1
|
Chen F, Jing K, Zhang Z, Liu X. A review on drug repurposing applicable to obesity. Obes Rev 2025; 26:e13848. [PMID: 39384341 DOI: 10.1111/obr.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 05/22/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024]
Abstract
Obesity is a major public health concern and burden on individuals and healthcare systems. Due to the challenges and limitations of lifestyle adjustments, it is advisable to consider pharmacological treatment for people affected by obesity. However, the side effects and limited efficacy of available drugs make the obesity drug market far from sufficient. Drug repurposing involves identifying new applications for existing drugs and offers some advantages over traditional drug development approaches including lower costs and shorter development timelines. This review aims to provide an overview of drug repurposing for anti-obesity medications, including the rationale for repurposing, the challenges and approaches, and the potential drugs that are being investigated for repurposing. Through advanced computational techniques, researchers can unlock the potential of repurposed drugs to tackle the global obesity epidemic. Further research, clinical trials, and collaborative efforts are essential to fully explore and leverage the potential of drug repurposing in the fight against obesity.
Collapse
Affiliation(s)
- Feng Chen
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Kai Jing
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Zhen Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Liang C, Liu X, Sun Z, Wen L, Wu J, Shi S, Liu X, Luo N, Li X. Lipid nanosystems for fatty liver therapy and targeted medication delivery: a comprehensive review. Int J Pharm 2025; 669:125048. [PMID: 39653287 DOI: 10.1016/j.ijpharm.2024.125048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
Fatty liver is considered to be the most common chronic liver disease with a high global incidence, which can lead to cirrhosis and liver cancer in severe cases, and there is no specific drug for the treatment of fatty liver in the clinic. The use of lipid nanosystems has the potential to be an effective means of fatty liver treatment. The pathogenesis and intervening factors associated with the development of fatty liver are reviewed, and the advantages and the disadvantages of different lipid nanosystems for the treatment of fatty liver are comprehensively discussed, including liposomes, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, microemulsions, and phospholipid complexes. The composition and characterisation of these lipid nanosystems are highlighted and summarised with a view to improving the efficiency of lipid nanosystems for the treatment of fatty liver. In addition, active targeting and passive targeting strategies used for fatty liver therapy are discussed in detail.
Collapse
Affiliation(s)
- Chuipeng Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zihao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lin Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jijiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaolian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Nini Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, 400021, China.
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Lorenzo-Anota HY, Gómez-Cantú JM, Vázquez-Garza E, Bernal-Ramirez J, Chapoy-Villanueva H, Mayolo-Deloisa K, Benavides J, Rito-Palomares M, Lozano O. Disulfiram-Loaded Nanoparticles Inhibit Long-Term Proliferation on Preadipocytes. Int J Nanomedicine 2024; 19:13301-13318. [PMID: 39679252 PMCID: PMC11645963 DOI: 10.2147/ijn.s467909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 11/03/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction Disulfiram (DSF) reduces insulin resistance and weight gain in obese mice. However, the effect on adipose tissue is unexplored due to their high instability under physiological conditions, limiting clinical applications. Thus, it is meaningful to develop a DSF carrier for sustained release to adipose tissue. We optimized the synthesis of poly-ε-caprolactone (PCL) nanoparticles (NPs) loaded with DSF and analyzed their effect on adipose tissue cells in vitro. Methods The NPs were synthesized by nanoprecipitation method, varying its solvent, either acetone or acetone/dichloromethane (60:40) (v/v), and ratio PCL:DSF (w/w) 1:2, 1:1, 2:1 and, 1:0; finding the best condition was obtained with acetone/dichloromethane solvent mixture and 2:1 PCL:DSF. Then, NPs toxicity was analyzed on adipose cells (preadipocytes, white-like adipocytes, and macrophages) assessing association and internalization, cell viability, and cell death mechanism. Results NPs were spherical with a particle size distribution of 203.2 ± 29.33 nm, a ζ-potential of -20.7 ± 4.58 mV, a PDI of 0.296 ± 0.084, and a physical drug loading of 18.6 ± 5.80%. Sustained release was observed from 0.5 h (10.94 ± 2.38%) up to 96 h (91.20 ± 6.03%) under physiological conditions. NPs internalize into macrophages, white-like adipocytes and preadipocytes without modifying cell viability on white-like adipocytes and macrophages. Preadipocytes reduce cell viability, inducing mitochondrial damage, increased mitochondrial reactive oxygen species production and loss of mitochondrial membrane potential, leading to effector caspases 3/7 cleaved, resulting in apoptosis. Finally, long-term proliferation inhibition was observed, highlighting the bioequivalent effect of PCL-DSF NPs compared to free DSF. Conclusion Our data demonstrated the biological interaction of PCL NPs with adipose cells in vitro. The selective cytotoxicity of DSF towards preadipocytes resulted in milder effects when it was delivered nanoencapsulated compared to the free drug. These results suggest promising pharmacological alternatives for DSF long-term delivery on adipose tissue.
Collapse
Affiliation(s)
- Helen Yarimet Lorenzo-Anota
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, México
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, México
| | | | | | | | - Héctor Chapoy-Villanueva
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, México
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, México
| | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, México
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, México
| | - Jorge Benavides
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, México
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, México
| | - Marco Rito-Palomares
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, México
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, México
| | - Omar Lozano
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, México
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, México
| |
Collapse
|
4
|
Zeng M, Wu B, Wei W, Jiang Z, Li P, Quan Y, Hu X. Disulfiram: A novel repurposed drug for cancer therapy. Chin Med J (Engl) 2024; 137:1389-1398. [PMID: 38275022 PMCID: PMC11188872 DOI: 10.1097/cm9.0000000000002909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Indexed: 01/27/2024] Open
Abstract
ABSTRACT Cancer is a major global health issue. Effective therapeutic strategies can prolong patients' survival and reduce the costs of treatment. Drug repurposing, which identifies new therapeutic uses for approved drugs, is a promising approach with the advantages of reducing research costs, shortening development time, and increasing efficiency and safety. Disulfiram (DSF), a Food and Drug Administration (FDA)-approved drug used to treat chronic alcoholism, has a great potential as an anticancer drug by targeting diverse human malignancies. Several studies show the antitumor effects of DSF, particularly the combination of DSF and copper (DSF/Cu), on a wide range of cancers such as glioblastoma (GBM), breast cancer, liver cancer, pancreatic cancer, and melanoma. In this review, we summarize the antitumor mechanisms of DSF/Cu, including induction of intracellular reactive oxygen species (ROS) and various cell death signaling pathways, and inhibition of proteasome activity, as well as inhibition of nuclear factor-kappa B (NF-κB) signaling. Furthermore, we highlight the ability of DSF/Cu to target cancer stem cells (CSCs), which provides a new approach to prevent tumor recurrence and metastasis. Strikingly, DSF/Cu inhibits several molecular targets associated with drug resistance, and therefore it is becoming a novel option to increase the sensitivity of chemo-resistant and radio-resistant patients. Studies of DSF/Cu may shed light on its improved application to clinical tumor treatment.
Collapse
Affiliation(s)
- Min Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Baibei Wu
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wenjie Wei
- Institute of Biochemistry of Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zihan Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Peiqiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuanting Quan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaobo Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
5
|
Bui NL, Hoang DA, Ho QA, Nguyen Thi TN, Singh V, Chu DT. Drug repurposing for metabolic disorders: Scientific, technological and economic issues. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:321-336. [PMID: 38942542 DOI: 10.1016/bs.pmbts.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Obesity, diabetes, and other metabolic disorders place a huge burden on both the physical health and financial well-being of the community. While the need for effective treatment of metabolic disorders remains urgent and the reality is that traditional drug development involves high costs and a very long time with many pre-clinical and clinical trials, the need for drug repurposing has emerged as a potential alternative. Scientific evidence has shown the anti-diabetic and anti-obesity effects of old drugs, which were initially utilized for the treatment of inflammation, depression, infections, and even cancers. The drug library used modern technological methods to conduct drug screening. Computational molecular docking, genome-wide association studies, or omics data mining are advantageous and unavoidable methods for drug repurposing. Drug repurposing offers a promising avenue for economic efficiency in healthcare, especially for less common metabolic diseases, despite the need for rigorous research and validation. In this chapter, we aim to explore the scientific, technological, and economic issues surrounding drug repurposing for metabolic disorders. We hope to shed light on the potential of this approach and the challenges that need to be addressed to make it a viable option in the treatment of metabolic disorders, especially in the future fight against metabolic disorders.
Collapse
Affiliation(s)
- Nhat-Le Bui
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Duc-Anh Hoang
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Quang-Anh Ho
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Thao-Nguyen Nguyen Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, India
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
6
|
Horii T, Otsuka M, Yasu T. Risk of non-hypoglycemic agents for hypoglycemia-related hospitalization in patients with type 2 diabetes: a large-scale medical receipt database analysis. BMJ Open Diabetes Res Care 2023; 11:e003177. [PMID: 37085279 PMCID: PMC10124227 DOI: 10.1136/bmjdrc-2022-003177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/01/2023] [Indexed: 04/23/2023] Open
Abstract
INTRODUCTION Hypoglycemia is listed as an adverse effect in the package inserts of not only hypoglycemic agents but also many other drugs. We aimed to clarify real-world factors related to an increased risk of hypoglycemia-related hospitalization (HRH) in Japanese patients with type 2 diabetes (T2D) on non-hypoglycemic agents that have been associated with hypoglycemia. RESEARCH DESIGN AND METHODS This cross-sectional study was performed using data from the Medical Data Vision administrative claims database. We identified patients with T2D who were enrolled in the database between April 2014 and October 2019. Logistic regression analyses were performed to identify clinical factors associated with HRH due to non-hypoglycemic agents. RESULTS Among 703 745 patients with T2D, 10 376 patients (1.47%) experienced HRH. The use of 332 non-hypoglycemic agents was associated with hypoglycemia. Multivariate analysis was performed to calculate OR for HRH. Seventy-five drugs had an OR greater than 1, and the values were significant. The OR was the highest for diazoxide (OR 15.5, 95% CI 4.87 to 49.3). The OR was higher than 2.0 for methylphenidate (OR 5.15, 95% CI 1.53 to 17.3), disulfiram (OR 4.21, 95% CI 2.05 to 8.62) and hydrocortisone (OR 2.89, 95% CI 1.11 to 7.51). CONCLUSION This large retrospective analysis revealed that the risk of HRH from some non-hypoglycemic agents in patients with T2D may be increased. The results of this study are expected to support treatment planning by physicians and healthcare professionals involved in diabetes care.
Collapse
Affiliation(s)
- Takeshi Horii
- Department of Pharmacy, Musashino University, Nishitokyo, Japan
| | - Mai Otsuka
- Laboratory of Pharmacy Practice and Science 1, Division of Clinical Pharmacy, Research and Education Center for Clinical Pharmacy, Kitasato University School of Pharmacy, Minato, Japan
| | - Takeo Yasu
- Department of Medicinal Therapy Research, Pharmaceutical Education and Research Center, Meiji Pharmaceutical University, Kiyose, Japan
| |
Collapse
|
7
|
Benkő BM, Lamprou DA, Sebestyén A, Zelkó R, Sebe I. Clinical, pharmacological, and formulation evaluation of disulfiram in the treatment of glioblastoma - a systematic literature review. Expert Opin Drug Deliv 2023; 20:541-557. [PMID: 36922013 DOI: 10.1080/17425247.2023.2190581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
INTRODUCTION Glioblastoma (GB) is one of the most challenging central nervous system (CNS) tumors in treatment options and response, urging the development of novel management strategies. The anti-alcoholism drug, disulfiram (DS), has a potential anticancer activity, and its complex mechanism of action is assumed to be well exploited against the heterogeneous GB. AREA COVERED Through a systematic literature review about repositioning DS to GB treatment, an evaluation of the clinical, pharmacological, and formulation strategies is provided to specify the challenges of drug delivery and thus to advance its clinical translation. From six databases, 35 articles were selected, including case report (1); clinical trials (3); original articles mainly representing in vitro and preclinical pharmacological data, and 10 dealing with technological approaches. EXPERT OPINION The repositioning of DS in GB treatment is facing drug and tumor-associated limitations due to the oral drug's low bioavailability, unwanted metabolism, and inefficient delivery to brain-tumor tissue. Development strategies using molecular encapsulation of DS and the parenteral dosage forms improve the anticancer pharmacology of the drug. The development of optimized drug delivery systems (DDS) shows promise for the clinical translation of DS into GB adjuvant therapy.
Collapse
Affiliation(s)
- Beáta-Mária Benkő
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
| | | | - Anna Sebestyén
- Tumour Biology, Cell and Tissue Culture Laboratory, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
| | - István Sebe
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
| |
Collapse
|
8
|
Teng M, Luo Y, Wang C, Lei A. Effect of Disulfiram on the Reproductive Capacity of Female Mice. Int J Mol Sci 2023; 24:ijms24032371. [PMID: 36768698 PMCID: PMC9916984 DOI: 10.3390/ijms24032371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/27/2023] Open
Abstract
In the process of assisted reproduction, the high-oxygen in vitro environment can easily cause oxidative damage to oocytes. Disulfiram (DSF) can play an anti-oxidant or pro-oxidant role in different cells, and the effect of DSF on oocytes remains unclear. Moreover, it remains unclear whether the use of DSF in the early stages of pregnancy has a negative impact on the fetus. In this study, we found that DSF increased serum FSH levels and increased the ovulation rate in mice. Moreover, DSF enhanced the antioxidant capacity of oocytes and contributed to the success rate of in vitro fertilization. Moreover, the use of DSF in early pregnancy in mice increased the uterine horn volume and the degree of vascularization, which contributed to a successful pregnancy. In addition, it was found that DSF regulated the mRNA expression of angiogenesis-related genes (VEGF), follicular development-related genes (C1QTNF3, mTOR and PI3K), ovulation-related genes (MAPK1, MAPK3 and p38 MAPK) and antioxidant-related genes (GPX4 and CAT). These results indicate that DSF is helpful for increasing the antioxidant capacity of oocytes and the ovulation rate. In early pregnancy in mice, DSF promotes pregnancy by increasing the degree and volume of uterine vascularization.
Collapse
Affiliation(s)
| | | | | | - Anmin Lei
- Correspondence: ; Tel./Fax: +86-029-87080068
| |
Collapse
|
9
|
Chaffey L, Roberti A, Greaves DR. Drug repurposing in cardiovascular inflammation: Successes, failures, and future opportunities. Front Pharmacol 2022; 13:1046406. [PMID: 36339576 PMCID: PMC9634418 DOI: 10.3389/fphar.2022.1046406] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 12/15/2022] Open
Abstract
Drug repurposing is an attractive, pragmatic approach to drug discovery that has yielded success across medical fields over the years. The use of existing medicines for novel indications enables dramatically reduced development costs and timescales compared with de novo drug discovery and is therefore a promising strategy in cardiovascular disease, where new drug approvals lag significantly behind that of other fields. Extensive evidence from pre-clinical and clinical studies show that chronic inflammation is a driver of pathology in cardiovascular disease, and many efforts have been made to target cardiovascular inflammation therapeutically. This approach has been met with significant challenges however, namely off-target effects associated with broad-spectrum immunosuppression, particularly in long-term conditions such as cardiovascular disease. Nevertheless, multiple anti-inflammatory medicines have been assessed for efficacy in cardiovascular clinical trials, with most of these being repurposed from their original indications in autoimmune conditions like rheumatoid arthritis. In this review, we discuss the mixed successes of clinical trials investigating anti-inflammatory drugs in cardiovascular disease, with examples such as anti-cytokine monoclonal antibodies, colchicine, and methotrexate. Looking to the future, we highlight potential new directions for drug repurposing in cardiovascular inflammation, including the emerging concepts of drug re-engineering and chrono-pharmacology.
Collapse
Affiliation(s)
| | | | - David R. Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
A new use for old drugs: identifying compounds with an anti-obesity effect using a high through-put semi-automated Caenorhabditis elegans screening platform. Heliyon 2022; 8:e10108. [PMID: 36033279 PMCID: PMC9399480 DOI: 10.1016/j.heliyon.2022.e10108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/22/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
Obesity is one of the most common global health problems for all age groups with obese people at risk of a variety of associated health complications. Consequently, there is a need to develop new therapies that lower body fat without the side effects. However, obesity is a complex and systemic disease, so that in vitro results are not easily translatable to clinical situations. A promising way to circumnavigate these issues is to reposition already approved drugs for new treatments, enabling a more streamlined drug discovery process due to the availability of pre-existing pharmacological and toxicological datasets. Chemical libraries, such as the Prestwick Chemical Library of 1200 FDA approved drugs, are available for this purpose. We have developed a simple semi-automated whole-organism approach to screening the Prestwick Chemical Library for those compounds which reduce fat content using the model organism Caenorhabditis elegans. Our whole-organism approach to high-throughput screening identified 9 “lead” compounds that reduced fat within 2 weeks in the model. Further screening and analysis provided 4 “hit” compounds (Midodrine, Vinpocetine, Fenoprofen and Lamivudine) that showed significant promise as drugs to reduce fat levels. The effects of these candidates were found to further reduce fat content in nematodes where an nhr-49/PPAR mutation resulted in “overweight” worms. Upon unblinding the “hit” compounds, they were found to have recently been shown to have anti-obesity effects in mammalian models too. In developing a whole-animal chemical screen to identify pharmacological agents as potential anti-obesity compounds, we demonstrate how chemical libraries can be rapidly and relatively cheaply profiled for active hits. Using the nematode Caenorhabditis elegans thus enables drugs to be assessed for applicability in humans and provides a new incentive to explore drug repurposing as a feasible and efficient way to identify new anti-obesity compounds.
Collapse
|
11
|
Wang X, Yang S, Ye H, Chen J, Shi L, Feng L, Wang X, Zhang T, Chen R, Xiao W, Yang H. Disulfiram Exerts Antiadipogenic, Anti-Inflammatory, and Antifibrotic Therapeutic Effects in an In Vitro Model of Graves' Orbitopathy. Thyroid 2022; 32:294-305. [PMID: 34605662 DOI: 10.1089/thy.2021.0246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Adipogenesis, glycosaminoglycan hyaluronan (HA) production, inflammation, and fibrosis are the main pathogenic mechanisms responsible for Graves' orbitopathy (GO). We hypothesized that disulfiram (DSF), an aldehyde dehydrogenase (ALDH) inhibitor used to treat alcoholism, would have therapeutic effects on orbital fibroblasts (OFs) in GO. This study aimed at determining the therapeutic effects and underlying mechanisms of DSF on these parameters. Methods: Primary cultures of OFs from six GO patients and six control subjects were established. The OFs were allowed to differentiate into adipocytes and treated with various concentrations of DSF. Lipid accumulation within the cells was evaluated by Oil Red O staining. Real-time polymerase chain reaction (RT-PCR) and Western blotting were used to measure the expression of key adipogenic transcription factors, ALDH1A1, ALDH2, and mitogen-activated protein kinase (MAPK) signaling proteins. Apoptosis assays and reactive oxygen species levels were evaluated by flow cytometry. HA production was measured by using an enzyme-linked immunosorbent assay (ELISA) kit. The mRNA levels of proinflammatory molecules were measured by using RT-PCR after interleukin (IL)-1β stimulation with or without DSF. The mRNA expression of markers associated with fibrosis was examined by using RT-PCR after transforming growth factor (TGF)-β1 stimulation with or without DSF. The wound-healing assay was assessed by phase-contrast microscopy. Results: Under identical adipogenesis conditions, GO OFs effectively differentiated, while normal control (NC) OFs did not. DSF dose dependently suppressed lipid accumulation during adipogenesis in GO OFs. The expression of key adipogenic transcription factors, such as perilipin-1 (PLIN1), PPARγ (PPARG), FABP4, and c/EBPα (CEBPA), was downregulated. Further, DSF inhibited the phosphorylation of ERK by inhibiting ALDH1A1. In addition, DSF attenuated HA production and suppressed inflammatory molecule expression induced by IL-1β in GO OFs and NC OFs. The antifibrotic effects of DSF on TGF-β1 were also observed in GO OFs. Conclusions: In the current study, we provide evidence of the inhibitory effect of DSF on GO OFs adipogenesis, HA production, inflammation, and fibrosis in vitro. The results of this study are noteworthy and indicate the potential use of DSF as a therapeutic agent for the treatment of GO.
Collapse
Affiliation(s)
- Xing Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shenglan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Huijing Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jingqiao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lu Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lujia Feng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiandai Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Te Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Rongxin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wei Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Huasheng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Gao J, Hao Y, Piao X, Gu X. Aldehyde Dehydrogenase 2 as a Therapeutic Target in Oxidative Stress-Related Diseases: Post-Translational Modifications Deserve More Attention. Int J Mol Sci 2022; 23:ijms23052682. [PMID: 35269824 PMCID: PMC8910853 DOI: 10.3390/ijms23052682] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) has both dehydrogenase and esterase activity; its dehydrogenase activity is closely related to the metabolism of aldehydes produced under oxidative stress (OS). In this review, we recapitulate the enzyme activity of ALDH2 in combination with its protein structure, summarize and show the main mechanisms of ALDH2 participating in metabolism of aldehydes in vivo as comprehensively as possible; we also integrate the key regulatory mechanisms of ALDH2 participating in a variety of physiological and pathological processes related to OS, including tissue and organ fibrosis, apoptosis, aging, and nerve injury-related diseases. On this basis, the regulatory effects and application prospects of activators, inhibitors, and protein post-translational modifications (PTMs, such as phosphorylation, acetylation, S-nitrosylation, nitration, ubiquitination, and glycosylation) on ALDH2 are discussed and prospected. Herein, we aimed to lay a foundation for further research into the mechanism of ALDH2 in oxidative stress-related disease and provide a basis for better use of the ALDH2 function in research and the clinic.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (Y.H.)
| | - Yue Hao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (Y.H.)
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Xianhong Gu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (Y.H.)
- Correspondence:
| |
Collapse
|
13
|
Omran Z. Novel Disulfiram Derivatives as ALDH1a1-Selective Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020480. [PMID: 35056791 PMCID: PMC8778300 DOI: 10.3390/molecules27020480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 01/16/2023]
Abstract
Aldehyde dehydrogenase-1a1 (ALDH1a1), the enzyme responsible for the oxidation of retinal into retinoic acid, represents a key therapeutic target for the treatment of debilitating disorders such as cancer, obesity, and inflammation. Drugs that can inhibit ALDH1a1 include disulfiram, an FDA-approved drug to treat chronic alcoholism. Disulfiram, by carbamylation of the catalytic cysteines, irreversibly inhibits ALDH1a1 and ALDH2. The latter is the isozyme responsible for important physiological processes such as the second stage of alcohol metabolism. Given the fact that ALDH1a1 has a larger substrate tunnel than that in ALDH2, replacing disulfiram ethyl groups with larger motifs will yield selective ALDH1a1 inhibitors. We report herein the synthesis of new inhibitors of ALDH1a1 where (hetero)aromatic rings were introduced into the structure of disulfiram. Most of the developed compounds retained the anti-ALDH1a1 activity of disulfiram; however, they were completely devoid of inhibitory activity against ALDH2.
Collapse
Affiliation(s)
- Ziad Omran
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
14
|
Kleczkowska P, Sulejczak D, Zaremba M. Advantages and disadvantages of disulfiram coadministered with popular addictive substances. Eur J Pharmacol 2021; 904:174143. [PMID: 33971180 DOI: 10.1016/j.ejphar.2021.174143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/10/2021] [Accepted: 04/28/2021] [Indexed: 01/11/2023]
Abstract
Disulfiram (DSF) is a well-known anti-alcohol agent that inhibits aldehyde dehydrogenase and results in extreme 'hangover' symptoms when consumed with alcohol. This drug, however, has been suggested as useful in other forms of drug addiction due to its beneficial potential in both drug abuse reduction and withdrawal. However, among other drugs used in alcohol dependence, it carries the greatest risk of pharmacological interactions. Concomitant use of DSF and central nervous system stimulants usually leads to harmful, undesirable effects. To date, there is still limited data regarding the detailed safety profile of DSF as a concomitant drug. In this review article, we outline the current state of knowledge about DSF, its broad pharmacological action, as well as therapeutic effects, with a particular emphasis on the molecular understanding of its potential pharmacodynamic interactions with common addictive substances (e.g., alcohol, cocaine, cannabinoids, opioids) supported by relevant examples.
Collapse
Affiliation(s)
- Patrycja Kleczkowska
- Department of Pharmacodynamics, Centre for Preclinical Research (CBP), Medical University of Warsaw, 02-097, Warsaw, Poland; Military Institute of Hygiene and Epidemiology, 01-163, Warsaw, Poland.
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Malgorzata Zaremba
- Military Institute of Hygiene and Epidemiology, 01-163, Warsaw, Poland; Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research (CBP), Medical University of Warsaw, 02-097, Warsaw, Poland
| |
Collapse
|
15
|
Kim S, Jang EY, Song SH, Kim JS, Ryu IS, Jeong CH, Lee S. Brain Microdialysis Coupled to LC-MS/MS Revealed That CVT-10216, a Selective Inhibitor of Aldehyde Dehydrogenase 2, Alters the Neurochemical and Behavioral Effects of Methamphetamine. ACS Chem Neurosci 2021; 12:1552-1562. [PMID: 33871963 DOI: 10.1021/acschemneuro.1c00039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Methamphetamine (MA), a potent central nervous system stimulant, mainly affects the brain dopaminergic and serotoninergic systems. Monoamine oxidase, catechol-O-methyltransferase, and aldehyde dehydrogenase 2 (ALDH2) are important enzymes in the metabolism of dopamine (DA) and serotonin (5-HT); however, the role of ALDH2 in MA addiction remains unclear. This study focused on the real-time changes in DA, 5-HT, and their metabolites, including 3,4-dihydroxyphenylacetic aldehyde and salsolinol, which are metabolites directly related to ALDH2, to examine the effects of the inhibition of ALDH2 on hyperlocomotion induced by MA. Locomotor activity was evaluated in rats after administration of MA and/or CVT-10216 (a selective ALDH2 inhibitor). Moreover, the simultaneous quantification of DA, 5-HT, and their metabolites in brain microdialysates of the rats was performed using a derivatization-assisted LC-MS/MS method after full validation. The validation results proved the method to be selective, sensitive, accurate, and precise, with acceptable linearity within calibration ranges. Intraperitoneal (i.p.) administration of 10 or 20 mg/kg of CVT-10216 significantly decreased MA-induced hyperlocomotion (1 mg/kg, i.p.). The analytical results of rat brain microdialysates demonstrated that the administration of CVT-10216 significantly downregulated DA levels, which were increased upon exposure to MA. Moreover, the increase in 3-methoxytyramine levels following coadministration of CVT-10216 and MA could play a potential role in antagonizing the hyperlocomotion induced by MA. All of these findings suggest that the inhibition of ALDH2 protects against MA-induced hyperlocomotion and has therapeutic potential in MA addiction.
Collapse
Affiliation(s)
- Seungju Kim
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701, Republic of Korea
| | - Eun Young Jang
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daegeon 34114, Republic of Korea
| | - Sang-Hoon Song
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701, Republic of Korea
| | - Ji Sun Kim
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daegeon 34114, Republic of Korea
| | - In Soo Ryu
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daegeon 34114, Republic of Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701, Republic of Korea
| |
Collapse
|
16
|
Omran Z. Development of new disulfiram analogues as ALDH1a1-selective inhibitors. Bioorg Med Chem Lett 2021; 40:127958. [PMID: 33744437 DOI: 10.1016/j.bmcl.2021.127958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/27/2021] [Accepted: 03/07/2021] [Indexed: 11/17/2022]
Abstract
Disulfiram is an FDA-approved drug used to treat chronic alcoholism. This drug works by blocking the second step of ethanol metabolism by inhibiting aldehyde dehydrogenase-2 (ALDH2), the enzyme responsible for acetaldehyde oxidation into acetic acid. This leads to the accumulation of acetaldehyde in the blood following alcohol ingestion and to highly unpleasant symptoms known as acetaldehyde syndrome. Disulfiram also inhibits ALDH1a1, another member of the aldehyde dehydrogenases that catalyzes the oxidation of retinal into retinoic acid. ALDH1a1 represents a key therapeutic target for the treatment of important diseases such as cancer and obesity. The substrate tunnel is larger in ALDH1a1 than in ALDH2; therefore. Thus, replacing disulfiram ethyl groups with larger groups will yield selective ALDH1a1 inhibitors. In this work, we successfully synthesized derivative 2b, in which two ethyl groups were replaced by two para fluorobenzyl groups. The 2b derivative showed a comparable activity to disulfiram against ALDH1a1; however, it was completely devoid of inhibitory activity against ALDH2.
Collapse
Affiliation(s)
- Ziad Omran
- College of Pharmacy, Umm Al-Qura University, 21955 Makkah, Kingdom of Saudi Arabia.
| |
Collapse
|