1
|
Wang Y, Li K, Mo S, Yao P, Zeng J, Lu S, Qin S. Identification of common genes and pathways between type 2 diabetes and COVID-19. Front Genet 2024; 15:1249501. [PMID: 38699234 PMCID: PMC11063347 DOI: 10.3389/fgene.2024.1249501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 03/21/2024] [Indexed: 05/05/2024] Open
Abstract
Background Numerous studies have reported a high incidence and risk of severe illness due to coronavirus disease 2019 (COVID-19) in patients with type 2 diabetes (T2DM). COVID-19 patients may experience elevated or decreased blood sugar levels and may even develop diabetes. However, the molecular mechanisms linking these two diseases remain unclear. This study aimed to identify the common genes and pathways between T2DM and COVID-19. Methods Two public datasets from the Gene Expression Omnibus (GEO) database (GSE95849 and GSE164805) were analyzed to identify differentially expressed genes (DEGs) in blood between people with and without T2DM and COVID-19. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on the common DEGs. A protein-protein interaction (PPI) network was constructed to identify common genes, and their diagnostic performance was evaluated by receiver operating characteristic (ROC) curve analysis. Validation was performed on the GSE213313 and GSE15932 datasets. A gene co-expression network was constructed using the GeneMANIA database to explore interactions among core DEGs and their co-expressed genes. Finally, a microRNA (miRNA)-transcription factor (TF)-messenger RNA (mRNA) regulatory network was constructed based on the common feature genes. Results In the GSE95849 and GSE164805 datasets, 81 upregulated genes and 140 downregulated genes were identified. GO and KEGG enrichment analyses revealed that these DEGs were closely related to the negative regulation of phosphate metabolic processes, the positive regulation of mitotic nuclear division, T-cell co-stimulation, and lymphocyte co-stimulation. Four upregulated common genes (DHX15, USP14, COPS3, TYK2) and one downregulated common feature gene (RIOK2) were identified and showed good diagnostic accuracy for T2DM and COVID-19. The AUC values of DHX15, USP14, COPS3, TYK2, and RIOK2 in T2DM diagnosis were 0.931, 0.917, 0.986, 0.903, and 0.917, respectively. In COVID-19 diagnosis, the AUC values were 0.960, 0.860, 1.0, 0.9, and 0.90, respectively. Validation in the GSE213313 and GSE15932 datasets confirmed these results. The miRNA-TF-mRNA regulatory network showed that TYH2 was targeted by PITX1, PITX2, CRX, NFYA, SREBF1, RELB, NR1L2, and CEBP, whereas miR-124-3p regulates THK2, RIOK2, and USP14. Conclusion We identified five common feature genes (DHX15, USP14, COPS3, TYK2, and RIOK2) and their co-regulatory pathways between T2DM and COVID-19, which may provide new insights for further molecular mechanism studies.
Collapse
Affiliation(s)
- Ya Wang
- Gastroenterology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Endocrinology Department, Liuzhou Peoples’ Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Kai Li
- Orthopedics Department, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Shuangyang Mo
- Gastroenterology Department, Liuzhou Peoples’ Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Peishan Yao
- Gastroenterology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiaxing Zeng
- Department of Traumatic Surgery, Microsurgery, and Hand Surgery, Guangxi Zhuang Autonomous Region People’s Hospital, Nanning, Guangxi, China
| | - Shunyu Lu
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shanyu Qin
- Gastroenterology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Chen X, Cao M, Yuan C, Luo Y, Wang N, Liu K, Chen T, Chen L, Zhang B, Li C, Zhou X. Follicular fluid exosomes inhibit expression of BTG2 and promote glucose uptake in granulosa cells by delivering miR-21-5p. Theriogenology 2024; 218:45-55. [PMID: 38301506 DOI: 10.1016/j.theriogenology.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Glucose metabolism in granulosa cells (GCs) is essential for follicle development and oocyte maturation. Porcine follicular fluid exosomes promote the proliferation of porcine GCs and the synthesis of steroid hormones. However, their role in regulating glucose uptake in GCs is unclear. The objective of this study was to elucidate the effects of porcine follicular fluid exosomes on glucose uptake in porcine GCs and the intrinsic mechanisms involved. First, transcriptome sequencing revealed that glucose metabolism-related pathways were altered in GCs treated with follicular fluid exosomes. Next, in vitro culture experiments showed that glucose uptake was increased and the IRS1/AKT signaling pathway was activated in GCs after treatment with follicular fluid exosomes. Finally, miRNA sequencing of follicular fluid exosomes revealed that miR-21-5p was the most abundant miRNA. Subsequent investigations indicated that miR-21-5p promoted glucose uptake in GCs by targeting BTG2, which activated the IRS1/AKT signaling pathway. In conclusion, the findings of this study indicate that porcine follicular fluid exosomes promote glucose uptake in porcine GCs by delivering miR-21-5p, which inhibits the expression of BTG2, activating the IRS1/AKT signaling pathway.
Collapse
Affiliation(s)
- Xue Chen
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Maosheng Cao
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Chenfeng Yuan
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Yuxin Luo
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Nan Wang
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Kening Liu
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Tong Chen
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Boqi Zhang
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| |
Collapse
|
3
|
Gu Y, Cao M, Chen Y, Li J, Hu L, Yang XJ. Knockdown of TXNIP alleviates gestational diabetes mellitus by activating autophagy to regulate cell proliferation and apoptosis in high glucose-treated trophoblasts. Reprod Biol 2024; 24:100841. [PMID: 38118268 DOI: 10.1016/j.repbio.2023.100841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
Dysregulated thioredoxin-interacting protein (TXNIP) has been observed in women with gestational diabetes mellitus (GDM), but the specific role of TXNIP in GDM and the underlying mechanism remain unclear. HTR-8/SVneo cells were treated with high glucose to mimic the injured trophoblasts of GDM. In vitro, TXNIP knockdown was performed by siRNA. RTqPCR was performed to determine the expression of the corresponding genes. Cell proliferation and apoptosis were measured using CCK-8, EdU and Annexin V/PI assays. The autophagosome number was assessed using transmission electron microscopy. The expression of the autophagy substrate sequestosome 1 (P62) was evaluated by immunofluorescence. Autophagy-related proteins, including P62, light chain 3 (LC3)-I, and LC3-II, were analysed by Western blotting. HTR-8/Svneo cells treated with high glucose demonstrated reduced proliferation, increased apoptosis, decreased autophagosome formation and overall decreased autophagy. However, knockdown of TXNIP reversed the effects of HG on HTR-8/Svneo cells. However, the effect of TXNIP knockdown on HG-treated HTR-8/Svneo cells was inhibited by 3-methyladenine (3-MA) (widely used as an inhibitor of autophagy). We concluded that knockdown of TXNIP has the potential to enhance the activity of high glucose-treated human trophoblasts through autophagic activation, thereby improving pregnancy outcomes in patients with GDM.
Collapse
Affiliation(s)
- Ying Gu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Obstetrics and Gynecology, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
| | - Minkai Cao
- Department of Obstetrics and Gynecology, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
| | - Yu Chen
- Department of Obstetrics and Gynecology, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
| | - Jingyang Li
- Department of Obstetrics and Nanjing, Nanjing Medical University, Nanjing, China
| | - Lingli Hu
- Department of Obstetrics and Nanjing, Nanjing Medical University, Nanjing, China
| | - Xiao-Jun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Toljic M, Nikolic N, Joksic I, Carkic J, Munjas J, Karadzov Orlic N, Milasin J. Expression of miRNAs and proinflammatory cytokines in pregnant women with gestational diabetes mellitus. J Reprod Immunol 2024; 162:104211. [PMID: 38342070 DOI: 10.1016/j.jri.2024.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/22/2023] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Altered microRNAs (miRNAs1) and cytokines expression levels are associated with several pregnancy-induced complications. We evaluated the profile of circulating miRNAs (miR-17, miR-29a and miR-181a) and proinflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-17) in women with gestational diabetes mellitus (GDM2), as well as their potential use as GDM biomarkers. The case-control study included 65 pregnant women divided into 2 groups - GDM and control. Expression levels of miRNAs in plasma samples and cytokines mRNA isolated from peripheral blood buffy coat were analyzed by quantitative real-time PCR (qPCR3). Significant miR-29a downregulation was found in GDM compared to the control group, and was even more significant after adjustments for covariates. miR-17 and miR-181a expression levels did not differ between the examined groups. Expression levels of IL-1β were significantly higher in GDM group compared to controls, while TNF-α, IL-6 and IL-17 did not show significant changes in expression between the two groups. As jugded from the ROC curve analysis, miR-29a and IL-1β had a significant capacity to discriminate between CG and GDM. Additionally, a positive correlation was established between IL-1β and TNF-α in the GDM group. GDM appeared to be associated with altered levels of miR-29a and IL-1β making them markers of this condition.
Collapse
Affiliation(s)
- Mina Toljic
- Genetic Laboratory Department, Obstetrics and Gynecology Clinic "Narodni Front", Kraljice Natalije Street 62, 11000 Belgrade, Serbia
| | - Nadja Nikolic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Street Dr Subotica 8, 11000 Belgrade, Serbia
| | - Ivana Joksic
- Genetic Laboratory Department, Obstetrics and Gynecology Clinic "Narodni Front", Kraljice Natalije Street 62, 11000 Belgrade, Serbia.
| | - Jelena Carkic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Street Dr Subotica 8, 11000 Belgrade, Serbia
| | - Jelena Munjas
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Street Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Natasa Karadzov Orlic
- High-Risk Pregnancy Department, Obstetrics and Gynecology Clinic "Narodni Front", School of Medicine, University of Belgrade, Kraljice Natalije Street 62, 11000 Belgrade, Serbia
| | - Jelena Milasin
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Street Dr Subotica 8, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Feng X, Yang X, Zhong Y, Cheng X. The role of ncRNAs-mediated pyroptosis in diabetes and its vascular complications. Cell Biochem Funct 2024; 42:e3968. [PMID: 38439590 DOI: 10.1002/cbf.3968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
Over the past decade, the prevalence of diabetes has increased significantly worldwide, leading to an increase in vascular complications of diabetes (VCD), such as diabetic cardiomyopathy (DCM), diabetic nephropathy (DN), and diabetic retinopathy (DR). Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), long Noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), play a key role in cellular processes, including the pathophysiology of diabetes and VCD via pyroptosis. ncRNAs (e.g., miR-17, lnc-MEG3, and lnc-KCNQ1OT1) can regulate pyroptosis in pancreatic β cells. Some ncRNAs are involved in VCD progression. For example, miR-21, lnc-KCNQ1OT1, lnc-GAS5, and lnc-MALAT1 were reported in DN and DCM, and lnc-MIAT was identified in DCM and DR. Herein, this review aimed to summarize recent research findings related to ncRNAs-mediated pyroptosis at the onset and progression of diabetes and VCD.
Collapse
Affiliation(s)
- Xinyao Feng
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoxu Yang
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yancheng Zhong
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Xihua Cheng
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
6
|
Gao D, Ren L, Hao YD, Schaduangrat N, Liu XW, Yuan SS, Yang YH, Wang Y, Shoombuatong W, Ding H. The role of ncRNA regulatory mechanisms in diseases-case on gestational diabetes. Brief Bioinform 2023; 25:bbad489. [PMID: 38189542 PMCID: PMC10772982 DOI: 10.1093/bib/bbad489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are a class of RNA molecules that do not have the potential to encode proteins. Meanwhile, they can occupy a significant portion of the human genome and participate in gene expression regulation through various mechanisms. Gestational diabetes mellitus (GDM) is a pathologic condition of carbohydrate intolerance that begins or is first detected during pregnancy, making it one of the most common pregnancy complications. Although the exact pathogenesis of GDM remains unclear, several recent studies have shown that ncRNAs play a crucial regulatory role in GDM. Herein, we present a comprehensive review on the multiple mechanisms of ncRNAs in GDM along with their potential role as biomarkers. In addition, we investigate the contribution of deep learning-based models in discovering disease-specific ncRNA biomarkers and elucidate the underlying mechanisms of ncRNA. This might assist community-wide efforts to obtain insights into the regulatory mechanisms of ncRNAs in disease and guide a novel approach for early diagnosis and treatment of disease.
Collapse
Affiliation(s)
- Dong Gao
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Liping Ren
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu 611844, China
| | - Yu-Duo Hao
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Nalini Schaduangrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Xiao-Wei Liu
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shi-Shi Yuan
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yu-He Yang
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yan Wang
- Department of Cardiovascular Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Watshara Shoombuatong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Hui Ding
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
7
|
Sa R, Ma J, Yang J, Li DF, Du J, Jia JC, Li ZY, Huang N, A L, Sha R, Nai G, Hexig B, Meng JQ, Yu L. High TXNIP expression accelerates the migration and invasion of the GDM placenta trophoblast. BMC Pregnancy Childbirth 2023; 23:235. [PMID: 37038114 PMCID: PMC10084645 DOI: 10.1186/s12884-023-05524-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/15/2023] [Indexed: 04/12/2023] Open
Abstract
INTRODUCTION Our previous study has proofed the glucose sensitive gene-thioredoxin-interacting protein (TXNIP) expression was up in the placenta of the patients with gestational diabetes mellitus (GDM), but the pathological mechanisms underlying abnormal TXNIP expression in the placenta of patients with GDM is completely unclear and additional investigations are required to explain the findings we have observed. In the present study, we simulated the high TXNIP expression via introducing the Tet-On "switch" in vitro, approximate to its expression level in the real world, to explore the following consequence of the abnormal TXNIP. METHODS The expression and localization of TXNIP in the placenta of GDM patients and the health control was investigated via immunofluorescent staining, western blot and RT-qPCR. Overexpression of TXNIP was achieved through transfecting Tet-on system to the human trophoblastic cell line-HTR-8/Svneo cell. TXNIP knockout was obtained via CRISPR-Cas9 method. The cell phenotype was observed via IncuCyte Imaging System and flow cytometry. The mechanism was explored via western blot and RT-qPCR. RESULTS The expression level of TXNIP in the GDM placenta was nearly 2-3 times higher than that in the control. The TXNIP located at trophoblastic cells of the placenta. When the expression of TXNIP was upregulated, the migration and invasion of the cells accelerated, but cell apoptosis and proliferation did not changed compared with the control group. Furthermore, the size of the TetTXNIP cells became larger, and the expression level of Vimentin and p-STAT3 increased in the TetTXNIP cells. All the changes mentioned above were opposite in the TXNIP-KO cells. CONCLUSIONS Abnormal expression of TXNIP might be related to the impairment of the GDM placental function, affecting the migration and invasion of the placental trophoblast cells through STAT3 and Vimentin related pathway; thus, TXNIP might be the potential therapeutic target for repairing the placental dysfunction deficient in GDM patients.
Collapse
Affiliation(s)
- Rina Sa
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Jing Ma
- Department of Clinical Lab, Mongolia Maternity And Child Health Care Hospital, Hohhot, 010000, China
| | - Jie Yang
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Dong Fang Li
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Jie Du
- Department of Gynecology and Obstetrics, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Jian Chao Jia
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Zhi Ying Li
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Na Huang
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Lamusi A
- Department of Ophthalmology, Inner Mongolia International Mongolian Hospital, Hohhot, 010000, China
| | - Rula Sha
- Department of Gynecology and Obstetrics, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Gal Nai
- Department of Genetics 、 Development and Cell Biology, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Bayar Hexig
- Department of Genetics 、 Development and Cell Biology, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Ji Qing Meng
- Department of Pharmacology, Inner Mongolia People's Hospital, Hohhot, 010000, China
| | - Lan Yu
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China.
- Department of Endocrine and Metabolic Diseases, Inner Mongolia People's Hospital, Hohhot, 010010, China.
| |
Collapse
|