal A, Devi R, Calina D, Sharifi-Rad J. Gut Microbiota Targeted Approach by Natural Products in Diabetes Management: An Overview. Curr Nutr Rep 2024; 13:166-185. [PMID: 38498287 DOI: 10.1007/s13668-024-00523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE OF REVIEW This review delves into the complex interplay between obesity-induced gut microbiota dysbiosis and the progression of type 2 diabetes mellitus (T2DM), highlighting the potential of natural products in mitigating these effects. By integrating recent epidemiological data, we aim to provide a nuanced understanding of how obesity exacerbates T2DM through gut flora alterations. RECENT FINDINGS Advances in research have underscored the significance of bioactive ingredients in natural foods, capable of restoring gut microbiota balance, thus offering a promising approach to manage diabetes in the context of obesity. These findings build upon the traditional use of medicinal plants in diabetes treatment, suggesting a deeper exploration of their mechanisms of action. This comprehensive manuscript underscores the critical role of targeting gut microbiota dysbiosis in obesity-related T2DM management and by bridging traditional knowledge with current scientific evidence; we highlighted the need for continued research into natural products as a complementary strategy for comprehensive diabetes care.
Collapse
Affiliation(s)
- Priyanka Sati
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Praveen Dhyani
- Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany
| | - Eshita Sharma
- Department of Biochemistry and Molecular Biology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Dharam Chand Attri
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Arvind Jantwal
- Department of Pharmaceutical Sciences, Kumaun University, Bhimtal, Uttarakhand, India
| | - Rajni Devi
- Department of Microbiology, Punjab Agricultural University, Ludhiana-141004, Punjab, India
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | |
Collapse
|
4
|
Chuandong Z, Hu J, Li J, Wu Y, Wu C, Lai G, Shen H, Wu F, Tao C, Liu S, Zhang W, Shao H. Distribution and roles of Ligilactobacillus murinus in hosts. Microbiol Res 2024; 282:127648. [PMID: 38367479 DOI: 10.1016/j.micres.2024.127648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 02/10/2024] [Indexed: 02/19/2024]
Abstract
Ligilactobacillus murinus, a member of the Ligilactobacillus genus, holds significant potential as a probiotic. While research on Ligilactobacillus murinus has been relatively limited compared to well-studied probiotic lactic acid bacteria such as Limosilactobacillus reuteri and Lactobacillus gasseri, a mounting body of evidence highlights its extensive involvement in host intestinal metabolism and immune activities. Moreover, its abundance exhibits a close correlation with intestinal health. Notably, beyond the intestinal context, Ligilactobacillus murinus is gaining recognition for its contributions to metabolism and regulation in the oral cavity, lungs, and vagina. As such, Ligilactobacillus murinus emerges as a potential probiotic candidate with a pivotal role in supporting host well-being. This review delves into studies elucidating the multifaceted roles of Ligilactobacillus murinus. It also examines its medicinal potential and associated challenges, underscoring the imperative to delve deeper into unraveling the mechanisms of its actions and exploring its health applications.
Collapse
Affiliation(s)
- Zhou Chuandong
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Jicong Hu
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Jiawen Li
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Yuting Wu
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Chan Wu
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Guanxi Lai
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Han Shen
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Fenglin Wu
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Changli Tao
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Song Liu
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Wenfeng Zhang
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China.
| | - Hongwei Shao
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
5
|
Liu ML, Wong WT, Weng YM, Ho CL, Hsu HT, Hua KF, Wu CH, Li LH. Cinnamaldehyde, A Bioactive Compound from the Leaves of Cinnamomum osmophloeum Kaneh, Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice by Inhibiting the NLRP3 Inflammasome. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:139-152. [PMID: 38902958 DOI: 10.4103/ejpi.ejpi-d-24-00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/07/2024] [Indexed: 06/22/2024]
Abstract
Inflammatory bowel disease (IBD) comprises a group of idiopathic intestinal disorders, including ulcerative colitis and Crohn's disease, significantly impacting the quality of life for affected individuals. The effective management of these conditions remains a persistent challenge. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a complex molecular structure, regulates the production of pro-inflammatory cytokines such as interleukin-1β. Abnormal activation of the NLRP3 inflammasome plays a pivotal role in the development of IBD, making it a compelling target for therapeutic intervention. Our research revealed that cinnamaldehyde (CA), a major bioactive compound found in the leaves of Cinnamomum osmophloeum kaneh, demonstrated a remarkable ability to alleviate colitis induced by dextran sulfate sodium (DSS) in a mouse model. This effect was attributed to CA's ability to downregulate the activation of the NLRP3 inflammasome and reduce the expression of pro-inflammatory mediators in the colon. In the mechanism study, we observed that CA inhibited the NLRP3 inflammasome in macrophages, at least partially, by enhancing the autophagic response, without reducing mitochondrial damage. These findings collectively suggest that CA holds significant potential as a therapeutic agent for enhancing the management of IBD, offering a promising avenue for further research and development.
Collapse
Affiliation(s)
- May-Lan Liu
- Department of Food Science, National Chiayi University, Chiayi, Taiwan
- Department of Early Childhood Educare, WuFeng University, Chiayi, Taiwan
| | - Wei-Ting Wong
- Taiwan Autoantibody Biobank Initiative, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Yih-Ming Weng
- Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | - Chen-Lung Ho
- Division of Wood Cellulose, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Hsien-Ta Hsu
- Division of Neurosurgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chun-Hsien Wu
- Department of Internal Medicine, Division of Cardiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Lan-Hui Li
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
Khaafi M, Tayarani-Najaran Z, Javadi B. Cinnamaldehyde as a Promising Dietary Phytochemical Against Metabolic Syndrome: A Systematic Review. Mini Rev Med Chem 2024; 24:355-369. [PMID: 37489782 DOI: 10.2174/1389557523666230725113446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Metabolic syndrome (METS) is a set of unhealthy medical conditions considered essential health problems today. Cinnamaldehyde (CA) is the major phytochemical present in the essential oil of cinnamon and possesses antioxidant, anti-inflammatory, hypoglycemic, and antihyperlipidemic activities. AIM We aim to systematically review the effects of CA in preventing and attenuating METS components. Moreover, the cellular and molecular mechanisms of actions of CA, its pharmacokinetics features, and potential structure-activity relationship (SAR) were also surveyed. METHODS PubMed, Science Direct, Scopus, and Google Scholar were searched to retrieve the relevant papers. RESULTS CA possesses various anti-METS activities, including anti-inflammatory, antioxidant, antidiabetic, antidyslipidemia, antiobesity, and antihypertensive properties. Various molecular mechanisms such as stimulating pancreatic insulin release, exerting an insulinotropic effect, lowering lipid peroxidation as well as pancreatic islet oxidant and inflammatory toxicity, increasing the activities of pancreatic antioxidant enzymes, suppressing pro-inflammatory cytokines production, regulating the molecular signaling pathways of the PPAR-γ and AMPK in preadipocytes and preventing adipocyte differentiation and adipogenesis are involved in these activities. CONCLUSIONS CA would effectively hinder METS; however, no robust clinical data supporting these effects in humans is currently available. Accordingly, conducting clinical trials to evaluate the efficacy, safe dosage, pharmacokinetics characteristics, and possible unwanted effects of CA in humans would be of great importance.
Collapse
Affiliation(s)
- Mohaddeseh Khaafi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behjat Javadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Azadi Square, Pardis University Campus, P.O. Box: 9188617871, Mashhad, Iran
| |
Collapse
|
7
|
Gan N, Fang Y, Weng W, Jiao T, Yu W. Antibacterial effects and microarray-based molecular mechanisms of trans-cinnamaldehyde against Porphyromonas gingivalis. Heliyon 2023; 9:e23048. [PMID: 38144276 PMCID: PMC10746420 DOI: 10.1016/j.heliyon.2023.e23048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/23/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is one of the keystone pathogenic bacteria of periodontitis and peri-implantitis. This study aimed to investigate the antibacterial effects and molecular mechanisms of trans-cinnamaldehyde (TC), a safe extract from natural plants, on P. gingivalis. Minimum inhibitory and minimum bactericidal concentrations (MIC and MBC) of TC were determined, and scanning and transmission electron microscopies were used to assess the morphological changes. The overall biomass was estimated, and the metabolic activity of biofilms was determined at different TC concentrations. A microarray-based bioinformatics analysis was performed to elucidate the underlying molecular mechanisms of TC-inhibited P. gingivalis, and significant differences among groups were determined. TC showed an inhibitory effect on the proliferation and survival of planktonic P. gingivalis, of which the MIC and MBC were 39.07 μg/mL and 78.13 μg/mL, respectively. TC also significantly suppressed the formation and metabolic activity of P. gingivalis biofilm. The results of the significant pathways and gene ontology (GO) analyses revealed that TC treatment inhibited two metabolic pathways, accompanied by the downregulation of relative genes of nitrogen metabolism (NrfA, NrfH, and PG_2213) and starch and sucrose metabolism (PG_1681, PG_1682, and PG_1683). Thus, this study confirmed TC to be a natural antimicrobial agent against P. gingivalis and further demonstrated that TC suppressed the microbial activity on P. gingivalis through the disruption of physiological metabolism, which might inhibit the growth and the biofilm formation of P. gingivalis.
Collapse
Affiliation(s)
- Ning Gan
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yingjing Fang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Weimin Weng
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Ting Jiao
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- Fengcheng Hospital of Fengxian District, Shanghai, 201411, China
| | - Weiqiang Yu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
8
|
Yuan Z, Tian Y, Zhang C, Wang M, Xie J, Wang C, Huang J. Integration of systematic review, lipidomics with experiment verification reveals abnormal sphingolipids facilitate diabetic retinopathy by inducing oxidative stress on RMECs. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159382. [PMID: 37659619 DOI: 10.1016/j.bbalip.2023.159382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
OBJECTIVE This study aims to explore the potential biomarkers in the development of diabetes mellitus (DM) into diabetic retinopathy (DR). METHODS Systematic review of diabetic metabolomics was used to screen the differential metabolites and related pathways during the development of DM. Non-targeted lipidomics of rat plasma was performed to explore the differential metabolites in the development of DM into DR in vivo. To verify the effects of differential metabolites in inducing retinal microvascular endothelial cells (RMECs) injury by increasing oxidative stress, high glucose medium containing differential metabolites was used to induce rat RMECs injury and cell viability, malondialdehyde (MDA) contents, superoxide dismutase (SOD) activities, reactive oxygen species (ROS) levels and mitochondrial membrane potential (MMP) were evaluated in vitro. Network pharmacology was performed to explore the potential mechanism of differential metabolites in inducing DR. RESULTS Through the systematic review, 148 differential metabolites were obtained and the sphingolipid metabolic pathway attracted our attention. Plasma non-targeted lipidomics found that sphingolipids were accompanied by the development of DM into DR. In vitro experiments showed sphinganine and sphingosine-1-phosphate aggravated rat RMECs injury induced by high glucose, further increased MDA and ROS levels, and further decreased SOD activities and MMP. Network pharmacology revealed sphinganine and sphingosine-1-phosphate may induce DR by regulating the AGE-RAGE and HIF-1 signaling pathways. CONCLUSIONS Integrated systematic review, lipidomics and experiment verification reveal that abnormal sphingolipid metabolism facilitates DR by inducing oxidative stress on RMECs. Our study could provide the experimental basis for finding potential biomarkers for the diagnosis and treatment of DR.
Collapse
Affiliation(s)
- Zhenshuang Yuan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yue Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cong Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingshuang Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiaqi Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Can Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Jianmei Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
9
|
Zhang Z, Ye J, Liu X, Zhao W, Zhao B, Gao X, Lan H, Wu Y, Yang Y, Cao P. Huangqi Guizhi Wuwu decoction alleviates oxaliplatin-induced peripheral neuropathy via the gut-peripheral nerve axis. Chin Med 2023; 18:114. [PMID: 37679804 PMCID: PMC10485938 DOI: 10.1186/s13020-023-00826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Oxaliplatin-induced peripheral neurotoxicity (OIPN) limits the dose of chemotherapy and seriously affects the quality of life. Huangqi Guizhi Wuwu Decoction (HGWD) is a classical Traditional Chinese Medicine (TCM) formula for the prevention of OIPN. However, its specific pharmacological mechanism of action remains unknown. Our study found that HGWD can effectively alleviate chronic OIPN and regulate intestinal flora. Therefore, we explored the mechanism of action of HGWD in alleviating chronic OIPN from the perspective of intestinal flora. METHODS In this study, we established an OIPN model in C57BL/6 mice treated with different concentrations of HGWD. Mechanical pain and cold pain were assessed at certain time points, and samples of mice colon, dorsal root ganglion (DRG), serum, and feces were collected. Associated inflammation levels in the colon and DRG were detected using immunohistochemical techniques; the serum lipopolysaccharide (LPS) levels and associated inflammation were assessed using the appropriate kits; and 16S rRNA sequencing was used to examine the dynamic changes in gut microorganisms. Finally, established fecal microbiota transplantation (FMT) and antibiotic (ABX) pretreatment models were used to validate flora's role in HGWD for chronic OIPN by pain scoring and related pathological analysis. RESULTS HGWD treatment significantly alleviated pain sensitivity in chronic OIPN mice. Pathological results showed that HGWD treatment improved intestinal ZO-1 expression and reduced serum LPS levels and associated inflammatory factors in the colon, serum, and DRG. The 16S rRNA results showed that HGWD restored the composition of the intestinal flora in a time-dependent manner to alleviate OIPN. FMT and ABX experiments demonstrated that HGWD can alleviate chronic OIPN by regulating intestinal flora homeostasis. CONCLUSIONS HGWD prevents chronic OIPN by dynamically regulating intestinal flora homeostasis, thereby ameliorating intestinal barrier damage and reducing serum LPS and relevant inflammatory factor levels in the colon, serum, and DRG.
Collapse
Affiliation(s)
- Zhengwei Zhang
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juan Ye
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xinyu Liu
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenjing Zhao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bing Zhao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xuejiao Gao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hongli Lan
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuze Wu
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yang Yang
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, China.
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Peng Cao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, China.
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
10
|
Singh R, Kumar P, Sindhu J, Devi M, Kumar A, Lal S, Singh D, Kumar H. Thiazolidinedione-triazole conjugates: design, synthesis and probing of the α-amylase inhibitory potential. Future Med Chem 2023; 15:1273-1294. [PMID: 37551699 DOI: 10.4155/fmc-2023-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Aim: The primary objective of this investigation was the synthesis, spectral interpretation and evaluation of the α-amylase inhibition of rationally designed thiazolidinedione-triazole conjugates (7a-7aa). Materials & methods: The designed compounds were synthesized by stirring a mixture of thiazolidine-2,4-dione, propargyl bromide, cinnamaldehyde and azide derivatives in polyethylene glycol-400. The α-amylase inhibitory activity of the synthesized conjugates was examined by integrating in vitro and in silico studies. Results: The investigated derivatives exhibited promising α-amylase inhibitory activity, with IC50 values ranging between 0.028 and 0.088 μmol ml-1. Various computational approaches were employed to get detailed information about the inhibition mechanism. Conclusion: The thiazolidinedione-triazole conjugate 7p, with IC50 = 0.028 μmol ml-1, was identified as the best hit for inhibiting α-amylase.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Meena Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, GJUS&T, Hisar, 125001, India
| | - Sohan Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Harish Kumar
- Department of Chemistry, School of Basic Sciences, Central University Haryana, Mahendergarh, 123029, India
| |
Collapse
|
11
|
Gaique TG, Boechat SK, Neto JGO, Bento-Bernardes T, Medeiros RF, Pazos-Moura CC, Oliveira KJ. Cinnamaldehyde supplementation acts as an insulin mimetic compound improving glucose metabolism during adolescence, but not during adulthood, in healthy male rats. Hormones (Athens) 2023; 22:295-304. [PMID: 36810755 DOI: 10.1007/s42000-023-00442-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE Adolescence is a critical period of increased vulnerability to nutritional modifications, and adolescents may respond differently from adults to dietary intake and nutraceuticals. Cinnamaldehyde, a major bioactive compound of cinnamon, improves energy metabolism, as has been shown in studies conducted primarily in adult animals. We hypothesized that cinnamaldehyde treatment may have a higher impact on the glycemic homeostasis of healthy adolescent rats than on healthy adult rats. METHODS Male adolescent (30 days) or adult (90 days) Wistar rats received cinnamaldehyde (40 mg/kg) for 28 days by gavage. The oral glucose tolerance test (OGTT), liver glycogen content, serum insulin concentration, serum lipid profile, and hepatic insulin signaling marker expression were evaluated. RESULTS Cinnamaldehyde-treated adolescent rats showed less weight gain (P = 0.041), improved OGTT (P = 0.004), increased expression of phosphorylated IRS-1 (P = 0.015), and a trend to increase phosphorylated IRS-1 (P = 0.063) in the liver of adolescent rats in the basal state. None of these parameters was modified after treatment with cinnamaldehyde in the adult group. Cumulative food intake, visceral adiposity, liver weight, serum insulin, serum lipid profile, hepatic glycogen content, and liver protein expression of IRβ, phosphorylated IRβ, AKT, phosphorylated AKT, and PTP-1B in the basal state were similar between both age groups. CONCLUSION In a healthy metabolic condition, cinnamaldehyde supplementation affects glycemic metabolism in adolescent rats while promoting no changes in adult rats.
Collapse
Affiliation(s)
- Thaiane G Gaique
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, 24210-130, Brazil
| | - Silvia K Boechat
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, 24210-130, Brazil
| | - Jessika Geisebel O Neto
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, 24210-130, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thais Bento-Bernardes
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, 24210-130, Brazil
| | - Renata F Medeiros
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, 24210-130, Brazil
| | - Carmen C Pazos-Moura
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Karen J Oliveira
- Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ, 24210-130, Brazil.
| |
Collapse
|
12
|
Bao Y, Han X, Liu D, Tan Z, Deng Y. Gut microbiota: The key to the treatment of metabolic syndrome in traditional Chinese medicine - a case study of diabetes and nonalcoholic fatty liver disease. Front Immunol 2022; 13:1072376. [PMID: 36618372 PMCID: PMC9816483 DOI: 10.3389/fimmu.2022.1072376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Metabolic syndrome mainly includes obesity, type 2 diabetes (T2DM), alcoholic fatty liver (NAFLD) and cardiovascular diseases. According to the ancient experience philosophy of Yin-Yang, monarch-minister compatibility of traditional Chinese medicine, prescription is given to treat diseases, which has the advantages of small toxic and side effects and quick effect. However, due to the diversity of traditional Chinese medicine ingredients and doubts about the treatment theory of traditional Chinese medicine, the mechanism of traditional Chinese medicine is still in doubt. Gastrointestinal tract is an important part of human environment, and participates in the occurrence and development of diseases. In recent years, more and more TCM researches have made intestinal microbiome a new frontier for understanding and treating diseases. Clinically, nonalcoholic fatty liver disease (NAFLD) and diabetes mellitus (DM) often co-occur. Our aim is to explain the mechanism of interaction between gastrointestinal microbiome and traditional Chinese medicine (TCM) or traditional Chinese medicine formula to treat DM and NAFLD. Traditional Chinese medicine may treat these two diseases by influencing the composition of intestinal microorganisms, regulating the metabolism of intestinal microorganisms and transforming Chinese medicinal compounds.
Collapse
Affiliation(s)
- Yang Bao
- Department of Endosecretory Metabolic Diseases, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiao Han
- Department of Endosecretory Metabolic Diseases, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China,*Correspondence: Yongzhi Deng, ; Zhaolin Tan, ; Da Liu,
| | - Zhaolin Tan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China,*Correspondence: Yongzhi Deng, ; Zhaolin Tan, ; Da Liu,
| | - Yongzhi Deng
- Department of Acupuncture and Massage, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China,*Correspondence: Yongzhi Deng, ; Zhaolin Tan, ; Da Liu,
| |
Collapse
|
13
|
Chen Z, Jing F, Lu M, Su C, Tong R, Pan L. Effects of dietary trans-cinnamaldehyde on growth performance, lipid metabolism, immune response and intestinal microbiota of Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2022; 131:908-917. [PMID: 36356856 DOI: 10.1016/j.fsi.2022.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The purpose of this study was to evaluate the effects of dietary trans-cinnamaldehyde (TC) on growth performance, lipid metabolism, immune response and intestinal microbiota of Litopenaeus vannamei. Shrimp were randomly divided into 4 groups, with 3 replicants in each group and 70 shrimp in each replicant. The contents of TC in the four groups were 0, 0.4, 0.8 and 1.2 g kg-1, respectively. Samples were taken after 56 days, followed by a 7-day vibrio harveyi challenge experiment. The results showed that TC significantly improved the growth performance by enhancing the activity of digestive enzymes in shrimp (P < 0.05). TC also reduced the content of crude fat (P < 0.05). The addition of TC to the diet attenuated lipid deposition, as evidenced by a reduction in the content of crude fat and a decrease in plasma levels of cholesterol and triglycerides (P < 0.05). The expression of key genes for fatty acid and triglycerides synthesis were significantly down-regulated and key genes for fatty acid β-oxidation were significantly up-regulated (P < 0.05). In addition, the immune response and antioxidant capability of shrimp were significantly enhanced by the addition of TC to the diet (P < 0.05). Meanwhile, TC could improve intestinal health by increasing the abundance of beneficial bacteria and decreasing the abundance of pathogenic bacteria, but had no significant effect on alpha diversity and beta diversity (P > 0.05). In addition, the results of histopathological sections and plasma transaminase studies showed that TC could improve the health status of hepatopancreas and was a safe nutritional supplement. After the 7-day Vibrio harveyi challenge, the cumulative mortality of shrimp decreased with increasing levels of dietary TC compared with control group (P < 0.05). These results suggested that TC could be used as a nutritional supplement for shrimp to enhance disease resistance and reduce lipid accumulation.
Collapse
Affiliation(s)
- Zhifei Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Futao Jing
- Shandong Fisheries Development and Resources Conservation Center, Jinan, 50000, China
| | - Mingxiang Lu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Chen Su
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
14
|
Chen W, Yu Y, Liu Y, Song C, Chen H, Tang C, Song Y, Zhang X. Ursolic acid regulates gut microbiota and corrects the imbalance of Th17/Treg cells in T1DM rats. PLoS One 2022; 17:e0277061. [PMID: 36327331 PMCID: PMC9632920 DOI: 10.1371/journal.pone.0277061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Ursolic acid (UA), a natural pentacyclic triterpenoid obtained from fruit and several traditional Chinese medicinal plants, exhibits anti-inflammatory and hypoglycemic properties. However, its protective effects against type 1 diabetes mellitus (T1DM) have not been explored. In this study, streptozotocin-induced T1DM rat models were established and treated with UA for six weeks. T1DM rats treated with UA were used to observe the effects of UA on body weight and fasting blood glucose (FBG) levels. Pathological changes in the pancreas were observed using immunohistochemical staining. The gut microbiota distribution was measured using 16S rDNA high-throughput sequencing. The proportions of Th17 and Treg cells were examined using flow cytometry. Protein and mRNA expression of molecules involved in Th17/Treg cell differentiation were assessed by quantitative real-time PCR and western blotting. The correlation between gut microbiota and Th17/Treg cell differentiation in T1DM was analyzed using redundancy analysis (RDA) analysis. Compared with the model group, FBG levels declined, and the progressive destruction of pancreatic β cells was alleviated. The diversity and uniformity of gut microbiota in T1DM rats treated with UA increased significantly. Interestingly, the Th17/Treg cell differentiation imbalance was corrected and positively correlated with the expression of Foxp3 and IL-10, and negatively correlated with the expression of RORγt, IL-17A, and TNF-α. These findings suggest that UA can lower FBG levels in T1DM rats, delay the progressive destruction of pancreatic β-cells, and modulate gut microbiota homeostasis and immune function in streptozotocin-induced T1DM rats.
Collapse
Affiliation(s)
- Weiwei Chen
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Yingying Yu
- The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan Province, China
- Henan University of Chinese Medicine School of Medicine, Zhengzhou, Henan Province, China
| | - Yang Liu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - ChaoJie Song
- Henan University of Chinese Medicine School of Medicine, Zhengzhou, Henan Province, China
| | - HuanHuan Chen
- Henan University of Chinese Medicine School of Medicine, Zhengzhou, Henan Province, China
| | - Cong Tang
- Henan University of Chinese Medicine School of Medicine, Zhengzhou, Henan Province, China
| | - Yu Song
- Henan University of Chinese Medicine School of Medicine, Zhengzhou, Henan Province, China
| | - Xiaoli Zhang
- Henan University of Chinese Medicine School of Medicine, Zhengzhou, Henan Province, China
- * E-mail:
| |
Collapse
|
15
|
Lu L, Xiong Y, Zhou J, Wang G, Mi B, Liu G. The Therapeutic Roles of Cinnamaldehyde against Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9177108. [PMID: 36254234 PMCID: PMC9569207 DOI: 10.1155/2022/9177108] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/06/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022]
Abstract
Evidence from epidemiological studies has demonstrated that the incidence and mortality of cardiovascular diseases (CVDs) increase year by year, which pose a great threat on social economy and human health worldwide. Due to limited therapeutic benefits and associated adverse effects of current medications, there is an urgent need to uncover novel agents with favorable safety and efficacy. Cinnamaldehyde (CA) is a bioactive phytochemical isolated from the stem bark of Chinese herbal medicine Cinnamon and has been suggested to possess curative roles against the development of CVDs. This integrated review intends to summarize the physicochemical and pharmacokinetic features of CA and discuss the recent advances in underlying mechanisms and potential targets responsible for anti-CVD properties of CA. The CA-related cardiovascular protective mechanisms could be attributed to the inhibition of inflammation and oxidative stress, improvement of lipid and glucose metabolism, regulation of cell proliferation and apoptosis, suppression of cardiac fibrosis, and platelet aggregation and promotion of vasodilation and angiogenesis. Furthermore, CA is likely to inhibit CVD progression via affecting other possible processes including autophagy and ER stress regulation, gut microbiota and immune homeostasis, ion metabolism, ncRNA expression, and TRPA1 activation. Collectively, experiments reported previously highlight the therapeutic effects of CA and clinical trials are advocated to offer scientific basis for the compound future applied in clinical practice for CVD prophylaxis and treatment.
Collapse
Affiliation(s)
- Li Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Juan Zhou
- Department of Cardiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430073, China
| | - Guangji Wang
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
16
|
Zhang J, Xiao Y, Hu J, Liu S, Zhou Z, Xie L. Lipid metabolism in type 1 diabetes mellitus: Pathogenetic and therapeutic implications. Front Immunol 2022; 13:999108. [PMID: 36275658 PMCID: PMC9583919 DOI: 10.3389/fimmu.2022.999108] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease with insulin deficiency due to pancreatic β cell destruction. Multiple independent cohort studies revealed specific lipid spectrum alterations prior to islet autoimmunity in T1DM. Except for serving as building blocks for membrane biogenesis, accumulative evidence suggests lipids and their derivatives can also modulate different biological processes in the progression of T1DM, such as inflammation responses, immune attacks, and β cell vulnerability. However, the types of lipids are huge and majority of them have been largely unexplored in T1DM. In this review, based on the lipid classification system, we summarize the clinical evidence on dyslipidemia related to T1DM and elucidate the potential mechanisms by which they participate in regulating inflammation responses, modulating lymphocyte function and influencing β cell susceptibility to apoptosis and dysfunction. This review systematically recapitulates the role and mechanisms of various lipids in T1DM, providing new therapeutic approaches for T1DM from a nutritional perspective.
Collapse
|
17
|
Tanase DM, Gosav EM, Anton MI, Floria M, Seritean Isac PN, Hurjui LL, Tarniceriu CC, Costea CF, Ciocoiu M, Rezus C. Oxidative Stress and NRF2/KEAP1/ARE Pathway in Diabetic Kidney Disease (DKD): New Perspectives. Biomolecules 2022; 12:biom12091227. [PMID: 36139066 PMCID: PMC9496369 DOI: 10.3390/biom12091227] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is one of the most debilitating chronic diseases worldwide, with increased prevalence and incidence. In addition to its macrovascular damage, through its microvascular complications, such as Diabetic Kidney Disease (DKD), DM further compounds the quality of life of these patients. Considering DKD is the main cause of end-stage renal disease (ESRD) in developed countries, extensive research is currently investigating the matrix of DKD pathophysiology. Hyperglycemia, inflammation and oxidative stress (OS) are the main mechanisms behind this disease. By generating pro-inflammatory factors (e.g., IL-1,6,18, TNF-α, TGF-β, NF-κB, MCP-1, VCAM-1, ICAM-1) and the activation of diverse pathways (e.g., PKC, ROCK, AGE/RAGE, JAK-STAT), they promote a pro-oxidant state with impairment of the antioxidant system (NRF2/KEAP1/ARE pathway) and, finally, alterations in the renal filtration unit. Hitherto, a wide spectrum of pre-clinical and clinical studies shows the beneficial use of NRF2-inducing strategies, such as NRF2 activators (e.g., Bardoxolone methyl, Curcumin, Sulforaphane and their analogues), and other natural compounds with antioxidant properties in DKD treatment. However, limitations regarding the lack of larger clinical trials, solubility or delivery hamper their implementation for clinical use. Therefore, in this review, we will discuss DKD mechanisms, especially oxidative stress (OS) and NRF2/KEAP1/ARE involvement, while highlighting the potential of therapeutic approaches that target DKD via OS.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Madalina Ioana Anton
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence:
| | - Petronela Nicoleta Seritean Isac
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences II, Physiology Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Hematology Laboratory, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Hematology Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iași, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| |
Collapse
|
18
|
Li X, Zhao W, Xiao M, Yu L, Chen Q, Hu X, Zhao Y, Xiong L, Chen X, Wang X, Ba Y, Guo Q, Wu X. Penthorum chinense Pursh. extract attenuates non-alcholic fatty liver disease by regulating gut microbiota and bile acid metabolism in mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115333. [PMID: 35500802 DOI: 10.1016/j.jep.2022.115333] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Penthorum chinense Pursh. (PCP) is commonly used as a Miao ethnomedicine and health food for liver protection in China. Gansukeli (WS3-B-2526-97) is made from the extract of PCP (PCPE) for the treatment of viral hepatitis. In recent years, PCPE has been reported in the treatment of non-alcoholic fatty liver disease (NAFLD), however its potential mechanism is not fully elucidated. AIM OF THE STUDY To investigate the ameliorating effect of PCPE on high-fat diet (HFD)-induced NAFLD mice and demonstrate whether its protective effect is gut microbiota dependent and associated with bile acid (BA) metabolism. MATERIALS AND METHODS The alleviating effect of PCPE on NAFLD was conducted on male C57BL/6J mice fed an HFD for 16 weeks, and this effect associated with gut microbiota dependent was demonstrated by pseudo-germfree mice treated with antibiotics and fecal microbiota transplantation (FMT). The composition of the gut microbiota in the cecum contents was analyzed by 16S rRNA sequencing, and the levels of BAs in liver and fecal samples were determined by UPLC/MS-MS. RESULTS The results showed that administration of PCPE for 8 weeks could potently ameliorate HFD-induced NAFLD and alleviate dyslipidemia and insulin resistance. Moreover, PCPE treatment alleviated gut dysbiosis, especially reducing the relative abundance of bile salt hydrolase (BSH)-producing bacteria. Furthermore, PCPE significantly increased the levels of taurine-conjugated BAs in feces, such as tauro-β-muricholic acid (T-βMCA), tauroursodesoxycholic acid (TUDCA), and taurochenodeoxycholic acid (TCDCA), and increased hepatic chenodeoxycholic acid (CDCA). The protein and mRNA expression of farnesoid X receptor (FXR) and fibroblast growth factor 15 (FGF15) were decreased in intestine, increased taurine-conjugated BAs inhibited the intestinal signaling pathway, which was associated with increased genes expression of enzymes in the alternative BA synthesis pathway that reduced the levels of cholesterol. The increased CDCA produced via the alternative BA synthesis pathway promoted hepatic FXR activation and BA excretion. CONCLUSION Our study is the first time to demonstrate that PCPE could ameliorate NAFLD in HFD-induced mice by regulating the gut microbiota and BA metabolism, and from a novel perspective, to clarify the mechanism of PCPE in NAFLD.
Collapse
Affiliation(s)
- Xiaoxi Li
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China
| | - Wenwen Zhao
- Department of Pharmacy, Beijing Children's hospital, Capital Medical University, National Center for Children Health, Beijing, 100045, China
| | - Meng Xiao
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Lan Yu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China
| | - Qijun Chen
- School of Pharmaceutical Sciences, Capital Medical University, 100069, Beijing, China
| | - Xiaolu Hu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China
| | - Yimeng Zhao
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China
| | - Lijuan Xiong
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China
| | - Xiaoqing Chen
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China
| | - Xing Wang
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China
| | - Yinying Ba
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China
| | - Qiang Guo
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China
| | - Xia Wu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, 100069, Beijing, China.
| |
Collapse
|
19
|
Jiang X, Sun B, Zhou Z. Preclinical Studies of Natural Products Targeting the Gut Microbiota: Beneficial Effects on Diabetes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8569-8581. [PMID: 35816090 DOI: 10.1021/acs.jafc.2c02960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diabetes mellitus (DM) is a serious metabolic disease characterized by persistent hyperglycemia, with a continuously increasing morbidity and mortality. Although traditional treatments including insulin and oral hypoglycemic drugs maintain blood glucose levels within the normal range to a certain extent, there is an urgent need to develop new drugs that can effectively improve glucose metabolism and diabetes-related complications. Notably, accumulated evidence implicates that the gut microbiota is unbalanced in DM individuals and is involved in the physiological and pathological processes of this metabolic disease. In this review, we introduce the molecular mechanisms by which the gut microbiota contributes to the development of DM. Furthermore, we summarize the preclinical studies of bioactive natural products that exert antidiabetic effects by modulating the gut microbiota, aiming to expand the novel therapeutic strategies for DM prevention and management.
Collapse
Affiliation(s)
- Xiaofang Jiang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Boyu Sun
- The Third People's Hospital of Qingdao, Qingdao 266000, China
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
20
|
He L, Yang FQ, Tang P, Gao TH, Yang CX, Tan L, Yue P, Hua YN, Liu SJ, Guo JL. Regulation of the intestinal flora: A potential mechanism of natural medicines in the treatment of type 2 diabetes mellitus. Biomed Pharmacother 2022; 151:113091. [PMID: 35576662 DOI: 10.1016/j.biopha.2022.113091] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/24/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022] Open
Abstract
Diabetes mellitus comprises a group of heterogeneous disorders, which are usually subdivided into type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Both genetic and environmental factors have been implicated in the onset of diabetes. Type 1 diabetes primarily involves autoimmune insulin deficiency. In comparison, type 2 diabetes is contributed by the pathological state of insulin deficiency and insulin resistance. In recent years, significant differences were found in the abundance of microflora, intestinal barrier, and intestinal metabolites in diabetic subjects when compared to normal subjects. To further understand the relationship between diabetes mellitus and intestinal flora, this paper summarizes the interaction mechanism between diabetes mellitus and intestinal flora. Furthermore, the natural compounds found to treat diabetes through intestinal flora were classified and summarized. This review is expected to provide a valuable resource for the development of new diabetic drugs and the applications of natural compounds.
Collapse
Affiliation(s)
- Liying He
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Fang-Qing Yang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Pan Tang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ting-Hui Gao
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cai-Xia Yang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li Tan
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Pan Yue
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ya-Nan Hua
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Si-Jing Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jin-Lin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
21
|
The methyltransferase METTL3-mediated fatty acid metabolism revealed the mechanism of cinnamaldehyde on alleviating steatosis. Biomed Pharmacother 2022; 153:113367. [PMID: 35780619 DOI: 10.1016/j.biopha.2022.113367] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND As a primarily N6-methyladenosine methyltransferase, methyltransferase 3 (METTL3) plays a crucial role in nonalcoholic fatty liver disease. However, its regulatory mechanism in steatosis remains unknown. METHODS Alpha mouse liver 12 (AML12) cells were induced by free fatty acids (FFA). Triglycerides, lipid droplet assay, and Oil Red O staining were performed to evaluate steatosis. The expression of METTL3 and cytochrome P450 family 4 subfamily f polypeptide 40 (CYP4F40) was measured using Western blotting, real-time quantitative polymerase chain reaction, and dual-luciferase reporter assay. Triglycerides, total cholesterol, almandine aminotransferase, and aspartate aminotransferase were assayed after cinnamaldehyde treatment. Transcriptomics and metabolomics were performed to determine how METTL3 and cinnamaldehyde regulate steatosis. RESULTS METTL3 protein level was reduced in FFA-induced steatosis in AML12 cells, and METTL3 knockdown aggravated the steatosis. Cinnamaldehyde alleviated steatosis by increasing METTL3 expression. A combined transcriptomics and metabolomics analysis revealed that METTL3 knockdown reduced CYP4F40 expression and reduced the level of capric acid, gamma-linolenic acid, arachidonic acid, and docosapentaenoic acid. Cinnamaldehyde promoted CYP4F40 expression by increasing METTL3 and increased the levels of capric acid, gamma-linolenic acid, arachidonic acid, and docosapentaenoic acid. Finally, the beneficial effects of cinnamaldehyde on steatosis were reversed after METTL3 knockdown. CONCLUSIONS METTL3 knockdown aggravated steatosis in AML12 cells through CYP4F40-mediated fatty acid metabolism, and cinnamaldehyde alleviated steatosis via the METTL3-CYP4F40 pathway.
Collapse
|
22
|
Huang R, Wu F, Zhou Q, Wei W, Yue J, Xiao B, Luo Z. Lactobacillus and intestinal diseases: mechanisms of action and clinical applications. Microbiol Res 2022; 260:127019. [DOI: 10.1016/j.micres.2022.127019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022]
|
23
|
Stevens N, Allred K. Antidiabetic Potential of Volatile Cinnamon Oil: A Review and Exploration of Mechanisms Using In Silico Molecular Docking Simulations. Molecules 2022; 27:853. [PMID: 35164117 PMCID: PMC8840343 DOI: 10.3390/molecules27030853] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 11/17/2022] Open
Abstract
Cinnamon has been used as a flavoring and medicinal agent for centuries. Much research has focused on cinnamon bark powder, which contains antioxidants, flavonoids, carotenoids, vitamins, minerals, fiber, and small amounts of essential oil. However, isolated and concentrated cinnamon essential oil may also have important medicinal qualities, particularly in antidiabetic therapy. Some of the most common essential oil constituents identified in the literature include cinnamaldehyde, eugenol, and beta-caryophyllene. Due to their high concentration in cinnamon essential oil, these constituents are hypothesized to have the most significant physiological activity. Here, we present a brief review of literature on cinnamon oil and its constituents as they relate to glucose metabolism and diabetic pathogenesis. We also present molecular docking simulations of these cinnamon essential oil constituents (cinnamaldehyde, eugenol, beta-caryophyllene) that suggest interaction with several key enzymes in glucometabolic pathways.
Collapse
|
24
|
Wang MT, Guo WL, Yang ZY, Chen F, Lin TT, Li WL, Lv XC, Rao PF, Ai LZ, Ni L. Intestinal microbiomics and liver metabolomics insights into the preventive effects of chromium (III)-enriched yeast on hyperlipidemia and hyperglycemia induced by high-fat and high-fructose diet. Curr Res Food Sci 2022; 5:1365-1378. [PMID: 36092021 PMCID: PMC9449561 DOI: 10.1016/j.crfs.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
In recent years, organic chromium (III) supplements have received increasing attentions for their low toxicity, high bioavailability and wide range of health-promoting benefits. This study aimed to investigate the preventive effects of chromium (III)-enriched yeast (YCr) on high-fat and high-fructose diet (HFHFD)-induced hyperlipidemia and hyperglycemia in mice, and further clarify its mechanism of action from the perspective of intestinal microbiomics and liver metabolomics. The results indicated that oral administration of YCr remarkably inhibited the aberrant elevations of body weight, blood glucose and lipid levels, hepatic cholesterol (TC) and triglyceride (TG) levels caused by HFHFD. Liver histological examination showed that oral YCr intervention inhibited HFHFD induced liver lipid accumulation. Besides, 16S rDNA amplicon sequencing showed that YCr intervention was beneficial to ameliorating intestinal microbiota dysbiosis by altering the proportion of some intestinal microbial phylotypes. Correlation-based network analysis indicated that the key intestinal microbial phylotypes intervened by YCr were closely related to some biochemical parameters associated with glucose and lipid metabolism. Liver metabolomics analysis revealed that dietary YCr intervention significantly regulated the levels of some biomarkers involved in purine metabolism, glycerophospholipid metabolism, citrate cycle, pyrimidine metabolism, glycerophospholipid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and so on. Moreover, dietary YCr intervention regulated the mRNA levels of key genes associated with glucose, cholesterol, fatty acids and bile acids metabolism in liver. These findings suggest that dietary YCr intervention has beneficial effects on glucose and lipid metabolism by regulating intestinal microbiota and liver metabolic pathway, and thus can be served as a functional component to prevent hyperlipidemia and hyperglycemia. Chromium-enriched yeast enhances glucose tolerance and liver glycogen synthesis. Chromium-enriched yeast ameliorates the disturbance of intestinal microbiota. Explore the hepatoprotective effect of chromium-enriched yeast based on metabolomics. Chromium-enriched yeast alleviates lipid metabolism through “gut-liver” axis. Chromium-enriched yeast intervention affects hepatic gene transcription levels.
Collapse
|
25
|
Shang C, Lin H, Fang X, Wang Y, Jiang Z, Qu Y, Xiang M, Shen Z, Xin L, Lu Y, Gao J, Cui X. Beneficial effects of cinnamon and its extracts in the management of cardiovascular diseases and diabetes. Food Funct 2021; 12:12194-12220. [PMID: 34752593 DOI: 10.1039/d1fo01935j] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cardiovascular diseases (CVDs) and diabetes are the leading causes of death worldwide, which underlines the urgent necessity to develop new pharmacotherapies. Cinnamon has been an eminent component of spice and traditional Chinese medicine for thousands of years. Numerous lines of findings have elucidated that cinnamon has beneficial effects against CVDs in various ways, including endothelium protection, regulation of immune response, lowering blood lipids, antioxidative properties, anti-inflammatory properties, suppression of vascular smooth muscle cell (VSMC) growth and mobilization, repression of platelet activity and thrombosis and inhibition of angiogenesis. Furthermore, emerging evidence has established that cinnamon improves diabetes, a crucial risk factor for CVDs, by enhancing insulin sensitivity and insulin secretion; regulating the enzyme activity involved in glucose; regulating glucose metabolism in the liver, adipose tissue and muscle; ameliorating oxidative stress and inflammation to protect islet cells; and improving diabetes complications. In this review, we summarized the mechanisms by which cinnamon regulates CVDs and diabetes in order to provide a theoretical basis for the further clinical application of cinnamon.
Collapse
Affiliation(s)
- Chang Shang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hongchen Lin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuqin Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuling Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhilin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Yi Qu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mi Xiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Zihuan Shen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Laiyun Xin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,First Clinical Medical School, Shandong University of Chinese Medicine, Shandong, 250355, China
| | - Yingdong Lu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Jialiang Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Xiangning Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|