1
|
Balyan P, Farah MA, Al-Anazi KM, Ali A. Monosaccharide-Mediated Glycoxidation of Bovine Serum Albumin and Its Prevention by Nigella sativa. ACS OMEGA 2024; 9:41722-41731. [PMID: 39398181 PMCID: PMC11465645 DOI: 10.1021/acsomega.4c05913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/10/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Abstract
The substantial rise in metabolic illnesses that has occurred in both developed and developing countries over the last three decades has been linked to an increase in sugar-added foods and sweetened beverage intake. The significance of advanced glycation end products (AGEs) in the pathophysiology of metabolic diseases related to modern nutrition is an emerging issue. Spices and herbs can potentially be potent AGE production inhibitors due to their high polyphenol content. The inhibitory activity of an aqueous extract of Nigella sativa seeds (NS) on glucose- and fructose-mediated glycation of bovine serum albumin (BSA) was investigated. The glycation of proteins and its prevention using NS were assessed using spectrophotometry, spectrofluorometrics, and electrophoretic techniques. Additionally, the NBT assay, DNPH assay, Ellman assay, and thioflavin T assay were used to observe the biochemical alterations caused by glycated BSA. Molecular docking was employed to dock the BSA active site residues with inhibitors. Our data showed that NS protects against glucose- and fructose-mediated glycation and aggregation in vitro by inhibiting the formation of fructosamine, protein carbonyl content, free sulfhydryl groups, and fluorescent AGEs. Furthermore, NS also inhibited the production of β-cross-amyloid aggregates in proteins. It was interesting to note that the inhibition was found to be significantly higher in the Glu-BSA system, although the glycation product formed in the Fru-BSA system was higher compared to the Glu-induced protein system. It can be concluded that, by inhibiting AGE production, oxidation, and aggregation of the protein, NS may be an effective antiglycation drug for the prevention of diabetes complications.
Collapse
Affiliation(s)
- Prairna Balyan
- Department
of Life Sciences, University of Mumbai, Vidyanagari, Santacruz E, Mumbai 400098, India
| | - Mohammad Abul Farah
- Department
of Zoology, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Khalid Mashay Al-Anazi
- Department
of Zoology, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Ahmad Ali
- Department
of Life Sciences, University of Mumbai, Vidyanagari, Santacruz E, Mumbai 400098, India
| |
Collapse
|
2
|
Cyril AC, Ali NM, Nelliyulla Parambath A, Vazhappilly CG, Jan RK, Karuvantevida N, Aburamadan H, Lozon Y, Radhakrishnan R. Nigella sativa and its chemical constituents: pre-clinical and clinical evidence for their potential anti-SARS-CoV-2 effects. Inflammopharmacology 2024; 32:273-285. [PMID: 37966624 DOI: 10.1007/s10787-023-01385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused over 500 million reported cases of COVID-19 worldwide with relatively high morbidity and mortality. Although global vaccination drive has helped control the pandemic, the newer variant of the virus still holds the world in ransom. Several medicinal herbs with antiviral properties have been reported, and one such promising herb is Nigella sativa (NS). Recent molecular docking, pre-clinical, and clinical studies have shown that NS extracts may have the potential to prevent the entry of coronaviruses into the host cell as well as to treat and manage COVID-19 symptoms. Several active compounds from NS, such as nigelledine, α-hederin, dithymoquinone (DTQ), and thymoquinone (TQ), have been proposed as excellent ligands to target angiotensin-converting enzyme 2 (ACE2 receptors) and other targets on host cells as well as the spike protein (S protein) on SARS-CoV-2. By binding to these target proteins, these ligands could potentially prevent the binding between ACE2 and S protein. Though several articles have been published on the promising therapeutic role of NS and its constituents against SARS-CoV-2 infection, in this review, we consolidate the published information on NS and SARS-CoV-2, focusing on pre-clinical in silico studies as well as clinical trials reported between 2012 and 2023.
Collapse
Affiliation(s)
- Asha Caroline Cyril
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| | - Najma Mohamed Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Anagha Nelliyulla Parambath
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Cijo George Vazhappilly
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Reem Kais Jan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Noushad Karuvantevida
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Haneen Aburamadan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Yosra Lozon
- Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Rajan Radhakrishnan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
3
|
Faiyazuddin M, Sophia A, Ashique S, Gholap AD, Gowri S, Mohanto S, Karthikeyan C, Nag S, Hussain A, Akhtar MS, Bakht MA, Ahmed MG, Rustagi S, Rodriguez-Morales AJ, Salas-Matta LA, Mohanty A, Bonilla-Aldana DK, Sah R. Virulence traits and novel drug delivery strategies for mucormycosis post-COVID-19: a comprehensive review. Front Immunol 2023; 14:1264502. [PMID: 37818370 PMCID: PMC10561264 DOI: 10.3389/fimmu.2023.1264502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
The outbreak of a fatal black fungus infection after the resurgence of the cadaverous COVID-19 has exhorted scientists worldwide to develop a nutshell by repurposing or designing new formulations to address the crisis. Patients expressing COVID-19 are more susceptible to Mucormycosis (MCR) and thus fall easy prey to decease accounting for this global threat. Their mortality rates range around 32-70% depending on the organs affected and grow even higher despite the treatment. The many contemporary recommendations strongly advise using liposomal amphotericin B and surgery as first-line therapy whenever practicable. MCR is a dangerous infection that requires an antifungal drug administration on appropriate prescription, typically one of the following: Amphotericin B, Posaconazole, or Isavuconazole since the fungi that cause MCR are resistant to other medications like fluconazole, voriconazole, and echinocandins. Amphotericin B and Posaconazole are administered through veins (intravenously), and isavuconazole by mouth (orally). From last several years so many compounds are developed against invasive fungal disease but only few of them are able to induce effective treatment against the micorals. Adjuvant medicines, more particularly, are difficult to assess without prospective randomized controlled investigations, which are challenging to conduct given the lower incidence and higher mortality from Mucormycosis. The present analysis provides insight into pathogenesis, epidemiology, clinical manifestations, underlying fungal virulence, and growth mechanisms. In addition, current therapy for MCR in Post Covid-19 individuals includes conventional and novel nano-based advanced management systems for procuring against deadly fungal infection. The study urges involving nanomedicine to prevent fungal growth at the commencement of infection, delay the progression, and mitigate fatality risk.
Collapse
Affiliation(s)
- Md. Faiyazuddin
- School of Pharmacy, Al – Karim University, Katihar, Bihar, India
- Nano Drug Delivery®, Raleigh-Durham, NC, United States
| | - A. Sophia
- PG & Research Department of Physics, Cauvery College for Women (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Sumel Ashique
- Department of Pharmaceutics, Pandaveswar School of Pharmacy, Pandaveswar, West Bengal, India
| | - Amol D. Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, India
| | - S. Gowri
- PG & Research Department of Physics, Cauvery College for Women (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - C. Karthikeyan
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Sagnik Nag
- Department of Bio-Sciences, School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Tamil Nadu, India
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Mohammad Shabib Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Md. Afroz Bakht
- Chemistry Department, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Alfonso J. Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas—Institución Universitaria Visión de las Américas, Pereira, Colombia
- Faculties of Health Sciences and Environmental Sciences, Universidad Científica del Sur, Lima, Peru
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Luis Andres Salas-Matta
- Faculties of Health Sciences and Environmental Sciences, Universidad Científica del Sur, Lima, Peru
| | - Aroop Mohanty
- Department of Clinical Microbiology, All India Institute of Medical Sciences, Gorakhpur, India
| | | | - Ranjit Sah
- Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
- Department of Clinical Microbiology, DY Patil Medical College, Hospital and Research Centre, DY Patil Vidyapeeth, Pune, Maharashtra, India
- Datta Meghe Institute of Higher Education and Research, Jawaharlal Nehru Medical College, Wardha, India
| |
Collapse
|
4
|
Eid EEM, Alshehade SA, Almaiman AA, Kamran S, Lee VS, Alshawsh MA. Enhancing the Anti-Leukemic Potential of Thymoquinone/Sulfobutylether-β-cyclodextrin (SBE-β-CD) Inclusion Complexes. Biomedicines 2023; 11:1891. [PMID: 37509531 PMCID: PMC10377214 DOI: 10.3390/biomedicines11071891] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Leukemia, a condition characterized by the abnormal proliferation of blood cells, poses significant challenges in cancer treatment. Thymoquinone (TQ), a bioactive compound derived from black seed, has demonstrated anticancer properties, including telomerase inhibition and the induction of apoptosis. However, TQ's poor solubility and limited bioavailability hinder its clinical application. This study explored the use of Sulfobutylether-β-cyclodextrin (SBE-β-CD), a cyclodextrin derivative, to enhance the solubility and stability of TQ for leukemia treatment. SBE-β-CD offers low hemolytic activity and has been successfully employed in controlled drug release systems. The study investigated the formation of inclusion complexes between TQ and SBE-β-CD and evaluated their effects on leukemia cell growth and telomerase activity. The results indicated that the TQ/SBE-β-CD complex exhibited improved solubility and enhanced cytotoxic effects against K-562 leukemia cells compared to TQ alone, suggesting the potential of SBE-β-CD as a drug delivery system for TQ. The annexin V-FITC assay demonstrated increased apoptosis, while the qPCR quantification assay revealed reduced telomerase activity in leukemia cells treated with TQ/SBE-β-CD, supporting its anti-leukemic potential. The molecular docking analysis indicated a strong binding affinity between TQ and telomerase. However, further research is needed to optimize the apoptotic effects and minimize necrosis induction. In conclusion, TQ/SBE-β-CD shows promise as a novel strategy for leukemia treatment by inhibiting telomerase and enhancing the cytotoxic effects of TQ, offering a potential solution to overcome the limitations of TQ's poor solubility and bioavailability.
Collapse
Affiliation(s)
- Eltayeb E M Eid
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
| | | | - Amer A Almaiman
- Unit of Scientific Research, Applied College, Qassim University, Unaizah 51911, Saudi Arabia
| | - Sareh Kamran
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | |
Collapse
|
5
|
Adinew GM, Messeha S, Taka E, Mochona B, Redda KK, Soliman KFA. Thymoquinone Inhibition of Chemokines in TNF-α-Induced Inflammatory and Metastatic Effects in Triple-Negative Breast Cancer Cells. Int J Mol Sci 2023; 24:9878. [PMID: 37373025 PMCID: PMC10298461 DOI: 10.3390/ijms24129878] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The lack of identifiable molecular targets or biomarkers hinders the development of treatment options in triple-negative breast cancer (TNBC). However, natural products offer a promising alternative by targeting inflammatory chemokines in the tumor microenvironment (TME). Chemokines are crucial in promoting breast cancer growth and metastasis and correlate to the altered inflammatory process. In the present study, we evaluated the anti-inflammatory and antimetastatic effects of the natural product thymoquinone (TQ) on TNF-α-stimulated TNBC cells (MDA-MB-231 and MDA-MB-468) to study the cytotoxic, antiproliferative, anticolony, antimigratory, and antichemokine effects using enzyme-linked immunosorbent assays, quantitative real-time reverse transcription-polymerase chain reactions, and Western blots were used in sequence to validate the microarray results further. Four downregulated inflammatory cytokines were identified, CCL2 and CCL20 in MDA-MB-468 cells and CCL3 and CCL4 in MDA-MB-231 cells. Furthermore, when TNF-α-stimulated MDA-MB-231 cells were compared with MDA-MB-468 cells, the two cells were sensitive to TQ's antichemokine and antimetastatic effect in preventing cell migration. It was concluded from this investigation that genetically different cell lines may respond to TQ differently, as TQ targets CCL3 and CCL4 in MDA-MB-231 cells and CCL2 and CCL20 in MDA-MB-468 cells. Therefore, the results indicate that TQ may be recommended as a component of the therapeutic strategy for TNBC treatment. These outcomes stem from the compound's capacity to suppress the chemokine. Even though these findings support the usage of TQ as part of a therapy strategy for TNBC associated with the identified chemokine dysregulations, additional in vivo studies are needed to confirm these in vitro results.
Collapse
Affiliation(s)
- Getinet M. Adinew
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (G.M.A.); (S.M.); (E.T.); (K.K.R.)
| | - Samia Messeha
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (G.M.A.); (S.M.); (E.T.); (K.K.R.)
| | - Equar Taka
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (G.M.A.); (S.M.); (E.T.); (K.K.R.)
| | - Bereket Mochona
- Department of Chemistry, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Kinfe K. Redda
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (G.M.A.); (S.M.); (E.T.); (K.K.R.)
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (G.M.A.); (S.M.); (E.T.); (K.K.R.)
| |
Collapse
|
6
|
Alshaikh NA. COVID-19 associated coagulopathy: A bibliometric investigation. Heliyon 2023; 9:e16507. [PMID: 37274678 PMCID: PMC10211255 DOI: 10.1016/j.heliyon.2023.e16507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
Infection with SARS-CoV-2 initiates an immune-hemostatic response. While both systems are intimately connected and necessary for an efficient immune response to contain the infection, excessive coagulation activation might exceed the valuable benefits by causing thrombotic consequences and excessive inflammation. This biological response is new to clinicians and researchers, and accordingly, tremendous studies have been conducted on coagulopathy and its relationship to COVID-19 disease during this pandemic. Therefore, it takes a research insight from a bibliometric perspective to determine research hotspots and trends of COVID-19 associated coagulopathy (C19-CA). The analysis relies on the Scopus database for bibliographic content and Visualization of Similarities viewer software to map bibliometric data of C19-CA. Our study finds the most eminent authors, journals, institutions, funding organizations, and countries that publish in the C19-CA. Additionally; this research employs bibliometric analysis of co-authorship, co-citations, bibliographic coupling, and co-occurrence of keywords. A total of 2242 studies were retrieved, and the number of annual publications of C19-CA showed remarkable growth. The top-publishing authors on C19-CA are Smadja, D.M., Diehl, J.L., and Gendron, N (France). The total number of articles published in English in these three years was 1241, with the original article accounting for 99.8% and conference papers accounting for 0.2%. Huazhong University of Science and Technology (China) is the top-productive institution, with the US being the top-publishing country. Journal of Thrombosis and Thrombolysis received the highest number of original articles. The research results were mainly published in the fields of Medicine, Biochemistry, Genetics, and Molecular Biology, Immunology and Microbiology. Yuanyuan Li, who is (China), is the top-collaborating author. China and its authors have the highest number of citations. Keywords' co-occurrence analyses of the authors and all keywords revealed the following themes in C19-CA; abnormal coagulation parameters, pulmonary coagulopathy, venous and arterial thrombotic disorders, distinct features of coagulopathy, inflammation, and thrombosis in COVID-19, and anticoagulants and thrombolytic therapies. By combining bibliometric analysis with VOSviewer software, we identified C19-CA's leaders, collaborating institutions, and research hotspots, as well as give references for future research paths.
Collapse
Affiliation(s)
- Nahla A Alshaikh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
7
|
AlDreini S, Fatfat Z, Abou Ibrahim N, Fatfat M, Gali-Muhtasib H, Khalife H. Thymoquinone enhances the antioxidant and anticancer activity of Lebanese propolis. World J Clin Oncol 2023; 14:203-214. [PMID: 37275937 PMCID: PMC10236984 DOI: 10.5306/wjco.v14.i5.203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/24/2023] [Accepted: 04/12/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) are produced by multiple cellular processes and are maintained at optimal levels in normal cells by endogenous antioxidants. In recent years, the search for potential exogenous antioxidants from dietary sources has gained considerable attention to eliminate excess ROS that is associated with oxidative stress related diseases including cancer. Propolis, a resinous honeybee product, has been shown to have protective effects against oxidative stress and anticancer effects against several types of neoplasms. AIM To investigate the antioxidant and anticancer potential of Lebanese propolis when applied alone or in combination with the promising anticancer compound Thymoquinone (TQ) the main constituent of Nigella sativa essential oil. METHODS Crude extracts of Lebanese propolis collected from two locations, Rashaya and Akkar-Danniyeh, were prepared in methanol and the total phenolic content was determined by Folin-Ciocalteu method. The antioxidant activity was assessed by the ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical and to inhibit H2O2-induced oxidative hemolysis of human erythrocytes. The anticancer activity was evaluated by [3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide] MTT assay against HCT-116 human colorectal cancer cells and MDA-MB-231 human breast cancer cells. RESULTS The total phenolic content of propolis extract from Rashaya and Akkar-Danniyeh were 56.81 µg and 83.503 µg of gallic acid equivalent /mg of propolis, respectively. Both natural agents exhibited strong antioxidant activities as evidenced by their ability to scavenge DPPH free radical and to protect erythrocytes against H2O2-induced hemolysis. They also dose-dependently decreased the viability of both cancer cell lines. The IC50 value of each of propolis extract from Rashaya and Akkar-Danniyeh or TQ was 22.3, 61.7, 40.44 µg/mL for breast cancer cells at 72 h and 33.3, 50.9, 33.5 µg/mL for colorectal cancer cells at the same time point, respectively. Importantly, the inhibitory effects of propolis on DPPH radicals and cancer cell viability were achieved at half its concentration when combined with TQ. CONCLUSION Our results indicate that Lebanese propolis extract has antioxidant and anticancer potential and its combination with TQ could possibly prevent ROS- mediated diseases.
Collapse
Affiliation(s)
- Sima AlDreini
- Rammal Rammal Laboratory (ATAC Group), Faculty of Sciences I, Hadath 1003, Lebanon
| | - Zaynab Fatfat
- Department of Biology, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Najwa Abou Ibrahim
- Rammal Rammal Laboratory (ATAC Group), Faculty of Sciences I, Hadath 1003, Lebanon
| | - Maamoun Fatfat
- Department of Biology, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hala Gali-Muhtasib
- Department of Biology, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hala Khalife
- Rammal Rammal Laboratory (ATAC Group), Faculty of Sciences I, Hadath 1003, Lebanon
- Applied Biochemistry Laboratory, School of Pharmacy, Camerino University, Camerino 62032, Italy
| |
Collapse
|
8
|
Bimolata W, Bhattacharya R, Goswami A, Dey PK, Mitra A. Spectral Light Treatment Influenced Morpho-Physiological Properties and Carvacrol Accumulation in Indian Borage. JOURNAL OF PLANT GROWTH REGULATION 2023:1-15. [PMID: 37359317 PMCID: PMC10201491 DOI: 10.1007/s00344-023-11028-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/05/2023] [Indexed: 06/28/2023]
Abstract
Light emitting diodes (LEDs) as an alternative light source for plants had shown to enhance the plant material quality. Indian borage or Plectranthus amboinicus (Lour.) Spreng, a medicinal herb produces carvacrol as the major volatile organic compound (VOC). Histolocalization of VOCs and expression pattern of the terpenoid biosynthesis genes after spectral light treatment is not yet reported in P. amboinicus. This work investigated the morpho-physiological, biochemical and transcriptional responses towards red, green, blue, warm white and red-blue (RB, 1:1) LEDs treatment at 40 ± 5 μmol m-2 s-1 light intensity after 40 days. Maximal growth index (GI), leaf fresh weight and dry weight were obtained in RB (1:1) treated plants. There was one-fold increase in phenolics content and 2.5-fold increase in antioxidant activity in comparison to warm white. High quantity of terpenes and phenolics deposition were observed in the glandular trichomes of RB (1:1). Maximum carvacrol accumulation (14.45 µmol g-1 FW) was also detected in RB (1:1). The transcript levels of early terpene biosynthesis genes PaDXS, PaDXR, PaHMGR and cytochrome P450 monooxygenase genes, PaCYP1 and PaCYP9 were highly upregulated in RB (1:1) and green. The overall results suggest RB (1:1) as the better lighting option amongst the studied spectral lights for obtaining maximum phytochemicals in P. amboinicus. Work is being continued with different spectral ratios of red and blue LED lights to maximize phytochemical accumulation, the outcome of which will be reported elsewhere in near future. Supplementary Information The online version contains supplementary material available at 10.1007/s00344-023-11028-6.
Collapse
Affiliation(s)
- Waikhom Bimolata
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Raktim Bhattacharya
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Ambika Goswami
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Pritam Kumar Dey
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Adinpunya Mitra
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| |
Collapse
|
9
|
Ji C. Molecular Factors and Pathways of Hepatotoxicity Associated with HIV/SARS-CoV-2 Protease Inhibitors. Int J Mol Sci 2023; 24:ijms24097938. [PMID: 37175645 PMCID: PMC10178330 DOI: 10.3390/ijms24097938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Antiviral protease inhibitors are peptidomimetic molecules that block the active catalytic center of viral proteases and, thereby, prevent the cleavage of viral polyprotein precursors into maturation. They continue to be a key class of antiviral drugs that can be used either as boosters for other classes of antivirals or as major components of current regimens in therapies for the treatment of infections with human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, sustained/lifelong treatment with the drugs or drugs combined with other substance(s) often leads to severe hepatic side effects such as lipid abnormalities, insulin resistance, and hepatotoxicity. The underlying pathogenic mechanisms are not fully known and are under continuous investigation. This review focuses on the general as well as specific molecular mechanisms of the protease inhibitor-induced hepatotoxicity involving transporter proteins, apolipoprotein B, cytochrome P450 isozymes, insulin-receptor substrate 1, Akt/PKB signaling, lipogenic factors, UDP-glucuronosyltransferase, pregnane X receptor, hepatocyte nuclear factor 4α, reactive oxygen species, inflammatory cytokines, off-target proteases, and small GTPase Rab proteins related to ER-Golgi trafficking, organelle stress, and liver injury. Potential pharmaceutical/therapeutic solutions to antiviral drug-induced hepatic side effects are also discussed.
Collapse
Affiliation(s)
- Cheng Ji
- Research Center for Liver Disease, GI/Liver Division, Department of Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
10
|
Kunnumakkara AB, Hegde M, Parama D, Girisa S, Kumar A, Daimary UD, Garodia P, Yenisetti SC, Oommen OV, Aggarwal BB. Role of Turmeric and Curcumin in Prevention and Treatment of Chronic Diseases: Lessons Learned from Clinical Trials. ACS Pharmacol Transl Sci 2023; 6:447-518. [PMID: 37082752 PMCID: PMC10111629 DOI: 10.1021/acsptsci.2c00012] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 03/08/2023]
Abstract
Turmeric (Curcuma longa) has been used for thousands of years for the prevention and treatment of various chronic diseases. Curcumin is just one of >200 ingredients in turmeric. Almost 7000 scientific papers on turmeric and almost 20,000 on curcumin have been published in PubMed. Scientific reports based on cell culture or animal studies are often not reproducible in humans. Therefore, human clinical trials are the best indicators for the prevention and treatment of a disease using a given agent/drug. Herein, we conducted an extensive literature survey on PubMed and Scopus following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The keywords "turmeric and clinical trials" and "curcumin and clinical trials" were considered for data mining. A total of 148 references were found to be relevant for the key term "turmeric and clinical trials", of which 70 were common in both PubMed and Scopus, 44 were unique to PubMed, and 34 were unique to Scopus. Similarly, for the search term "curcumin and clinical trials", 440 references were found to be relevant, of which 70 were unique to PubMed, 110 were unique to Scopus, and 260 were common to both databases. These studies show that the golden spice has enormous health and medicinal benefits for humans. This Review will extract and summarize the lessons learned about turmeric and curcumin in the prevention and treatment of chronic diseases based on clinical trials.
Collapse
Affiliation(s)
- Ajaikumar B. Kunnumakkara
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Mangala Hegde
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Dey Parama
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Sosmitha Girisa
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Aviral Kumar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Uzini Devi Daimary
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Prachi Garodia
- Integrative
Research Center, Miami, Florida 33125, United States
| | - Sarat Chandra Yenisetti
- Department
of Zoology, Drosophila Neurobiology Laboratory, Nagaland University (Central), Lumami, Nagaland-798627, India
| | - Oommen V. Oommen
- Department
of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala-695581, India
| | - Bharat B. Aggarwal
- Inflammation
Research Center, San Diego, California 92109, United States
| |
Collapse
|
11
|
Krewenka C, Rizzi S, Nguyen CH, Delijewski M, Gille L, Staniek K, Duvigneau JC, Radad K, Müllebner A, Kranner B, Moldzio R. Radical Scavenging Is Not Involved in Thymoquinone-Induced Cell Protection in Neural Oxidative Stress Models. Antioxidants (Basel) 2023; 12:antiox12040858. [PMID: 37107234 PMCID: PMC10135386 DOI: 10.3390/antiox12040858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Thymoquinone (TQ), an active compound from Nigella sativa seeds, is often described as a pharmacologically relevant compound with antioxidative properties, while the synthesis of TQ in the plant via oxidations makes it inapplicable for scavenging radicals. Therefore, the present study was designed to reassess the radical scavenging properties of TQ and explore a potential mode of action. The effects of TQ were studied in models with mitochondrial impairment and oxidative stress induced by rotenone in N18TG2 neuroblastoma cells and rotenone/MPP+ in primary mesencephalic cells. Tyrosine hydroxylase staining revealed that TQ significantly protected dopaminergic neurons and preserved their morphology under oxidative stress conditions. Quantification of the formation of superoxide radicals via electron paramagnetic resonance showed an initial increase in the level of superoxide radicals in the cell by TQ. Measurements in both cell culture systems revealed that the mitochondrial membrane potential was tendentially lowered, while ATP production was mostly unaffected. Additionally, the total ROS levels were unaltered. In mesencephalic cell culture under oxidative stress conditions, caspase-3 activity was decreased when TQ was administered. On the contrary, TQ itself tremendously increased the caspase-3 activity in the neuroblastoma cell line. Evaluation of the glutathione level revealed an increased level of total glutathione in both cell culture systems. Therefore, the enhanced resistance against oxidative stress in primary cell culture might be a consequence of a lowered caspase-3 activity combined with an increased pool of reduced glutathione. The described anti-cancer ability of TQ might be a result of the pro-apoptotic condition in neuroblastoma cells. Our study provides evidence that TQ has no direct scavenging effect on superoxide radicals.
Collapse
Affiliation(s)
- Christopher Krewenka
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Sandra Rizzi
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| | | | - Marcin Delijewski
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Lars Gille
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Katrin Staniek
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Johanna Catharina Duvigneau
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Khaled Radad
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Andrea Müllebner
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Barbara Kranner
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Rudolf Moldzio
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
12
|
Li J, Chen W, Liu H, Liu H, Xiang S, You F, Jiang Y, Lin J, Zhang D, Zheng C. Pharmacologic effects approach of essential oils and their components on respiratory diseases. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:115962. [PMID: 36529244 DOI: 10.1016/j.jep.2022.115962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/12/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Essential oils (EOs) are concentrated hydrophobic liquids with volatility and a unique aroma. Formed by aromatic plants as secondary metabolites, EOs have been used as traditional medicines to treat various health problems worldwide. Historical records show that herbs rich in EOs have been widely used to treat respiratory diseases in China, Europe, and many other regions. AIM OF THE REVIEW This review summarizes the traditional applications and modern pharmacological mechanisms of EOs derived from aromatic herbs and their active ingredients in respiratory diseases in preclinical and clinical trials through multitarget synergy. MATERIALS AND METHODS Information about EOs and respiratory diseases was collected from electronic databases, such as ScienceDirect, Web of Science, PubMed, Google Scholar, Baidu Scholar, and the China National Knowledge Infrastructure (CNKI). RESULTS This review presents the preventive and therapeutic effects of EOs on respiratory diseases, including chronic obstructive pulmonary disease, bronchial asthma, acute lung injury, pulmonary infection, and pulmonary fibrosis. The molecular mechanisms of EOs in treating different lung diseases are summarized, including anti-inflammation, anti-oxidation, mucolytic, and immune regulatory mechanisms. CONCLUSIONS EOs show potential as supplements or substitutes for treating lung diseases.
Collapse
Affiliation(s)
- Jia Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Wu Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Huimin Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue Liutai, Chengdu, 611137, China.
| | - Hong Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Sirui Xiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Yifang Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue Liutai, Chengdu, 611137, China.
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
| |
Collapse
|
13
|
Rana S, Skariyachan S, Uttarkar A, Niranjan V. Carboxymuconolactone decarboxylase is a prospective molecular target for multi-drug resistant Acinetobacter baumannii-computational modeling, molecular docking and dynamic simulation studies. Comput Biol Med 2023; 157:106793. [PMID: 36944292 DOI: 10.1016/j.compbiomed.2023.106793] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
Multidrug-resistant Acinetobacter baumannii (MDRAb), a priority-I pathogen declared by the World Health Organization, became a potential healthcare concern worldwide with a high mortality rate. Thus, the identification of putative molecular targets and potential lead molecules is an important concern in healthcare. The present study aimed to screen a prospective molecular target and effectual binders for the drug discovery of MDRAb by computational virtual screening approach. Based on the functional role, γ-carboxymuconolactone decarboxylase (CMD) was prioritized as the target and its three-dimensional (3D) structure was computationally modeled. Based on the availability of the 3D structure, twenty-five herbal molecules were selected by database search, and their drug-likeliness, pharmacokinetic, and toxicity features were predicted. The effectual binding of the selected molecules towards CMD was predicted by molecular docking. The stability of the best-docked complexes was predicted by molecular dynamics (MD) simulation for 100 ns and binding energy calculations were carried out by molecular mechanics generalized Born and surface area solvation (MM/GBSA) method. Out of twenty-five molecules screened, hirsutine (an indole alkaloid of Uncaria rhynchophylla) and thymoquinone (a phytochemical of Nigella sativa) were qualified for drug likeliness, pharmacokinetic, and toxicity features and demonstrated significant effectual binding to CMD when compared with the binding of co-crystallized inhibitor and CMD (control). The docked complexes of hirsutine and thymoquinone, and CMD were stabilized by the binding energies of -8. 30 and -8. 46 kcal/mol respectively. These molecules were qualified in terms of ideal drug likeliness, ADME, and toxicity properties. MD simulation studies showed that the ligand-protein complexes were stable throughout the simulation. The binding free energies of the complexes by MMGBSA were estimated to be -42.08157745 kcal/mol and -36.58618242 kcal/mol for hirsutine and thymoquinone respectively when compared with the calculated binding free energy of the control (-28.75032666 kcal/mol). This study concluded that hirsutine and thymoquinone can act as potential lead molecules against CMD and the present hypothesis can be scaled up to develop potential inhibitors against MDRAb.
Collapse
Affiliation(s)
- Shraddha Rana
- Department of Microbiology, Modern College of Arts, Science and Commerce, Shivajinagar, Pune, 5, India
| | - Sinosh Skariyachan
- Department of Microbiology, St. Pius X College, Rajapuram, Kasaragod, Kerala, India.
| | - Akshay Uttarkar
- Department of Biotechnology, RV College of Engineering, Bengaluru, Karnataka, India
| | - Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, Bengaluru, Karnataka, India
| |
Collapse
|
14
|
Sakib R, Caruso F, Aktar S, Belli S, Kaur S, Hernandez M, Rossi M. Antioxidant Properties of Thymoquinone, Thymohydroquinone and Black Cumin (Nigella sativa L.) Seed Oil: Scavenging of Superoxide Radical Studied Using Cyclic Voltammetry, DFT and Single Crystal X-ray Diffraction. Antioxidants (Basel) 2023; 12:antiox12030607. [PMID: 36978853 PMCID: PMC10045468 DOI: 10.3390/antiox12030607] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
Black cumin seeds and seed oil have long been used in traditional foods and medicine in South Asian, Middle Eastern and Mediterranean countries and are valuable flavor ingredients. An important ingredient of black cumin is the small molecule thymoquinone (TQ), which manifests low toxicity and potential therapeutic activity against a wide number of diseases including diabetes, cancer and neurodegenerative disorders. In this study, the antioxidant activities of black seed oil, TQ and a related molecule found in black cumin, thymohydroquinone (THQ), were measured using a direct electrochemical method to experimentally evaluate their superoxide scavenging action. TQ and the black seed oil showed good superoxide scavenging ability, while THQ did not. Density Functional Theory (DFT) computational methods were applied to arrive at a chemical mechanism describing these results, and confirmed the experimental Rotating Ring Disk Electrode (RRDE) findings that superoxide oxidation to O2 by TQ is feasible, in contrast with THQ, which does not scavenge superoxide. Additionally, a thorough inquiry into the unusual cyclic voltammetry pattern exhibited by TQ was studied and was associated with formation of a 1:1 TQ-superoxide radical species, [TQ-O2]−•. DFT calculations reveal this radical species to be involved in the π-π mechanism describing TQ reactivity with superoxide. The crystal structures of TQ and THQ were analyzed, and the experimental data reveal the presence of stacking intermolecular interactions that can be associated with formation of the radical species, [TQ-O2]−•. All three of these methods were essential for us to arrive at a chemical mechanism that explains TQ antioxidant activity, that incorporates intermolecular features found in the crystal structure and which correlates with the measured superoxide scavenging activity.
Collapse
|
15
|
Natural Bioactive Compounds Targeting NADPH Oxidase Pathway in Cardiovascular Diseases. Molecules 2023; 28:molecules28031047. [PMID: 36770715 PMCID: PMC9921542 DOI: 10.3390/molecules28031047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 01/21/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, in both developed and developing countries. According to the WHO report, the morbidity and mortality caused by CVD will continue to rise with the estimation of death going up to 22.2 million in 2030. NADPH oxidase (NOX)-derived reactive oxygen species (ROS) production induces endothelial nitric oxide synthase (eNOS) uncoupling and mitochondrial dysfunction, resulting in sustained oxidative stress and the development of cardiovascular diseases. Seven distinct members of the family have been identified of which four (namely, NOX1, 2, 4 and 5) may have cardiovascular functions. Currently, the treatment and management plan for patients with CVDs mainly depends on the drugs. However, prolonged use of prescribed drugs may cause adverse drug reactions. Therefore, it is crucial to find alternative treatment options with lesser adverse effects. Natural products have been gaining interest as complementary therapy for CVDs over the past decade due to their wide range of medicinal properties, including antioxidants. These might be due to their potent active ingredients, such as flavonoid and phenolic compounds. Numerous natural compounds have been demonstrated to have advantageous effects on cardiovascular disease via NADPH cascade. This review highlights the potential of natural products targeting NOX-derived ROS generation in treating CVDs. Emphasis is put on the activation of the oxidases, including upstream or downstream signalling events.
Collapse
|
16
|
El-Sayed SAES, Rizk MA. COVID-19 and Thymoquinone: Clinical Benefits, Cure, and Challenges. BIOMED 2023; 3:59-76. [DOI: 10.3390/biomed3010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In today’s world, the outbreak of the coronavirus disease 2019 (COVID-19) has spread throughout the world, causing severe acute respiratory syndrome (SARS) and several associated complications in various organs (heart, liver, kidney, and gastrointestinal tract), as well as significant multiple organ dysfunction, shock, and even death. In order to overcome the serious complications associated with this pandemic virus and to prevent SARS-CoV-2 entry into the host cell, it is necessary to repurpose currently available drugs with a broad medicinal application as soon as they become available. There are several therapeutics under investigation for improving the overall prognosis of COVID-19 patients, but none of them has demonstrated clinical efficacy to date, which is disappointing. It is in this pattern that Nigella sativa seeds manifest their extensive therapeutic effects, which have been reported to be particularly effective in the treatment of skin diseases, jaundice, and gastrointestinal problems. One important component of these seeds is thymoquinone (TQ), which has a wide range of beneficial properties, including antioxidant and anti-inflammatory properties, as well as antibacterial and parasitic properties, in addition to anticarcinogenic, antiallergic, and antiviral properties. This comprehensive review discussed the possibility of an emerging natural drug with a wide range of medical applications; the use of TQ to overcome the complications of COVID-19 infection; and the challenges that are impeding the commercialization of this promising phytochemical compound. TQ is recommended as a highly effective weapon in the fight against the novel coronavirus because of its dual antiviral action, in addition to its capacity to lessen the possibility of SARS-CoV-2 penetration into cells. However, future clinical trials are required to confirm the role of TQ in overcoming the complications of COVID-19 infection.
Collapse
|
17
|
Zhu D, Zhou X. Exploration of Molecular Targets and Mechanisms of Curcumin in the Treatment of COVID-19 with Depression by an Integrative Pharmacology Strategy. Curr Pharm Des 2023; 29:2501-2519. [PMID: 37881069 DOI: 10.2174/0113816128260436231016061938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) not only causes a range of respiratory symptoms but also has a great impact on individual mental health. With the global pandemic of SARS-CoV-2, the incidence of COVID-19 comorbid with depression has increased significantly. Curcumin, a natural polyphenol compound, has been shown to have antidepressant and anti-coronavirus activities. METHODS This study aimed to explore the molecular targets and underlying biological mechanisms of curcumin in the treatment of COVID-19 with depression through an integrative pharmacology strategy, including target prediction, network analysis, PPI analysis, GO and KEGG enrichment analyses, and molecular docking. RESULTS After a comprehensive search and thorough analysis, 8 core targets (ALB, AKT1, CASP3, STAT3, EGFR, PTGS2, FOS, and SERPINE1) were identified. GO and KEGG enrichment analysis results revealed that the pathways related to viral infection, immune regulation, neuronal reorganization, apoptosis, and secretion of inflammatory cytokines were involved in the pathological process. Furthermore, molecular docking showed that curcumin could spontaneously bind to the SARS-CoV-2-related receptor proteins and the core targets with a strong binding force. CONCLUSION The potential pharmacological mechanisms of curcumin in COVID-19 comorbid depression were evaluated. Curcumin can be used as a therapeutic agent for COVID-19 comorbid depression. One of the potential mechanisms may be to reduce the inflammatory response and suppress the cytokine storm by regulating the JAK-STAT signaling pathway and MAPK signaling pathway. These findings may help to overcome the impact of the COVID-19 pandemic on psychological health.
Collapse
Affiliation(s)
- Dongwei Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xianmei Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
18
|
Rahim MA, Shoukat A, Khalid W, Ejaz A, Itrat N, Majeed I, Koraqi H, Imran M, Nisa MU, Nazir A, Alansari WS, Eskandrani AA, Shamlan G, AL-Farga A. A Narrative Review on Various Oil Extraction Methods, Encapsulation Processes, Fatty Acid Profiles, Oxidative Stability, and Medicinal Properties of Black Seed ( Nigella sativa). Foods 2022; 11:2826. [PMID: 36140949 PMCID: PMC9498113 DOI: 10.3390/foods11182826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The current review investigates the effects of black seed (Nigella sativa) on human health, which is also used to encapsulate and oxidative stable in different food products. In recent decades, many extraction methods, such as cold pressing, supercritical fluid extraction, Soxhlet extraction, hydro distillation (HD) method, microwave-assisted extraction (MAE), ultrasound-assisted extraction, steam distillation, and accelerated solvent extraction (ASE) have been used to extract the oils from black seeds under optimal conditions. Black seed oil contains essential fatty acids, in which the major fatty acids are linoleic, oleic, and palmitic acids. The oxidative stability of black seed oil is very low, due to various environmental conditions or factors (temperature and light) affecting the stability. The oxidative stability of black seed oil has been increased by using encapsulation methods, including nanoprecipitation, ultra-sonication, spray-drying, nanoprecipitation, electrohydrodynamic, atomization, freeze-drying, a electrospray technique, and coaxial electrospraying. Black seed, oil, microcapsules, and their components have been used in various food processing, pharmaceutical, nutraceutical, and cosmetics industries as functional ingredients for multiple purposes. Black seed and oil contain thymoquinone as a major component, which has anti-oxidant, -diabetic, -inflammatory, -cancer, -viral, and -microbial properties, due to its phenolic compounds. Many clinical and experimental studies have indicated that the black seed and their by-products can be used to reduce the risk of cardiovascular diseases, chronic cancer, diabetes, oxidative stress, polycystic ovary syndrome, metabolic disorders, hypertension, asthma, and skin disorders. In this review, we are focusing on black seed oil composition and increasing the stability using different encapsulation methods. It is used in various food products to increase the human nutrition and health properties.
Collapse
Affiliation(s)
- Muhammad Abdul Rahim
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Aurbab Shoukat
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Waseem Khalid
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Afaf Ejaz
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Nizwa Itrat
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Iqra Majeed
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Hyrije Koraqi
- Faculty of Food Science and Biotechnology, UBT-Higher Education Institution, Rexhep Krasniqi No. 56, 10000 Pristina, Kosovo
| | - Muhammad Imran
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Mahr Un Nisa
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Anum Nazir
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Wafa S. Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Areej A. Eskandrani
- Chemistry Department, Faculty of Science, Taibah University, Medina 30002, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Ammar AL-Farga
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| |
Collapse
|
19
|
Talib WH, Awajan D, Hamed RA, Azzam AO, Mahmod AI, AL-Yasari IH. Combination Anticancer Therapies Using Selected Phytochemicals. Molecules 2022; 27:5452. [PMID: 36080219 PMCID: PMC9458090 DOI: 10.3390/molecules27175452] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is still one of the most widespread diseases globally, it is considered a vital health challenge worldwide and one of the main barriers to long life expectancy. Due to the potential toxicity and lack of selectivity of conventional chemotherapeutic agents, discovering alternative treatments is a top priority. Plant-derived natural products have high potential in cancer treatment due to their multiple mechanisms of action, diversity in structure, availability in nature, and relatively low toxicity. In this review, the anticancer mechanisms of the most common phytochemicals were analyzed. Furthermore, a detailed discussion of the anticancer effect of combinations consisting of natural product or natural products with chemotherapeutic drugs was provided. This review should provide a strong platform for researchers and clinicians to improve basic and clinical research in the development of alternative anticancer medicines.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Dima Awajan
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Reem Ali Hamed
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Aya O. Azzam
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Intisar Hadi AL-Yasari
- Department of Genetic Engineering, College of Biotechnology, Al-Qasim Green University, Babylon 964, Iraq
| |
Collapse
|
20
|
Box-Behnken Design (BBD) Application for Optimization of Chromatographic Conditions in RP-HPLC Method Development for the Estimation of Thymoquinone in Nigella sativa Seed Powder. Processes (Basel) 2022. [DOI: 10.3390/pr10061082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Thymoquinone (THY) is a bioactive compound present in the seed powder of Nigella sativa (NS). This research aims to precisely and accurately estimate THY using high-performance liquid chromatography (HPLC) with a Quality by Design (QbD) application. Box-Behnken design (BBD) was employed to optimize the chromatographic conditions for HPLC method development, taking mobile phase flow rate, pH of the buffer, and λmax as independent variables and retention time and tailing factor as the measured responses. The mobile phase composition was methanol: acetonitrile: buffer (2.2 mM ammonium formate) at the ratio of 35:50:15 v/v/v on a Symmetry® C18 (5 μm, 3.9 × 150 mm) column. In isocratic mode, it had a flow rate 0.9 mL min−1 and eluted analyte was detected at 249 nm. Validation parameters followed the International Council for Harmonization (ICH) guidelines for the new HPLC method. The method was linear over the range 6.25–100 µg mL−1 with a coefficient of determination (r2) of 0.9957. The limit of detection (LOD) and limit of quantification (LOQ) were 2.05 and 6.25 µg mL−1, respectively. The %RSD of system suitability for retention time was 1.42% and for the tailing factor it was 0.695%. In addition, the developed method was precise, accurate, and robust according to ICH criteria. The developed HPLC method is simple, accurate, quick, and robust, and it could be used for the routine analysis of THY in different kinds of formulations.
Collapse
|
21
|
Adinew GM, Messeha SS, Taka E, Badisa RB, Antonie LM, Soliman KFA. Thymoquinone Alterations of the Apoptotic Gene Expressions and Cell Cycle Arrest in Genetically Distinct Triple-Negative Breast Cancer Cells. Nutrients 2022; 14:2120. [PMID: 35631261 PMCID: PMC9144154 DOI: 10.3390/nu14102120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/08/2023] Open
Abstract
Breast cancer (BC) is the most common cancer in women worldwide, and it is one of the leading causes of cancer death in women. triple-negative breast Cancer (TNBC), a subtype of BC, is typically associated with the highest pathogenic grade and incidence in premenopausal and young African American (AA) women. Chemotherapy, the most common treatment for TNBC today, can lead to acquired resistance and ineffective treatment. Therefore, novel therapeutic approaches are needed to combat medication resistance and ineffectiveness in TNBC patients. Thymoquinone (TQ) is shown to have a cytotoxic effect on human cancer cells in vitro. However, TQ's mode of action and precise mechanism in TNBC disease in vitro have not been adequately investigated. Therefore, TQ's effects on the genetically different MDA-MB-468 and MDA-MB-231 human breast cancer cell lines were assessed. The data obtained show that TQ displayed cytotoxic effects on MDA-MB-468 and MDA-MB-231 cells in a time- and concentration-dependent manner after 24 h, with IC50 values of 25.37 µM and 27.39 µM, respectively. Moreover, MDA-MB-231 and MDA-MB-468 cells in a scratched wound-healing assay displayed poor wound closure, inhibiting invasion and migration via cell cycle blocking after 24 h. TQ arrested the cell cycle phase in MDA-MB-231 and MDA-MB-468 cells. The three cell cycle stages in MDA-MB-468 cells were significantly affected at 15 and 20 µM for G0/G1 and S phases, as well as all TQ concentrations for G2/M phases. In MDA-MB-468 cells, there was a significant decrease in G0/G1 phases with a substantial increase in the S phase and G2/M phases. In contrast, MDA-MB-231 showed a significant effect only during the two cell cycle stages (S and G2/M), at concentrations of 15 and 20 µM for S phases and all TQ values for G2/M phases. The TQ effect on the apoptotic gene profiles indicated that TQ upregulated 15 apoptotic genes in MDA-MB-231 TNBC cells, including caspases, GADD45A, TP53, DFFA, DIABLO, BNIP3, TRAF2/3, and TNFRSF10A. In MDA-MB-468 cells, 16 apoptotic genes were upregulated, including TNFRSF10A, TNF, TNFRSF11B, FADD TNFRSF10B, CASP2, and TRAF2, all of which are important for the apoptotic pathway andsuppress the expression of one anti-apoptotic gene, BIRC5, in MDA-MB-231 cells. Compared to MDA-MB-231 cells, elevated levels of TNF and their receptor proteins may contribute to their increased sensitivity to TQ-induced apoptosis. It was concluded from this study that TQ targets the MDA-MB-231 and MDA-MB-468 cells differently. Additionally, due to the aggressive nature of TNBC and the lack of specific therapies in chemoresistant TNBC, our findings related to the identified apoptotic gene profile may point to TQ as a potential agent for TNBC therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, Institute of Public Health, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (G.M.A.); (S.S.M.); (E.T.); (R.B.B.); (L.M.A.)
| |
Collapse
|
22
|
Oriola AO, Oyedeji AO. Plant-Derived Natural Products as Lead Agents against Common Respiratory Diseases. Molecules 2022; 27:3054. [PMID: 35630531 PMCID: PMC9144277 DOI: 10.3390/molecules27103054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/23/2022] [Accepted: 05/07/2022] [Indexed: 12/16/2022] Open
Abstract
Never has the world been more challenged by respiratory diseases (RDs) than it has witnessed in the last few decades. This is evident in the plethora of acute and chronic respiratory conditions, ranging from asthma and chronic obstructive pulmonary disease (COPD) to multidrug-resistant tuberculosis, pneumonia, influenza, and more recently, the novel coronavirus (COVID-19) disease. Unfortunately, the emergence of drug-resistant strains of pathogens, drug toxicity and side effects are drawbacks to effective chemotherapeutic management of RDs; hence, our focus on natural sources because of their unique chemical diversities and novel therapeutic applications. This review provides a summary on some common RDs, their management strategies, and the prospect of plant-derived natural products in the search for new drugs against common respiratory diseases.
Collapse
Affiliation(s)
- Ayodeji Oluwabunmi Oriola
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Nelson Mandela Drive, P/Bag X1, Mthatha 5117, South Africa;
| | | |
Collapse
|
23
|
Imran M, Khan SA, Abida, Alshammari MK, Alkhaldi SM, Alshammari FN, Kamal M, Alam O, Asdaq SMB, Alzahrani AK, Jomah S. Nigella sativa L. and COVID-19: A Glance at The Anti-COVID-19 Chemical Constituents, Clinical Trials, Inventions, and Patent Literature. Molecules 2022; 27:2750. [PMID: 35566101 PMCID: PMC9105261 DOI: 10.3390/molecules27092750] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 has had an impact on human quality of life and economics. Scientists have been identifying remedies for its prevention and treatment from all possible sources, including plants. Nigella sativa L. (NS) is an important medicinal plant of Islamic value. This review highlights the anti-COVID-19 potential, clinical trials, inventions, and patent literature related to NS and its major chemical constituents, like thymoquinone. The literature was collected from different databases, including Pubmed, Espacenet, and Patentscope. The literature supports the efficacy of NS, NS oil (NSO), and its chemical constituents against COVID-19. The clinical data imply that NS and NSO can prevent and treat COVID-19 patients with a faster recovery rate. Several inventions comprising NS and NSO have been claimed in patent applications to prevent/treat COVID-19. The patent literature cites NS as an immunomodulator, antioxidant, anti-inflammatory, a source of anti-SARS-CoV-2 compounds, and a plant having protective effects on the lungs. The available facts indicate that NS, NSO, and its various compositions have all the attributes to be used as a promising remedy to prevent, manage, and treat COVID-19 among high-risk people as well as for the therapy of COVID-19 patients of all age groups as a monotherapy or a combination therapy. Many compositions of NS in combination with countless medicinal herbs and medicines are still unexplored. Accordingly, the authors foresee a bright scope in developing NS-based anti-COVID-19 composition for clinical use in the future.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, Muscat 130, Oman;
| | - Abida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | | | - Saif M. Alkhaldi
- Department of Pharmaceutical Care, King Khalid Hospital in Majmaah, Riyadh 76312, Saudi Arabia;
| | | | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | | | - A. Khuzaim Alzahrani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia;
| | - Shahamah Jomah
- Pharmacy Department, Sulaiman Al-Habib Medical Group, Riyadh 11643, Saudi Arabia
| |
Collapse
|
24
|
Thomas JV, Mohan ME, Prabhakaran P, Das S S, Maliakel B, Krishnakumar IM. A phase I clinical trial to evaluate the safety of thymoquinone -rich black cumin oil (BlaQmax®) on healthy subjects: Randomized, double-blinded, placebo-controlled prospective study. Toxicol Rep 2022; 9:999-1007. [DOI: 10.1016/j.toxrep.2022.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
|
25
|
Dahmash EZ, Ali DK, Alyami HS, AbdulKarim H, Alyami MH, Aodah AH. Novel Thymoquinone Nanoparticles Using Poly(ester amide) Based on L-Arginine-Targeting Pulmonary Drug Delivery. Polymers (Basel) 2022; 14:polym14061082. [PMID: 35335412 PMCID: PMC8956027 DOI: 10.3390/polym14061082] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
Thymoquinone (TQ), the main active constituent of Nigella sativa, has demonstrated broad-spectrum antimicrobial, antioxidant, and anti-inflammatory effects, which suggest its potential use in secondary infections caused by COVID-19. However, clinical deployment has been hindered due to its limited aqueous solubility and poor bioavailability. Therefore, a targeted delivery system to the lungs using nanotechnology is needed to overcome limitations encountered with TQ. In this project, a novel TQ-loaded poly(ester amide) based on L-arginine nanoparticles was prepared using the interfacial polycondensation method for a dry powder inhaler targeting delivery of TQ to the lungs. The nanoparticles were characterized by FTIR and NMR to confirm the structure. Transmission electron microscopy and Zetasizer results confirmed the particle diameter of 52 nm. The high-dose formulation showed the entrapment efficiency and loading capacity values of TQ to be 99.77% and 35.56%, respectively. An XRD study proved that TQ did not change its crystallinity, which was further confirmed by the DSC study. Optimized nanoparticles were evaluated for their in vitro aerodynamic performance, which demonstrated an effective delivery of 22.7–23.7% of the nominal dose into the lower parts of the lungs. The high drug-targeting potential and efficiency demonstrates the significant role of the TQ nanoparticles for potential application in COVID-19 and other respiratory conditions.
Collapse
Affiliation(s)
- Eman Zmaily Dahmash
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman 11622, Jordan;
- Correspondence: (E.Z.D.); (H.S.A.); Tel.: +962-797439871 (E.Z.D.); +966-6175417964 (H.S.A.)
| | - Dalia Khalil Ali
- Department of Physiotherapy, Faculty of Allied Medical Sciences, Isra University, Amman 11622, Jordan;
| | - Hamad S. Alyami
- Department of Pharmaceutics, Faculty of Pharmacy, Najran University, Najran 55461, Saudi Arabia;
- Correspondence: (E.Z.D.); (H.S.A.); Tel.: +962-797439871 (E.Z.D.); +966-6175417964 (H.S.A.)
| | - Hussien AbdulKarim
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman 11622, Jordan;
| | - Mohammad H. Alyami
- Department of Pharmaceutics, Faculty of Pharmacy, Najran University, Najran 55461, Saudi Arabia;
| | - Alhassan H. Aodah
- National Center of Biotechnology, Life Science & Environment Research Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia;
| |
Collapse
|
26
|
Esharkawy ER, Almalki F, Hadda TB. In vitro potential antiviral SARS-CoV-19- activity of natural product thymohydroquinone and dithymoquinone from Nigella sativa. Bioorg Chem 2022; 120:105587. [PMID: 35026560 PMCID: PMC8719923 DOI: 10.1016/j.bioorg.2021.105587] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/19/2021] [Accepted: 12/26/2021] [Indexed: 12/12/2022]
Abstract
Inflammation, oxidation, and compromised immunity all increase the dangers of COVID-19, whereas many pharmaceutical protocols may lead to increased immunity such as ingesting from sources containing vitamin E and zinc. A global search for natural remedies to fight COVID-19 has emerged, to assist in the treatment of this infamous coronavirus. Nigella satvia is a world-renowned plant, an esteemed herbal remedy, which can be used as a liquid medicine to increase immunity while decreasing the dangers of acute respiratory distress syndrome. Thymoqinone (TQ), dithymoqinone (DTQ) and thymohydroquinone (THQ), are major compounds of the essential oil contained in N.sativa. A current study aims to discover the antiviral activity of two compounds, Thymohydroquinone and Dithymoquinone, which are synthesized through simple chemical procedures, deriving from thymoquinone, which happens to be a major compound of Nigella sativa. A half-maximal cytotoxic concentration, "CC50", was calculated by MTT assay for each individual drug, The sample showed anti-SARS-CoV-2 activity at non-cytotoxic nanomolar concentrations in vitro with a low selectivity index (CC50/IC50 = 31.74/23.15 = 1.4), whereby Dimthymoquinone shows high cytotoxicity.
Collapse
Affiliation(s)
- Eman R Esharkawy
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia.
| | - Faisal Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, MB 524, 60000 Oujda, Morocco
| |
Collapse
|
27
|
Ali S, Alam M, Khatoon F, Fatima U, Elasbali AM, Adnan M, Islam A, Hassan MI, Snoussi M, De Feo V. Natural products can be used in therapeutic management of COVID-19: Probable mechanistic insights. Biomed Pharmacother 2022; 147:112658. [PMID: 35066300 PMCID: PMC8769927 DOI: 10.1016/j.biopha.2022.112658] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
The unexpected emergence of the new Coronavirus disease (COVID-19) has affected more than three hundred million individuals and resulted in more than five million deaths worldwide. The ongoing pandemic has underscored the urgent need for effective preventive and therapeutic measures to develop anti-viral therapy. The natural compounds possess various pharmaceutical properties and are reported as effective anti-virals. The interest to develop an anti-viral drug against the novel severe acute respiratory syndrome Coronavirus (SARS-CoV-2) from natural compounds has increased globally. Here, we investigated the anti-viral potential of selected promising natural products. Sources of data for this paper are current literature published in the context of therapeutic uses of phytoconstituents and their mechanism of action published in various reputed peer-reviewed journals. An extensive literature survey was done and data were critically analyzed to get deeper insights into the mechanism of action of a few important phytoconstituents. The consumption of natural products such as thymoquinone, quercetin, caffeic acid, ursolic acid, ellagic acid, vanillin, thymol, and rosmarinic acid could improve our immune response and thus possesses excellent therapeutic potential. This review focuses on the anti-viral functions of various phytoconstituent and alkaloids and their potential therapeutic implications against SARS-CoV-2. Our comprehensive analysis provides mechanistic insights into phytoconstituents to restrain viral infection and provide a better solution through natural, therapeutically active agents.
Collapse
Affiliation(s)
- Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Fatima Khatoon
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, Uttar Pradesh 201303, India
| | - Urooj Fatima
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | | | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, Saudi Arabia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Fisciano, Italy.
| |
Collapse
|
28
|
Chandra A, Johri A. A Peek into Pandora’s Box: COVID-19 and Neurodegeneration. Brain Sci 2022; 12:brainsci12020190. [PMID: 35203953 PMCID: PMC8870638 DOI: 10.3390/brainsci12020190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Ever since it was first reported in Wuhan, China, the coronavirus-induced disease of 2019 (COVID-19) has become an enigma of sorts with ever expanding reports of direct and indirect effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on almost all the vital organ systems. Along with inciting acute pulmonary complications, the virus attacks the cardiac, renal, hepatic, and gastrointestinal systems as well as the central nervous system (CNS). The person-to-person variability in susceptibility of individuals to disease severity still remains a puzzle, although the comorbidities and the age/gender of a person are believed to play a key role. SARS-CoV-2 needs angiotensin-converting enzyme 2 (ACE2) receptor for its infectivity, and the association between SARS-CoV-2 and ACE2 leads to a decline in ACE2 activity and its neuroprotective effects. Acute respiratory distress may also induce hypoxia, leading to increased oxidative stress and neurodegeneration. Infection of the neurons along with peripheral leukocytes’ activation results in proinflammatory cytokine release, rendering the brain more susceptible to neurodegenerative changes. Due to the advancement in molecular biology techniques and vaccine development programs, the world now has hope to relatively quickly study and combat the deadly virus. On the other side, however, the virus seems to be still evolving with new variants being discovered periodically. In keeping up with the pace of this virus, there has been an avalanche of studies. This review provides an update on the recent progress in adjudicating the CNS-related mechanisms of SARS-CoV-2 infection and its potential to incite or accelerate neurodegeneration in surviving patients. Current as well as emerging therapeutic opportunities and biomarker development are highlighted.
Collapse
|
29
|
Plant-Derived Terpenoids: A Promising Tool in the Fight against Melanoma. Cancers (Basel) 2022; 14:cancers14030502. [PMID: 35158770 PMCID: PMC8833325 DOI: 10.3390/cancers14030502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Despite the numerous therapies, melanoma remains the deadliest of all skin cancers; however, plant-derived terpenoids are defense molecules that have proven anti-cancer properties. In this review, we present the results of the search for anti-melanoma plant terpenoids. Additionally, we show the effects of combining terpenoids with standard drugs, radiation therapy, or other plant substances on melanoma cell lines and animal models. Finally, we present some examples of drug delivery systems that increase the uptake of terpenoids by melanoma tissue. Abstract Melanoma is responsible for the highest number of skin cancer-caused deaths worldwide. Despite the numerous melanoma-treating options, the fight against it remains challenging, mainly due to its great heterogeneity and plasticity, as well as the high toxicity of standard drugs. Plant-derived terpenoids are a group of plant defense molecules that have been proven effective in killing many different types of cancer cells, both in in vitro experiments and in vivo models. In this review, we focus on recent results in the search for plant terpenoids with anti-melanoma activity. We also report on the synergistic action of combining terpenoids with other plant-derived substances, MAP kinase inhibitors, or radiation. Additionally, we present examples of terpenoid-loaded nanoparticle carriers as anti-melanoma agents that have increased permeation through the cancer tissue.
Collapse
|
30
|
Berlansky S, Sallinger M, Grabmayr H, Humer C, Bernhard A, Fahrner M, Frischauf I. Calcium Signals during SARS-CoV-2 Infection: Assessing the Potential of Emerging Therapies. Cells 2022; 11:253. [PMID: 35053369 PMCID: PMC8773957 DOI: 10.3390/cells11020253] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 01/09/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense single-stranded RNA virus that causes coronavirus disease 2019 (COVID-19). This respiratory illness was declared a pandemic by the world health organization (WHO) in March 2020, just a few weeks after being described for the first time. Since then, global research effort has considerably increased humanity's knowledge about both viruses and disease. It has also spawned several vaccines that have proven to be key tools in attenuating the spread of the pandemic and severity of COVID-19. However, with vaccine-related skepticism being on the rise, as well as breakthrough infections in the vaccinated population and the threat of a complete immune escape variant, alternative strategies in the fight against SARS-CoV-2 are urgently required. Calcium signals have long been known to play an essential role in infection with diverse viruses and thus constitute a promising avenue for further research on therapeutic strategies. In this review, we introduce the pivotal role of calcium signaling in viral infection cascades. Based on this, we discuss prospective calcium-related treatment targets and strategies for the cure of COVID-19 that exploit viral dependence on calcium signals.
Collapse
Affiliation(s)
| | | | | | | | | | - Marc Fahrner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (S.B.); (M.S.); (H.G.); (C.H.); (A.B.)
| | - Irene Frischauf
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (S.B.); (M.S.); (H.G.); (C.H.); (A.B.)
| |
Collapse
|
31
|
Asfour HZ, Fahmy UA, Alharbi WS, Almehmady AM, Alamoudi AJ, Tima S, Mansouri RA, Omar UM, Ahmed OAA, Zakai SA, Aldarmahi AA, Bagalagel A, Diri R, Alhakamy NA. Phyto-Phospholipid Conjugated Scorpion Venom Nanovesicles as Promising Carrier That Improves Efficacy of Thymoquinone against Adenocarcinoma Human Alveolar Basal Epithelial Cells. Pharmaceutics 2021; 13:2144. [PMID: 34959424 PMCID: PMC8709205 DOI: 10.3390/pharmaceutics13122144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 01/15/2023] Open
Abstract
Lung cancer is a dangerous type of cancer in men and the third leading cause of cancer-related death in women, behind breast and colorectal cancers. Thymoquinone (THQ), a main compound in black seed essential oils, has a variety of beneficial effects, including antiproliferative, anti-inflammatory, and antioxidant properties. On the other hand, scorpion venom peptides (SV) induce apoptosis in the cancer cells, making it a promising anticancer agent. THQ, SV, and Phospholipon® 90H (PL) were incorporated in a nano-based delivery platform to assess THQ's cellular uptake and antiproliferative efficacy against a lung cancer cell line derived from human alveolar epithelial cells (A549). Several nanovesicles were prepared and optimized using factorial experimental design. The optimized phytosome formulation contained 79.0 mg of PL and 170.0 mg of SV, with vesicle size and zeta potential of 209.9 nm and 21.1 mV, respectively. The IC50 values revealed that A549 cells were significantly more sensitive to the THQ formula than the plain formula and THQ. Cell cycle analysis revealed that THQ formula treatment resulted in significant cell cycle arrest at the S phase, increasing cell population in this phase by 22.1%. Furthermore, the THQ formula greatly increased cell apoptosis (25.17%) when compared to the untreated control (1.76%), plain formula (11.96%), or THQ alone (13.18%). The results also indicated that treatment with THQ formula significantly increased caspase-3, Bax, Bcl-2, and p53 mRNA expression compared to plain formula and THQ. In terms of the inflammatory markers, THQ formula significantly reduced the activity of TNF-α and NF-κB in comparison with the plain formula and THQ only. Overall, the findings from the study proved that a phytosome formulation of THQ could be a promising therapeutic approach for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Hani Z. Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.Z.A.); (S.A.Z.)
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.S.A.); (A.M.A.); (O.A.A.A.); (N.A.A.)
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.S.A.); (A.M.A.); (O.A.A.A.); (N.A.A.)
- Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alshaimaa M. Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.S.A.); (A.M.A.); (O.A.A.A.); (N.A.A.)
| | - Abdulmohsin J. Alamoudi
- Department of Pharmacology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Singkome Tima
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Rasha A. Mansouri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.M.); (U.M.O.)
| | - Ulfat M. Omar
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.M.); (U.M.O.)
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.S.A.); (A.M.A.); (O.A.A.A.); (N.A.A.)
- Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shadi A. Zakai
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.Z.A.); (S.A.Z.)
| | - Ahmed A. Aldarmahi
- College of Sciences and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia;
| | - Alaa Bagalagel
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.B.); (R.D.)
| | - Reem Diri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.B.); (R.D.)
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.S.A.); (A.M.A.); (O.A.A.A.); (N.A.A.)
- Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
32
|
Khan A. Black Cumin in Fighting with Coronaviruses. THE OPEN COVID JOURNAL 2021; 1:189-190. [DOI: 10.2174/2666958702101010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 07/28/2024]
|
33
|
Identifying the Most Potent Dual-Targeting Compound(s) against 3CLprotease and NSP15exonuclease of SARS-CoV-2 from Nigella sativa: Virtual Screening via Physicochemical Properties, Docking and Dynamic Simulation Analysis. Processes (Basel) 2021. [DOI: 10.3390/pr9101814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: The outbreak of the coronavirus (SARS-CoV-2) has drastically affected the human population and caused enormous economic deprivation. It belongs to the β-coronavirus family and causes various problems such as acute respiratory distress syndrome and has resulted in a global pandemic. Though various medications have been under trial for combating COVID-19, specific medicine for treating COVID-19 is unavailable. Thus, the current situation urgently requires effective treatment modalities. Nigella sativa, a natural herb with reported antiviral activity and various pharmacological properties, has been selected in the present study to identify a therapeutic possibility for treating COVID-19. Methods: The present work aimed to virtually screen the bioactive compounds of N. sativa based on the physicochemical properties and docking approach against two SARS-CoV-2 enzymes responsible for crucial functions: 3CLpro (Main protease) and NSP15 (Nonstructural protein 15 or exonuclease). However, simulation trajectory analyses for 100 ns were accomplished by using the YASARA STRUCTURE tool based on the AMBER14 force field with 400 snapshots every 250 ps. RMSD and RMSF plots were successfully obtained for each target. Results: The results of molecular docking have shown higher binding energy of dithymoquinone (DTQ), a compound of N. sativa against 3CLpro and Nsp15, i.e., −8.56 kcal/mol and −8.31 kcal/mol, respectively. Further, the dynamic simulation has shown good stability of DTQ against both the targeted enzymes. In addition, physicochemical evaluation and toxicity assessment also revealed that DTQ obeyed the Lipinski rule and did not have any toxic side effects. Importantly, DTQ was much better in every aspect among the 13 N. sativa compounds and 2 control compounds tested. Conclusions: The results predicted that DTQ is a potent therapeutic molecule that could dual-target both 3CLpro and NSP15 for anti-COVID therapy.
Collapse
|
34
|
Al-Gabri NA, Saghir SAM, Al-Hashedi SA, El-Far AH, Khafaga AF, Swelum AA, Al-Wajeeh AS, Mousa SA, Abd El-Hack ME, Naiel MAE, El-Tarabily KA. Therapeutic Potential of Thymoquinone and Its Nanoformulations in Pulmonary Injury: A Comprehensive Review. Int J Nanomedicine 2021; 16:5117-5131. [PMID: 34349511 PMCID: PMC8326280 DOI: 10.2147/ijn.s314321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
As a crucial organ, the lung is exposed to various harmful agents that may induce inflammation and oxidative stress, which may cause chronic or acute lung injury. Nigella sativa, also known as black seed, has been widely used to treat various diseases and is one of the most extensively researched medicinal plants. Thymoquinone (TQ) is the main component of black seed volatile oil and has been proven to have antioxidant, anti-inflammatory, and antineoplastic properties. The potential therapeutic properties of TQ against various pulmonary disorders have been studied in both in vitro and in vivo studies. Furthermore, the application of nanotechnology may increase drug solubility, cellular absorption, drug release (sustained or control), and drug delivery to lung tissue target sites. As a result, fabricating TQ as nanoparticles (NPs) is a potential therapeutic approach against a variety of lung diseases. In this current review, we summarize recent findings on the efficacy of TQ and its nanotypes in lung disorders caused by immunocompromised conditions such as cancer, diabetes, gastric ulcers, and other neurodegenerative diseases. It is concluded that TQ nanoparticles with anti-inflammatory, antioxidant, antiasthma, and antitumor activity may be safely applied to treat lung disorders. However, more research is required before TQ nanoparticles can be used as pharmaceutical preparations in human studies.
Collapse
Affiliation(s)
- Naif A Al-Gabri
- Department of Pathology, Faculty of Veterinary Medicine, Thamar University, Dhamar, Yemen.,Laboratory of Regional Djibouti Livestock Quarantine, Abu Yasar international Est. 1999, Arta, Djibouti
| | - Sultan A M Saghir
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Medical Sciences, AlHussein Bin Talal University, Ma'an, 71111, Jordan
| | | | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | | | - Shaker A Mousa
- Department of Pharmaceutical Sciences, the Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, 12144, USA
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Mohammed A E Naiel
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates.,Biosecurity and One Health Research Centre, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
| |
Collapse
|