1
|
Zannou O, Oussou KF, Chabi IB, Awad NMH, Aïssi MV, Goksen G, Mortas M, Oz F, Proestos C, Kayodé APP. Nanoencapsulation of Cyanidin 3- O-Glucoside: Purpose, Technique, Bioavailability, and Stability. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:617. [PMID: 36770579 PMCID: PMC9921781 DOI: 10.3390/nano13030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The current growing attractiveness of natural dyes around the world is a consequence of the increasing rejection of synthetic dyes whose use is increasingly criticized. The great interest in natural pigments from herbal origin such as cyanidin 3-O-glucoside (C3G) is due to their biological properties and their health benefits. However, the chemical instability of C3G during processing and storage and its low bioavailability limits its food application. Nanoencapsulation technology using appropriate nanocarriers is revolutionizing the use of anthocyanin, including C3G. Owing to the chemical stability and functional benefits that this new nanotechnology provides to the latter, its industrial application is now extending to the pharmaceutical and cosmetic fields. This review focuses on the various nanoencapsulation techniques used and the chemical and biological benefits induced to C3G.
Collapse
Affiliation(s)
- Oscar Zannou
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Kouame F. Oussou
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, 01330 Adana, Turkey
| | - Ifagbémi B. Chabi
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Nour M. H. Awad
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Midimahu V. Aïssi
- School of Sciences and Techniques for the Conservation and Processing of Agricultural Products, National University of Agriculture, Sakété 00 BP 144, Benin
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Mustafa Mortas
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Atatürk University, 25240 Erzurum, Turkey
| | - Charalampos Proestos
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece
| | - Adéchola P. P. Kayodé
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| |
Collapse
|
2
|
Li G, Huang S, Li X, Luo Y, Nie H. Identification of compounds from chufa ( Eleocharis dulcis) peels by widely targeted metabolomics. Food Sci Nutr 2023; 11:545-554. [PMID: 36655076 PMCID: PMC9834879 DOI: 10.1002/fsn3.3085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 01/21/2023] Open
Abstract
The Chinese water chestnut (CWC) is among the most widespread and economically important vegetables in Southern China. There are two different types of cultivars for this vegetable, namely, big CWC (BCWC) and small CWC (SCWC). These are used for different purposes based on their metabolic profiles. This study aimed to investigate the metabolite profile of CWC and compare the profiles of peels collected in different harvest years using ultraperformance liquid chromatography/mass spectrometry (UPLC-MS)-based metabolomics analysis. Three hundred and twenty-one metabolites were identified, of which 87 flavonoids, 25 phenylpropanoids, and 33 organic acids and derivatives were significantly different in the content of the two varieties of BCWC and SCWC. The metabolite profiles of the two different cultivars were distinguished using principle component analysis (PCA) and orthogonal projections to latent structures discriminant analysis, and the results indicated differences in the metabolite profile of Eleocharis dulcis (Burm. f.) Trin. ex Hensch. Three isomers of hydroxycoumarin, namely, O-feruloyl-4-hydroxycoumarin, O-feruloyl-3-hydroxycoumarin, and O-feruloyl-2-hydroxycoumarin, exhibited increased levels in BCWC, while p-coumaric acid and vanillic acid did not show any significant differences in their content in BCWC and SCWC peels. This study, for the first time, provides novel insights into the differences among metabolite profiles between BCWC and SCWC.
Collapse
Affiliation(s)
- Guanli Li
- Guangxi Key Laboratory of Health Care Food Science and TechnologyHezhou UniversityHezhouGuangxiChina
| | - Shuangquan Huang
- Guangxi Key Laboratory of Health Care Food Science and TechnologyHezhou UniversityHezhouGuangxiChina
| | - Xiaochun Li
- Guangxi Key Laboratory of Health Care Food Science and TechnologyHezhou UniversityHezhouGuangxiChina
| | - Yanghe Luo
- Guangxi Key Laboratory of Health Care Food Science and TechnologyHezhou UniversityHezhouGuangxiChina
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianLiaoningChina
| | - Hui Nie
- Guangxi Key Laboratory of Health Care Food Science and TechnologyHezhou UniversityHezhouGuangxiChina
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianLiaoningChina
| |
Collapse
|
3
|
Li YX, Lu YP, Tang D, Hu B, Zhang ZY, Wu HW, Fan LJ, Cai KW, Tang C, Zhang YQ, Hong L, Dong JJ, Guan BZ, Yin LH, Dai Y, Bai WB, Zheng ZH, Zhu T. Anthocyanin improves kidney function in diabetic kidney disease by regulating amino acid metabolism. J Transl Med 2022; 20:510. [PMID: 36335368 PMCID: PMC9636632 DOI: 10.1186/s12967-022-03717-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Background Diabetic kidney disease (DKD) is among the most important causes for chronic kidney disease. Anthocyanins (ANT) are polyphenolic compounds present in various food and play an important role in ameliorating hyperglycemia and insulin sensitivity. However, the effects of ANT in DKD are still poorly understood. This study aimed to investigate the effect of ANT (cyanidin-3-O-glucoside [C3G]) on the renal function of DKD, and whether the anti-DKD effect of ANT is related to metabolic pathways. Methods To explore the role of ANT in DKD, we performed the examination of blood glucose, renal function, and histopathology. As for the mechanism, we designed the label-free quantification proteomics and nontargeted metabolomics analysis for kidney and serum. Subsequently, we revealed the anti-DKD effect of ANT through the bioinformatic analysis. Results We showed that the fasting blood glucose level (− 6.1 mmol/L, P = 0.037), perimeter of glomerular lesions (− 24.1 μm, P = 0.030), fibrosis score of glomerular (− 8.8%, P = 0.002), and kidney function (Cystatin C: − 701.4 pg/mL, P = 0.043; urine creatinine: − 701.4 mmol/L, P = 0.032) were significantly alleviated in DKD mice after ANT treatment compared to untreated in the 20th week. Further, proteins and metabolites in the kidneys of DKD mice were observed to be dramatically altered due to changes in amino acid metabolism with ANT treatment; mainly, taurine and hypotaurine metabolism pathway was upregulated (P = 0.0001, t value = 5.97). Furthermore, upregulated tryptophan metabolism (P < 0.0001, t value = 5.94) and tyrosine metabolism (P = 0.0037, t value = 2.91) pathways had effects on serum of DKD mice as responsed ANT regulating. Conclusions Our results suggested that prevention of the progression of DKD by ANT could be related to the regulation of amino acid metabolism. The use of dietary ANT may be one of the dietary strategies to prevent and treat DKD. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03717-9.
Collapse
|
4
|
Qu D, Ye Z, Zhang W, Dai B, Chen G, Wang L, Shao X, Xiang A, Lu Z, Shi J. Cyanidin Chloride Improves LPS-Induced Depression-Like Behavior in Mice by Ameliorating Hippocampal Inflammation and Excitotoxicity. ACS Chem Neurosci 2022; 13:3023-3033. [PMID: 36254458 DOI: 10.1021/acschemneuro.2c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Depression is a global disease that places a significant burden on human health. Neuroinflammation and disturbance of glutamate metabolism in brain regions, such as the hippocampus, play vital roles in the development of depression. Previous studies have shown that cyanidin chloride (Cycl) has anti-inflammatory and antioxidant properties with neuroprotective effects in peripheral tissues. However, the effects of Cycl on depression and the possible mechanism by which this compound targets brain regions remain less elucidated. We investigated the role of Cycl in lipopolysaccharide (LPS)-induced depression and examined the influence of the drug on central inflammation and the expression of excitatory amino acid transporters in the hippocampus. We found that prophylactic i.p. application of Cycl at 20 or 40 mg/kg for 5 days significantly reduced the immobility time assessed by the tail suspension test (TST) and forced swim test (FST) in LPS-challenged mice, suggesting an effective antidepressant activity of the drug. Western blotting and immunofluorescence staining in the hippocampus revealed that Cycl inhibited the upregulation of proinflammatory cytokines, including TNF-α and IL-6, and suppressed the hyperactivity of microglia induced by LPS, indicating an anti-inflammatory role in the hippocampus. Moreover, treatment with Cycl also recovered the downregulated expression of glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF), and glutamate-aspartate transporter (GLAST) and excitatory amino acid transporter 2 (EAAT2), two members in the excitatory amino acid transporter family. The role of Cycl was also verified in cultured BV2 and U251 cells. In conclusion, the present in vivo and in vitro studies demonstrate that Cycl exerts potent antidepressant action in an LPS-induced depression model and the underlying mechanism is associated with reduced hippocampal inflammation, improved neurotrophic function, and attenuated excitotoxicity induced by glutamate.
Collapse
Affiliation(s)
- Di Qu
- The College of Life Sciences, Northwest University, Xi'an 710127, Shaanxi Province, China.,State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Zichen Ye
- Department of Health Service, Health Service Training Base, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Wenli Zhang
- The College of Life Sciences, Northwest University, Xi'an 710127, Shaanxi Province, China.,State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Bing Dai
- The College of Life Sciences, Northwest University, Xi'an 710127, Shaanxi Province, China.,State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Guo Chen
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Li Wang
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Xiaolong Shao
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - An Xiang
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Zifan Lu
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Juan Shi
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
5
|
Differences in the Effects of Anthocyanin Supplementation on Glucose and Lipid Metabolism According to the Structure of the Main Anthocyanin: A Meta-Analysis of Randomized Controlled Trials. Nutrients 2021; 13:nu13062003. [PMID: 34200816 PMCID: PMC8230537 DOI: 10.3390/nu13062003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 01/02/2023] Open
Abstract
The effectiveness of anthocyanins may differ according to their chemical structures; however, randomized clinical controlled trials (RCTs) or meta-analyses that examine the consequences of these structural differences have not been reported yet. In this meta-analysis, anthocyanins in test foods of 18 selected RCTs were categorized into three types: cyanidin-, delphinidin-, and malvidin-based. Delphinidin-based anthocyanins demonstrated significant effects on triglycerides (mean difference (MD): −0.24, p < 0.01), low-density lipoprotein cholesterol (LDL-C) (MD: −0.28, p < 0.001), and high-density lipoprotein cholesterol (HDL-C) (MD: 0.11, p < 0.01), whereas no significant effects were observed for cyanidin- and malvidin-based anthocyanins. Although non-significant, favorable effects on total cholesterol (TC) and HDL-C were observed for cyanidin- and malvidin-based anthocyanins, respectively (both p < 0.1). The ascending order of effectiveness on TC and LDL-C was delphinidin-, cyanidin-, and malvidin-based anthocyanins, and the differences among the three groups were significant (both p < 0.05). We could not confirm the significant effects of each main anthocyanin on glucose metabolism; however, insulin resistance index changed positively and negatively with cyanidin- and delphinidin-based anthocyanins, respectively. Therefore, foods containing mainly unmethylated anthocyanins, especially with large numbers of OH groups, may improve glucose and lipid metabolism more effectively than those containing methylated anthocyanins.
Collapse
|
6
|
Danielewski M, Matuszewska A, Szeląg A, Sozański T. The Impact of Anthocyanins and Iridoids on Transcription Factors Crucial for Lipid and Cholesterol Homeostasis. Int J Mol Sci 2021; 22:6074. [PMID: 34199904 PMCID: PMC8200123 DOI: 10.3390/ijms22116074] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022] Open
Abstract
Nutrition determines our health, both directly and indirectly. Consumed foods affect the functioning of individual organs as well as entire systems, e.g., the cardiovascular system. There are many different diets, but universal guidelines for proper nutrition are provided in the WHO healthy eating pyramid. According to the latest version, plant products should form the basis of our diet. Many groups of plant compounds with a beneficial effect on human health have been described. Such groups include anthocyanins and iridoids, for which it has been proven that their consumption may lead to, inter alia, antioxidant, cholesterol and lipid-lowering, anti-obesity and anti-diabetic effects. Transcription factors directly affect a number of parameters of cell functions and cellular metabolism. In the context of lipid and cholesterol metabolism, five particularly important transcription factors can be distinguished: liver X receptor (LXR), peroxisome proliferator-activated receptor-α (PPAR-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer binding protein α (C/EBPα) and sterol regulatory element-binding protein 1c (SREBP-1c). Both anthocyanins and iridoids may alter the expression of these transcription factors. The aim of this review is to collect and systematize knowledge about the impact of anthocyanins and iridoids on transcription factors crucial for lipid and cholesterol homeostasis.
Collapse
Affiliation(s)
- Maciej Danielewski
- Department of Pharmacology, Wroclaw Medical University, Jana Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (A.M.); (A.S.); (T.S.)
| | | | | | | |
Collapse
|
7
|
Matboli M, Hasanin AH, Hussein R, El-Nakeep S, Habib EK, Ellackany R, Saleh LA. Cyanidin 3-glucoside modulated cell cycle progression in liver precancerous lesion, in vivo study. World J Gastroenterol 2021; 27:1435-1450. [PMID: 33911466 PMCID: PMC8047539 DOI: 10.3748/wjg.v27.i14.1435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cyanidin-3-O-glucoside (cyan) exhibits antioxidant and anticancer properties. The cell cycle proteins and antimitotic drugs might be promising therapeutic targets in hepatocellular carcinoma.
AIM To investigate the effect of cyan administration on cell cycle in hepatic precancerous lesion (PCL) induced by diethylnitrosamine/2-acetylaminofluorene (DEN/2-AAF) in Wistar rats.
METHODS In vivo, DEN/2-AAF-induced hepatic PCL, rats were treated with three doses of cyan (10, 15, and 20 mg/kg/d, for four consecutive days per week for 16 wk). Blood and liver tissue samples were collected for measurement of the followings; alpha fetoprotein (AFP) liver function and RNA panel differential expression was evaluated via real time polymerase chain reaction. Histopathological examination of liver sections stained with H&E and immunohistochemical study using glutathione S-transferase placental (GSTP) and proliferating cell nuclear antigen (PCNA) antibodies were assessed.
RESULTS Cyan administration mitigated the effect of DEN/2-AFF induced PCL, decreased AFP levels, and improved liver function. Remarkably, treatment with cyan dose dependently decreased the long non-coding RNA MALAT1 and tubulin gamma 1 mRNA expressions and increased the levels of miR-125b, all of which are involved in cell cycle and mitotic spindle assembly. Of note, cyan decreased GSTP foci percent area and PCNA positively stained nuclei.
CONCLUSION Our results indicated that cyan could be used as a potential therapeutic agent to inhibit liver carcinogenesis in rat model via modulation of cell cycle.
Collapse
Affiliation(s)
- Marwa Matboli
- Department of Biochemistry, Ain Shams Faculty of Medicine, Cairo 11318, Egypt
| | - Amany H Hasanin
- Department of Clinical Pharmacology, Ain Shams Faculty of Medicine, Cairo 11381, Egypt
| | - Reham Hussein
- Department of Clinical Pharmacology, Ain Shams Faculty of Medicine, Cairo 11381, Egypt
| | - Sarah El-Nakeep
- Department of General Internal Medicine, Ain Shams Faculty of Medicine, Cairo 11381, Egypt
| | - Eman K Habib
- Department of Anatomy & Embryology, Ain Shams Faculty of Medicine, Cairo 11318, Egypt
| | - Rawan Ellackany
- Department of Undergraduate, Faculty of Medicine, Modern University for Technology and Information, Cairo 11381, Egypt
| | - Lobna A Saleh
- Department of Clinical Pharmacology, Ain Shams Faculty of Medicine, Cairo 11381, Egypt
| |
Collapse
|
8
|
Danesi F, Larsen BD, Di Nunzio M, Nielsen R, de Biase D, Valli V, Mandrup S, Bordoni A. Co-Administration of Propionate or Protocatechuic Acid Does Not Affect DHA-Specific Transcriptional Effects on Lipid Metabolism in Cultured Hepatic Cells. Nutrients 2020; 12:nu12102952. [PMID: 32993128 PMCID: PMC7599819 DOI: 10.3390/nu12102952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/08/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Long-chain n-3 polyunsaturated fatty acids (n-3 LC-PUFAs) are collectively recognized triglyceride-lowering agents, and their preventive action is likely mediated by changes in gene expression. However, as most studies employ fish oil, which contains a mixture of n-3 LC-PUFAs, the docosahexaenoic acid (DHA)-specific transcriptional effects on lipid metabolism are still unclear. The aim of the present study was to further elucidate the DHA-induced transcriptional effects on lipid metabolism in the liver, and to investigate the effects of co-administration with other bioactive compounds having effects on lipid metabolism. To this purpose, HepG2 cells were treated for 6 or 24 h with DHA, the short-chain fatty acid propionate (PRO), and protocatechuic acid (PCA), the main human metabolite of cyanidin-glucosides. Following supplementation, we mapped the global transcriptional changes. PRO and PCA alone had a very slight effect on the transcriptome; on the contrary, supplementation of DHA highly repressed the steroid and fatty acid biosynthesis pathways, this transcriptional modulation being not affected by co-supplementation. Our results confirm that DHA effect on lipid metabolism are mediated at least in part by modulation of the expression of specific genes. PRO and PCA could contribute to counteracting dyslipidemia through other mechanisms.
Collapse
Affiliation(s)
- Francesca Danesi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 47521 Cesena, Italy; (F.D.); (M.D.N.); (V.V.)
- Interdepartmental Center for Agri-food Industrial Research (CIRI Agrifood), University of Bologna, 47521 Cesena, Italy
| | - Bjørk D. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Syddansk Universitet, 5230 Odense M, Denmark; (B.D.L.); (R.N.); (S.M.)
| | - Mattia Di Nunzio
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 47521 Cesena, Italy; (F.D.); (M.D.N.); (V.V.)
- Interdepartmental Center for Agri-food Industrial Research (CIRI Agrifood), University of Bologna, 47521 Cesena, Italy
| | - Ronni Nielsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Syddansk Universitet, 5230 Odense M, Denmark; (B.D.L.); (R.N.); (S.M.)
| | - Dario de Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40138 Bologna, Italy;
| | - Veronica Valli
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 47521 Cesena, Italy; (F.D.); (M.D.N.); (V.V.)
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Syddansk Universitet, 5230 Odense M, Denmark; (B.D.L.); (R.N.); (S.M.)
| | - Alessandra Bordoni
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 47521 Cesena, Italy; (F.D.); (M.D.N.); (V.V.)
- Interdepartmental Center for Agri-food Industrial Research (CIRI Agrifood), University of Bologna, 47521 Cesena, Italy
- Correspondence: ; Tel.: +39-0547-338955
| |
Collapse
|
9
|
Huang F, Zhao R, Xia M, Shen GX. Impact of Cyanidin-3-Glucoside on Gut Microbiota and Relationship with Metabolism and Inflammation in High Fat-High Sucrose Diet-Induced Insulin Resistant Mice. Microorganisms 2020; 8:microorganisms8081238. [PMID: 32824001 PMCID: PMC7464758 DOI: 10.3390/microorganisms8081238] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 07/31/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
The present study assessed the effects of freeze-dried cyanidin-3-glucoside (C3G), an anthocyanin enriched in dark-red berries, compared to Saskatoon berry powder (SBp) on metabolism, inflammatory markers and gut microbiota in high fat-high sucrose (HFHS) diet-induced insulin-resistant mice. Male C57 BL/6J mice received control, HFHS, HFHS + SBp (8.0 g/kg/day) or HFHS + C3G (7.2 mg/kg/day, equivalent C3G in SBp) diet for 11 weeks. The HFHS diet significantly increased plasma levels of glucose, cholesterol, triglycerides, insulin resistance and inflammatory markers. The HFHS + SBp diet increased the Bacteroidetes/Firmicutes (B/F) ratio and relative abundance of Muriculaceae family bacteria in mouse feces detected using 16S rRNA gene sequencing. The HFHS + SBp or HFHS + C3G diet attenuated glucose, lipids, insulin resistance and inflammatory markers, and increased the B/F ratio and Muriculaceae relative abundance compared to the HFHS diet alone. The relative abundances of Muriculaceae negatively correlated with body weight, glucose, lipids, insulin resistance and inflammatory mediators. Functional predication analysis suggested that the HFHS diet upregulated gut bacteria genes involved in inflammation, and downregulated bacteria involved in metabolism. C3G and SBp partially neutralized HFHS diet-induced alterations of gut bacteria. The results suggest that C3G is a potential prebiotic, mitigating HFHS diet-induced disorders in metabolism, inflammation and gut dysbiosis, and that C3G contributes to the metabolic beneficial effects of SBp.
Collapse
Affiliation(s)
- Fei Huang
- Departments of Food and Human Nutritional Sciences, Internal Medicine, University of Manitoba, Winnipeg, MB R3T2N2, Canada;
| | - Ruozhi Zhao
- Diabetes Research Group, Department of Internal Medicine, University of Manitoba, 835-715 McDermot Ave, Winnipeg, MB R3E 3P4, Canada;
| | - Min Xia
- School of Public Health, Sun Yat-Sen University, Guangzhou 510275, China;
| | - Garry X. Shen
- Departments of Food and Human Nutritional Sciences, Internal Medicine, University of Manitoba, Winnipeg, MB R3T2N2, Canada;
- Diabetes Research Group, Department of Internal Medicine, University of Manitoba, 835-715 McDermot Ave, Winnipeg, MB R3E 3P4, Canada;
- Correspondence: ; Tel.: +1-204-789-3816; Fax: +1-204-789-3987
| |
Collapse
|
10
|
Escalante-Araiza F, Gutiérrez-Salmeán G. Traditional Mexican foods as functional agents in the treatment of cardiometabolic risk factors. Crit Rev Food Sci Nutr 2020; 61:1353-1364. [PMID: 32338032 DOI: 10.1080/10408398.2020.1758028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Major cardiometabolic risk phenotypes include insulin resistance (IR), hyperinsulinemia, overweight, obesity and dyslipidemia, which contribute to the current prevalent chronic disease pandemia worldwide. Among traditional treatments, dietary habits represent one of the most difficult and controversial aspects to implement in handling metabolic disturbances. The use of herbal remedies by latinos and hispanics, as part of self-care of metabolic diseases has been well documented in several studies, mainly because they are "natural", consistent with their culture, family-related, accessible, and affordable. Phytochemicals are present in fruits, vegetables and various plants, and constitute nonessential nutrients such as vitamins or minerals, many of them being consumed in a popular way or used as herbal remedies or dietary supplements. In this narrative review, we present evidence on traditional endemic Mexican foods such as cacao, corn, common bean, prickle pear, chili, avocado and salba-chia as functional agents to improve the metabolic status in risk phenotypes.
Collapse
Affiliation(s)
- Fabiola Escalante-Araiza
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Huixquilucan, Estado de México, México
| | - Gabriela Gutiérrez-Salmeán
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Huixquilucan, Estado de México, México
| |
Collapse
|
11
|
Cyanidin Chloride Induces Apoptosis by Inhibiting NF-κB Signaling through Activation of Nrf2 in Colorectal Cancer Cells. Antioxidants (Basel) 2020; 9:antiox9040285. [PMID: 32230772 PMCID: PMC7222181 DOI: 10.3390/antiox9040285] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and a leading cause of cancer-related deaths in developed countries. Anthocyanins are a class of flavonoids, widely distributed in food, exhibiting important biological effects. Cyanidin chloride (CyCl) is the common type of anthocyanin with antioxidative and anti-inflammatory potential. The present study aimed to investigate the molecular mechanisms underlying the chemotherapeutic effects of CyCl in colorectal cancer cells. We found that CyCl treatment induced apoptosis as well as a significant inhibition of cellular proliferation and colony formation in three colon cancer HCT116, HT29, and SW620 cells. In addition, CyCl suppressed nuclear factor-kappa B (NF-κB) signaling and induced the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in tumor necrosis factor-alpha (TNF-α)-stimulated colon cancer cells. Nrf2 and NF-κB are two key transcription factors regulating antioxidative responses and cellular proliferation, respectively. In this study, knockdown of Nrf2 by small interfering RNA (siRNA) transfection inhibited the effect of CyCl on NF-κB signaling and apoptosis, suggesting that there is functional crosstalk between Nrf2 and NF-κB. Our findings demonstrate the important role of Nrf2 in inducing apoptosis through the involvement of NF-κB signaling in colorectal cancer cells, suggesting that CyCl may be used as a potential therapeutic agent for CRC.
Collapse
|
12
|
Kang GG, Francis N, Hill R, Waters D, Blanchard C, Santhakumar AB. Dietary Polyphenols and Gene Expression in Molecular Pathways Associated with Type 2 Diabetes Mellitus: A Review. Int J Mol Sci 2019; 21:ijms21010140. [PMID: 31878222 PMCID: PMC6981492 DOI: 10.3390/ijms21010140] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder with various contributing factors including genetics, epigenetics, environment and lifestyle such as diet. The hallmarks of T2DM are insulin deficiency (also referred to as β-cell dysfunction) and insulin resistance. Robust evidence suggests that the major mechanism driving impaired β-cell function and insulin signalling is through the action of intracellular reactive oxygen species (ROS)-induced stress. Chronic high blood glucose (hyperglycaemia) and hyperlipidaemia appear to be the primary activators of these pathways. Reactive oxygen species can disrupt intracellular signalling pathways, thereby dysregulating the expression of genes associated with insulin secretion and signalling. Plant-based diets, containing phenolic compounds, have been shown to exhibit remedial benefits by ameliorating insulin secretion and insulin resistance. The literature also provides evidence that polyphenol-rich diets can modulate the expression of genes involved in insulin secretion, insulin signalling, and liver gluconeogenesis pathways. However, whether various polyphenols and phenolic compounds can target specific cellular signalling pathways involved in the pathogenesis of T2DM has not been elucidated. This review aims to evaluate the modulating effects of various polyphenols and phenolic compounds on genes involved in cellular signalling pathways (both in vitro and in vivo from human, animal and cell models) leading to the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Gideon Gatluak Kang
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Wagga Wagga, NSW 2650, Australia; (G.G.K.); (N.F.); (D.W.); (C.B.)
- School of Biomedical Sciences, Charles Sturt University, NSW 2650, Australia;
| | - Nidhish Francis
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Wagga Wagga, NSW 2650, Australia; (G.G.K.); (N.F.); (D.W.); (C.B.)
- School of Animal and Veterinary Sciences, Charles Sturt University, NSW 2650, Australia
| | - Rodney Hill
- School of Biomedical Sciences, Charles Sturt University, NSW 2650, Australia;
| | - Daniel Waters
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Wagga Wagga, NSW 2650, Australia; (G.G.K.); (N.F.); (D.W.); (C.B.)
- School of Biomedical Sciences, Charles Sturt University, NSW 2650, Australia;
| | - Christopher Blanchard
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Wagga Wagga, NSW 2650, Australia; (G.G.K.); (N.F.); (D.W.); (C.B.)
- School of Biomedical Sciences, Charles Sturt University, NSW 2650, Australia;
| | - Abishek Bommannan Santhakumar
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Wagga Wagga, NSW 2650, Australia; (G.G.K.); (N.F.); (D.W.); (C.B.)
- School of Biomedical Sciences, Charles Sturt University, NSW 2650, Australia;
- Correspondence: ; Tel.: +61-2-6933-2678
| |
Collapse
|
13
|
Lietava J, Beerova N, Klymenko SV, Panghyova E, Varga I, Pechanova O. Effects of Cornelian Cherry on Atherosclerosis and Its Risk Factors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2515270. [PMID: 30911343 PMCID: PMC6397968 DOI: 10.1155/2019/2515270] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/30/2018] [Indexed: 12/16/2022]
Abstract
Functional food represents an important alternative management of atherosclerosis, its risk factors, and clinical complications. Atherosclerosis is characterized by microinflammation, formation of atheromatous lipoprotein-rich plaques, and protrombogenic status. Cornelian cherry (Cornus mas L., CC) contains polyphenols influencing all three components of atherosclerosis. Its high antioxidant potential, verified in experimental studies, exhibited a pronounced decrease of inflammatory markers. CC treatment demonstrated a favourable effect on lipid spectrum (comparable with statins), decrease of glycemia, and increase of insulin (comparable with glibenclamide). Polyphenols identified in CC exhibited both direct antiplatelet effects and reduction of platelet hyper-reactivity mediated via attenuation of oxidative stress. The first clinical trials confirmed a clinically relevant decrease of total and low-density lipoprotein cholesterol, triacylglycerols, lipoproteins, amelioration of inflammatory activity, and insulin secretion improvement after the treatment with CC polyphenolic compounds. However, the limitation of published studies is the use of undefined cultivars of CC, their experimental nature, small scale, and missing longitudinal trials. Nevertheless, biochemical properties of CC, hitherto described, predispose its products for the adjuvant management of atherosclerosis.
Collapse
Affiliation(s)
- Jan Lietava
- 1st Department of Internal Medicine, Medical Faculty of Comenius University, Bratislava, Slovakia
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Nikoleta Beerova
- 1st Department of Internal Medicine, Medical Faculty of Comenius University, Bratislava, Slovakia
| | - Svetlana V. Klymenko
- M.M. Gryshko National Botanical Garden of National Academy of Sciences of Ukraine, Kiev, Ukraine
| | | | - Ivan Varga
- Institute of Histology and Embryology, Medical Faculty of Comenius University, Bratislava, Slovakia
| | - Olga Pechanova
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
14
|
Marín-Echeverri C, Blesso CN, Fernández ML, Galvis-Pérez Y, Ciro-Gómez G, Núñez-Rangel V, Aristizábal JC, Barona-Acevedo J. Effect of Agraz ( Vaccinium meridionale Swartz) on High-Density Lipoprotein Function and Inflammation in Women with Metabolic Syndrome. Antioxidants (Basel) 2018; 7:antiox7120185. [PMID: 30544803 PMCID: PMC6315480 DOI: 10.3390/antiox7120185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome (MetS) is associated with low-grade inflammation and high-density lipoprotein (HDL) dysfunction. Polyphenol-rich foods may improve these alterations. Agraz is a fruit rich in polyphenols (mainly anthocyanins); however, there is limited information about its effects on human health. We evaluated the effects of agraz consumption as compared to placebo on HDL function and inflammation in women with MetS. Forty volunteers (25–60 years) were included in this double-blind crossover study. Women consumed agraz or placebo over 4 weeks; separated by a 4-week washout period. HDL function (apoliprotein-A1; paraoxonase 1 (PON1) activity; cholesterol efflux capacity), oxidative stress (myeloperoxidase (MPO), advanced oxidation protein products) and inflammatory markers (serum cytokines/chemokines and peripheral blood mononuclear cell nuclear factor-kB) were measured after each period. Compared to placebo, agraz consumption did not significantly change any of the biomarkers measured. Interestingly, only after agraz period there were significant positive correlations between PON1 activities and cholesterol efflux. Additionally, there were significant inverse correlations between changes in inflammatory markers and HDL function markers and positive correlations with oxidative markers. Although polyphenol-rich foods have been shown to be beneficial for certain conditions; polyphenol-rich agraz fruit consumption did not impact inflammation and HDL function in the current study of women with MetS.
Collapse
Affiliation(s)
- Catalina Marín-Echeverri
- Food and therapeutic alternatives area, Ophidism Program, School of Microbiology, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia.
| | - Christopher N Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| | - Maria Luz Fernández
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| | - Yeisson Galvis-Pérez
- Food and therapeutic alternatives area, Ophidism Program, School of Microbiology, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia.
| | - Gelmy Ciro-Gómez
- Food and therapeutic alternatives area, Ophidism Program, School of Microbiology, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia.
| | - Vitelbina Núñez-Rangel
- Food and therapeutic alternatives area, Ophidism Program, School of Microbiology, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia.
| | - Juan C Aristizábal
- Research Group of Physiology and Biochemistry (PHYSIS), School of Nutrition and Dietetics, Universidad de Antioquia UdeA. Calle 70 No. 52-21, Medellín 050010, Colombia.
| | - Jacqueline Barona-Acevedo
- Food and therapeutic alternatives area, Ophidism Program, School of Microbiology, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia.
| |
Collapse
|
15
|
Naseri R, Farzaei F, Haratipour P, Nabavi SF, Habtemariam S, Farzaei MH, Khodarahmi R, Tewari D, Momtaz S. Anthocyanins in the Management of Metabolic Syndrome: A Pharmacological and Biopharmaceutical Review. Front Pharmacol 2018; 9:1310. [PMID: 30564116 PMCID: PMC6288909 DOI: 10.3389/fphar.2018.01310] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
The term "metabolic syndrome" (MetS) refers to a combination of diabetes, high blood pressure, and obesity. The origin of MetS includes a combination of multiple factors, such as sedentary lifestyle, unhealthy diet choice, and genetic factors. MetS is highly prevalent and adversely affects the general population by elevating risk of cardiovascular complications, organ failure, and much other pathology associated with late-stage diabetes. Anthocyanins (ANTs) are health-promoting bioactive compounds belonging to the flavonoids subclass of polyphenols. Numerous studies have reported the potential therapeutic benefits on MetS syndrome and diabetes from fruits rich in ANTs. This review summarizes the role of several dietary ANTs on preventing and managing MetS as well as the pharmacological mechanisms and biopharmaceutical features of their action. We also discuss potential nanoformulation and encapsulation approaches that may enhance the bioefficacy of ANTs in MetS. Experiments have demonstrated that ANTs may attenuate the symptoms of MetS via improving insulin resistance, impaired glucose tolerance, dyslipidaemia, cholesterol levels, hypertension, blood glucose, protecting β cells, and preventing free radical production. In brief, the intake of ANT-rich supplements should be considered due to their plausible ability for prevention and management of MetS. Additionally, randomized double-blind clinical trials are obligatory for evaluating the bioefficacy and pharmacological mechanisms of ANTs and their pharmaceutical formulations in patients with MetS.
Collapse
Affiliation(s)
- Rozita Naseri
- Internal Medicine Department, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pouya Haratipour
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
- Phyto Pharmacology Interest Group, Universal Scientific Education and Research Network, Los Angeles, CA, United States
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories, Medway School of Science, University of Greenwich, Kent, United Kingdom
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Nainital, India
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Wei J, Wu H, Zhang H, Li F, Chen S, Hou B, Shi Y, Zhao L, Duan H. Anthocyanins inhibit high glucose-induced renal tubular cell apoptosis caused by oxidative stress in db/db mice. Int J Mol Med 2018; 41:1608-1618. [PMID: 29328429 PMCID: PMC5819916 DOI: 10.3892/ijmm.2018.3378] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/04/2018] [Indexed: 01/09/2023] Open
Abstract
Oxidative stress is an important contributory factor resulting the development of kidney injury in patients with diabetes. Numerous in vitro and in vivo studies have suggested that anthocyanins, natural phenols commonly existing in numerous fruits and vegetables, exhibit important antioxidative, anti‑inflammatory and antihyperlipidemic effects; however, their effects and underlying mechanisms on diabetic nephropathy (DN) have not yet been fully determined. In the present study, the regulation of apoptosis metabolism and antioxidative effects exhibited by anthocyanins [grape seed procyanidin (GSPE) and cyanidin‑3‑O‑β‑glucoside chloride (C3G)] were investigated, and the molecular mechanism underlying this process was investigated in vivo and in vitro. GSPE administration was revealed to suppress renal cell apoptosis, as well as suppress the expression of Bcl‑2 in diabetic mouse kidneys. Furthermore, GSPE administration was demonstrated to suppress the expression of thioredoxin interacting protein (TXNIP), in addition to enhancing p38 mitogen‑activation protein kinase (MAPK) and extracellular signal‑regulated kinase 1/2 (ERK1/2) oxidase activity in diabetic mouse kidneys. In vitro experiments using HK‑2 cells revealed that C3G suppressed the generation of HG‑mediated reactive oxygen species, cellular apoptosis, the expression of cleaved caspase‑3 and the Bax/Bcl‑2 ratio; and enhanced the expression of cytochrome c released from mitochondria. Furthermore, treatment with C3G was revealed to suppress the expression of TXNIP, in addition to the phosphorylation of p38 MAPK and ERK1/2 oxidase activity in HK‑2 cells under HG conditions. In addition, treatment with C3G was revealed to attenuate the HG‑induced suppression of the biological activity of thioredoxin, and to enhance the expression of thioredoxin 2 in HK‑2 cells under HG conditions. In conclusion, the present study demonstrated that anthocyanins may exhibit protective effects against HG‑induced renal injury in DN via antioxidant activity.
Collapse
Affiliation(s)
- Jinying Wei
- Department of Pathology, Hebei Medical University
- Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, Hebei 050017
| | - Haijiang Wu
- Department of Pathology, Hebei Medical University
- Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, Hebei 050017
| | - Haiqiang Zhang
- Department of Gastrointestinal Surgery Hernia and Abdominal Wall Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000
| | - Fang Li
- Department of Pathology, Hebei Medical University
- Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, Hebei 050017
| | - Shurui Chen
- Department of Pathology, Hebei Medical University
- Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, Hebei 050017
| | - Baohua Hou
- Department of Pathology, Hebei Medical University
- Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, Hebei 050017
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University
- Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, Hebei 050017
| | - Lijuan Zhao
- School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Huijun Duan
- Department of Pathology, Hebei Medical University
- Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, Hebei 050017
| |
Collapse
|
17
|
Alshammari GM, Balakrishnan A, Chinnasamy T. Nimbolide attenuate the lipid accumulation, oxidative stress and antioxidant in primary hepatocytes. Mol Biol Rep 2017; 44:463-474. [PMID: 29185131 DOI: 10.1007/s11033-017-4132-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/17/2017] [Indexed: 02/07/2023]
Abstract
Nimbolide is a bioactive compound found in Azadirachta indica. This work was devised to investigate the potential effects of nimbolide on intracellular lipid deposition and its associated redox modulation in primary hepatocytes (Heps). Lipid accumulation was induced in Heps by supplementing 1 mM oleic acid for 24 h which was marked by significant accumulation of lipids. The results demonstrated that nimbolide can decrease intracellular cholesterol, free fatty acids and triglycerides. Nimbolide may also improve hepatocytes function through its antioxidant effects by inhibiting oxidative DNA damage and lipid peroxidation by curtailing the reactive oxygen species levels. Further it also restore the mitochondrial potential, improving the endogenous antioxidant levels such as GSH and antioxidant enzyme activities. Nimbolide increased (P < 0.05) liver X receptor-α (LXRα), peroxisome proliferator-activated receptor-γ (PPARγ) and sterol regulatory element-binding protein-1c (SREBP1c) gene expression in Heps. The biological significance of nimbolide may involve hypolipidemic effect, lipid peroxidation inhibition, DNA damage inhibition, ROS inhibition, restoring mitochondrial function, increases in GSH and SOD & CAT activities, and direct regulation of LXRα, PPARγ and SREBP1c gene expression. Nimbolide may be used as effective lipid lowering compound and lipid deposition-induced Heps changes.
Collapse
Affiliation(s)
- Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| | - Aristatile Balakrishnan
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Thirunavukkarasu Chinnasamy
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
18
|
Feng L, Gu C, Li Y, Huang J. High Glucose Promotes CD36 Expression by Upregulating Peroxisome Proliferator-Activated Receptor γ Levels to Exacerbate Lipid Deposition in Renal Tubular Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1414070. [PMID: 28497039 PMCID: PMC5405368 DOI: 10.1155/2017/1414070] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/19/2017] [Accepted: 04/02/2017] [Indexed: 02/06/2023]
Abstract
Diabetic kidney disease (DKD) appears to be closely related to lipid deposition in kidney. The aim of this study was to determine whether high glucose (HG) exacerbated lipid deposition by increasing CD36 expression via AKT-PPARγ signaling pathway. Our results showed that HG activated AKT signaling pathway, followed by an increase in PPARγ that induced CD36 overexpression, ultimately causing lipid deposition in HK-2 cells. We also found that inhibition of AKT-PPARγ signaling pathway or knockdown of CD36 could reduce HG-induced lipid accumulation in HK-2 cells. These results indicated that AKT-PPARγ signaling pathway mediated HG-induced lipid deposition by upregulating CD36 expression in HK-2 cells and that inhibition of AKT-PPARγ signaling pathway had the potential beneficial effects of reducing lipid deposition in diabetic kidney.
Collapse
Affiliation(s)
- Lei Feng
- Graduate School, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chengwu Gu
- Hospital Infection Control Department, The Suining Central Hospital, Suining 629000, China
| | - Yanxia Li
- Hospital Infection Control Department, The Suining Central Hospital, Suining 629000, China
| | - Jiasui Huang
- Hospital Infection Control Department, The Suining Central Hospital, Suining 629000, China
| |
Collapse
|
19
|
Millar CL, Duclos Q, Blesso CN. Effects of Dietary Flavonoids on Reverse Cholesterol Transport, HDL Metabolism, and HDL Function. Adv Nutr 2017; 8:226-239. [PMID: 28298268 PMCID: PMC5347106 DOI: 10.3945/an.116.014050] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Strong experimental evidence confirms that HDL directly alleviates atherosclerosis. HDL particles display diverse atheroprotective functions in reverse cholesterol transport (RCT), antioxidant, anti-inflammatory, and antiapoptotic processes. In certain inflammatory disease states, however, HDL particles may become dysfunctional and proatherogenic. Flavonoids show the potential to improve HDL function through their well-documented effects on cellular antioxidant status and inflammation. The aim of this review is to summarize the basic science and clinical research examining the effects of dietary flavonoids on RCT and HDL function. Based on preclinical studies that used cell culture and rodent models, it appears that many flavonoids (e.g., anthocyanidins, flavonols, and flavone subclasses) influence RCT and HDL function beyond simple HDL cholesterol concentration by regulating cellular cholesterol efflux from macrophages and hepatic paraoxonase 1 expression and activity. In clinical studies, dietary anthocyanin intake is associated with beneficial changes in serum biomarkers related to HDL function in a variety of human populations (e.g., in those who are hyperlipidemic, hypertensive, or diabetic), including increased HDL cholesterol concentration, as well as HDL antioxidant and cholesterol efflux capacities. However, clinical research on HDL functionality is lacking for some flavonoid subclasses (e.g., flavanols, flavones, flavanones, and isoflavones). Although there has been a tremendous effort to develop HDL-targeted drug therapies, more research is warranted on how the intake of foods or specific nutrients affects HDL function.
Collapse
|
20
|
Zheng B, Chen L, Gonzalez FJ. ISN Forefronts Symposium 2015: Nuclear Receptors and Diabetic Nephropathy. Kidney Int Rep 2016; 1:177-188. [PMID: 28932823 PMCID: PMC5601313 DOI: 10.1016/j.ekir.2016.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 01/19/2023] Open
Abstract
Diabetic nephropathy (DN) is the major reason for end stage renal disease in the western world. Patients with DN developed more severe cardiovascular complications with worse prognosis. In spite of tight blood pressure and glucose control through applying angiotensin II receptor antagonism, angiotensin receptor inhibitors and even direct renin inhibitors, the progression and development of DN has continued to accelerate. Nuclear receptors are, with few exceptions, ligand-depended transcription factors some of which modulate genes involved in the transportation and metabolism of carbohydrate or lipid, and inflammation. Considering the diverse biological functions of nuclear receptors, efforts have been made to explore their contributions to the pathogenesis of DN and potential therapeutic strategies. This review is mainly focused on the association between various nuclear receptors and the pathogenesis of DN, the potential beneficial effects of targeting these receptors for preventing the progress of DN, and the important role that nuclear receptors may play in future therapeutic strategies for DN.
Collapse
Affiliation(s)
- Bo Zheng
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Lei Chen
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|