1
|
Yang D, Huang C, Guo X, Li Y, Wu J, Zhang Z, Yan S, Xu Y. Abnormal outer and inner retina in a mouse model of Huntington's disease with age. Front Aging Neurosci 2024; 16:1434551. [PMID: 39529751 PMCID: PMC11550939 DOI: 10.3389/fnagi.2024.1434551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by motor dysfunction and cognitive decline. While retinal abnormalities have been documented in some HD patients and animal models, the nature of these abnormalities-specifically whether they originate in the inner or outer retina-remains unclear, particularly regarding their progression with age. This study investigates the retinal structure and function in HD transgenic mice (R6/1) compared to C57BL/6 J control mice at 2, 4, and 6 months of age, encompassing both pre-symptomatic and symptomatic stages of HD. Pathological assessments of the striatum and evaluations of motor function confirmed significant HD-related alterations in R6/1 mice at 6 months. Visual function was subsequently analyzed, accompanied by immunofluorescent staining of retinal and optic nerve tissues over time. Our findings revealed that R6/1 mice exhibited pronounced HD symptoms at 6 months, characterized by neuronal loss in the striatum and impaired locomotor abilities. Functionally, visual acuity declined at 6 months, while retinal light responses began to deteriorate by 4 months. Structurally, R6/1 mice demonstrated a global reduction in cone opsin expression as early as 2 months, with a decrease in rhodopsin levels at 4 months, alongside a thinner retinal structure compared to controls. Notably, rod bipolar cell populations were decreased at 6 months, exhibiting shorter dendritic branches and reduced synaptic connections with photoreceptors in the outer retina. Additionally, ganglion cell numbers in the inner retina decreased at 6 months, accompanied by aberrant neural fibers in the optic nerve. Microglial activation was evident at 4 months, while astrocytic activation was observed at 6 months. Aggregates of mutant huntingtin (mHTT) were first detected in the ganglion cell layer and optic nerve at 2 months, subsequently disseminating throughout all retinal layers with advancing age. These results indicate that retinal pathology in R6/1 mice manifests earlier in the outer retina than in the inner retina, which does not align with the progression of mHTT aggregation. Consequently, the R6/1 mouse retina may serve as a more effective model for elucidating the mechanisms underlying HD and evaluating potential therapeutic strategies, rather than functioning as an early diagnostic tool for the disease.
Collapse
Affiliation(s)
- Dashuang Yang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, China
| | - Chunhui Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, China
- School of Medicine, Jinan University, Guangzhou, China
| | - Xuemeng Guo
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, China
| | - Yintian Li
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, China
| | - Jiaxi Wu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, China
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University College of Pharmacy, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University College of Pharmacy, Guangzhou, China
| | - Sen Yan
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, China
| | - Ying Xu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
2
|
Wang YM, Yan J, Williams SK, Fairless R, Bading H. TwinF interface inhibitor FP802 prevents retinal ganglion cell loss in a mouse model of amyotrophic lateral sclerosis. Acta Neuropathol Commun 2024; 12:149. [PMID: 39267142 PMCID: PMC11391826 DOI: 10.1186/s40478-024-01858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/31/2024] [Indexed: 09/14/2024] Open
Abstract
Motor neuron loss is well recognized in amyotrophic lateral sclerosis (ALS), but research on retinal ganglion cells (RGCs) is limited. Ocular symptoms are generally not considered classic ALS symptoms, although RGCs and spinal motor neurons share certain cell pathologies, including hallmark signs of glutamate neurotoxicity, which may be triggered by activation of extrasynaptic NMDA receptors (NMDARs). To explore potential novel strategies to prevent ALS-associated death of RGCs, we utilized inhibition of the TwinF interface, a new pharmacological principle that detoxifies extrasynaptic NMDARs by disrupting the NMDAR/TRPM4 death signaling complex. Using the ALS mouse model SOD1G93A, we found that the small molecule TwinF interface inhibitor FP802 prevents the loss of RGCs, improves pattern electroretinogram (pERG) performance, increases the retinal expression of Bdnf, and restores the retinal expression of the immediate early genes, Inhibin beta A and Npas4. Thus, FP802 not only prevents, as recently described, death of spinal motor neurons in SOD1G93A mice, but it also mitigates ALS-associated retinal damage. TwinF interface inhibitors have great potential for alleviating neuro-ophthalmologic symptoms in ALS patients and offer a promising new avenue for therapeutic intervention.
Collapse
Affiliation(s)
- Yu Meng Wang
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
| | - Jing Yan
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
- FundaMental Pharma GmbH, 69120, Heidelberg, Germany
| | - Sarah K Williams
- Department of Neurology, University Clinic Heidelberg, 69120, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DFKZ), 69120, Heidelberg, Germany
| | - Richard Fairless
- Department of Neurology, University Clinic Heidelberg, 69120, Heidelberg, Germany
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DFKZ), 69120, Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
3
|
Mirzavi F, Rajabian A, Hosseini H. The potential protective role of carotenoids from saffron: A focus on endoplasmic reticulum stress-related organ damage. Food Sci Nutr 2024; 12:6108-6122. [PMID: 39554322 PMCID: PMC11561782 DOI: 10.1002/fsn3.4289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/16/2024] [Accepted: 06/08/2024] [Indexed: 11/19/2024] Open
Abstract
The anticancer, antioxidant, and immunomodulatory properties of carotenoids from saffron or apocarotenoids (e.g., crocin, safranal, crocetin, and picrocrocin) have prompted research into their benefits. Apocarotenoids seem to be effective compound for the treatment of chronic diseases, such as neurodegenerative, cardiovascular, cancer, respiratory, and metabolic disorders. Endoplasmic reticulum (ER) is an essential organelle found in the cytoplasm of eukaryotic cells that participates in the biosynthesis of proteins, lipids, and steroid hormones. Given the role of the ER in the regulation of several fundamental biological processes, including metabolic pathways and immune responses, aberrant ER function can have a significant influence on these vital processes and result in serious pathological consequences. Exposure of cell to adverse environmental challenges, such as toxic agents, ischemia, and so on, causes accumulation of unfolded or misfolded proteins in the ER lumen, also called ER stress. There is a growing evidence to suggest that ER disturbance in the form of oxidative/nitrosative stress and subsequent apoptotic cell death plays major roles in the pathogenesis of many human diseases, including cardiovascular diseases, diabetes mellitus, neurodegenerative diseases, and liver diseases. Apocarotenoids with their unique properties can modulate ER stress through PERK/eIF2α/ATF4/CHOP (protein kinase R (PKR)-like ER kinase/eukaryotic initiation factor 2α/activating transcription factor 4/C/EBP /homologous protein) and X-Box Binding Protein 1/activating transcription factor 6 (XBP1/ATF6) pathways. In addition, they suppress apoptosis through inhibition of endoplasmic and mitochondrial-dependent caspase cascade and can stimulate SIRT1 (silent information regulator 1) and Nrf2 (nuclear factor erythroid 2-related factor 2) expression, thereby leading to protection against oxidative stress. This review summarizes the potential benefits of apocarotenoids in various ER-stress-related disorders.
Collapse
Affiliation(s)
- Farshad Mirzavi
- Cardiovascular Diseases Research CenterBirjand University of Medical SciencesBirjandIran
| | - Arezoo Rajabian
- Neuroscience Research CenterMashhad University of Medical SciencesMashhadIran
- Department of NeuroscienceFaculty of Medicine, Mashhad University of Medical SciencesMashhadIran
| | - Hossein Hosseini
- Department of Clinical BiochemistryFaculty of Medicine, Mashhad University of Medical SciencesMashhadIran
| |
Collapse
|
4
|
Gao J, Leinonen H, Wang EJ, Ding M, Perry G, Palczewski K, Wang X. Sex-Specific Early Retinal Dysfunction in Mutant TDP-43 Transgenic Mice. J Alzheimers Dis 2024; 97:927-937. [PMID: 38143367 PMCID: PMC11174142 DOI: 10.3233/jad-231102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Increasing evidence has highlighted retinal impairments in neurodegenerative diseases. Dominant mutations in TAR DNA-binding protein 43 (TDP-43) cause amyotrophic lateral sclerosis (ALS), and the accumulation of TDP-43 in the cytoplasm is a pathological hallmark of ALS, frontotemporal dementia (FTD), and many other neurodegenerative diseases. OBJECTIVE While homozygous transgenic mice expressing the disease-causing human TDP-43 M337V mutant (TDP-43M337V mice) experience premature death, hemizygous TDP-43M337V mice do not suffer sudden death, but they exhibit age-dependent motor-coordinative and cognitive deficits. This study aims to leverage the hemizygous TDP-43M337V mice as a valuable ALS/FTD disease model for the assessment also of retinal changes during the disease progression. METHODS We evaluated the retinal function of young TDP-43M337V mice by full field electroretinogram (ERG) recordings. RESULTS At 3-4 months of age, well before the onset of brain dysfunction at 8 months, the ERG responses were notably impaired in the retinas of young female TDP-43M337V mice in contrast to their male counterparts and age-matched non-transgenic mice. Mitochondria have been implicated as critical targets of TDP-43. Further investigation revealed that significant changes in the key regulators of mitochondrial dynamics and bioenergetics were only observed in the retinas of young female TDP-43M337V mice, while these alterations were not present in the brains of either gender. CONCLUSIONS Together our findings suggest a sex-specific vulnerability within the retina in the early disease stage, and highlight the importance of retinal changes and mitochondrial markers as potential early diagnostic indicators for ALS, FTD, and other TDP-43 related neurodegenerative conditions.
Collapse
Affiliation(s)
- Ju Gao
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Henri Leinonen
- School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland
| | - Evan J Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Mao Ding
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, UCI, Irvine, CA, USA
- Department of Physiology and Biophysics, Chemistry and Molecular biology and Biochemsitry, UCI, Irvine, CA, USA
| | - Xinglong Wang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
5
|
Zueva MV, Neroeva NV, Zhuravleva AN, Bogolepova AN, Kotelin VV, Fadeev DV, Tsapenko IV. Fractal Phototherapy in Maximizing Retina and Brain Plasticity. ADVANCES IN NEUROBIOLOGY 2024; 36:585-637. [PMID: 38468055 DOI: 10.1007/978-3-031-47606-8_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The neuroplasticity potential is reduced with aging and impairs during neurodegenerative diseases and brain and visual system injuries. This limits the brain's capacity to repair the structure and dynamics of its activity after lesions. Maximization of neuroplasticity is necessary to provide the maximal CNS response to therapeutic intervention and adaptive reorganization of neuronal networks in patients with degenerative pathology and traumatic injury to restore the functional activity of the brain and retina.Considering the fractal geometry and dynamics of the healthy brain and the loss of fractality in neurodegenerative pathology, we suggest that the application of self-similar visual signals with a fractal temporal structure in the stimulation therapy can reactivate the adaptive neuroplasticity and enhance the effectiveness of neurorehabilitation. This proposition was tested in the recent studies. Patients with glaucoma had a statistically significant positive effect of fractal photic therapy on light sensitivity and the perimetric MD index, which shows that methods of fractal stimulation can be a novel nonpharmacological approach to neuroprotective therapy and neurorehabilitation. In healthy rabbits, it was demonstrated that a long-term course of photostimulation with fractal signals does not harm the electroretinogram (ERG) and retina structure. Rabbits with modeled retinal atrophy showed better dynamics of the ERG restoration during daily stimulation therapy for a week in comparison with the controls. Positive changes in the retinal function can indirectly suggest the activation of its adaptive plasticity and the high potential of stimulation therapy with fractal visual stimuli in a nonpharmacological neurorehabilitation, which requires further study.
Collapse
Affiliation(s)
- Marina V Zueva
- Department of Clinical Physiology of Vision, Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - Natalia V Neroeva
- Department of Pathology of the Retina and Optic Nerve, Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - Anastasia N Zhuravleva
- Department of Glaucoma, Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - Anna N Bogolepova
- Department of neurology, neurosurgery and medical genetics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Vladislav V Kotelin
- Department of Clinical Physiology of Vision, Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - Denis V Fadeev
- Scientific Experimental Center Department, Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - Irina V Tsapenko
- Department of Clinical Physiology of Vision, Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| |
Collapse
|
6
|
Rombaut A, Brautaset R, Williams PA, Tribble JR. Glial metabolic alterations during glaucoma pathogenesis. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1290465. [PMID: 38983068 PMCID: PMC11182098 DOI: 10.3389/fopht.2023.1290465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/10/2023] [Indexed: 07/11/2024]
Abstract
Glaucoma is the leading cause of irreversible blindness. Current treatment options are limited and often only slow disease progression. Metabolic dysfunction has recently been recognized as a key early and persistent mechanism in glaucoma pathophysiology. Several intrinsic metabolic dysfunctions have been identified and treated in retinal ganglion cells to provide neuroprotection. Growing pre-clinical and clinical evidence has confirmed that metabolic alterations in glaucoma are widespread, occurring across visual system tissues, in ocular fluids, in blood/serum, and at the level of genomic and mitochondrial DNA. This suggests that metabolic dysfunction is not constrained to retinal ganglion cells and that metabolic alterations extrinsic to retinal ganglion cells may contribute to their metabolic compromise. Retinal ganglion cells are reliant on glial metabolic support under normal physiological conditions, but the implications of metabolic dysfunction in glia are underexplored. We highlight emerging evidence that has demonstrated metabolic alterations occurring within glia in glaucoma, and how this may affect neuro-glial metabolic coupling and the metabolic vulnerability of retinal ganglion cells. In other neurodegenerative diseases which share features with glaucoma, several other glial metabolic alterations have been identified, suggesting that similar mechanisms and therapeutic targets may exist in glaucoma.
Collapse
Affiliation(s)
| | | | - Pete A. Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - James R. Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Dijkstra AA, Morrema THJ, Hart de Ruyter FJ, Gami-Patel P, Verbraak FD, de Boer JF, Bouwman FH, Pijnenburg YAL, den Haan J, Rozemuller AJ, Hoozemans JJM. TDP-43 pathology in the retina of patients with frontotemporal lobar degeneration. Acta Neuropathol 2023; 146:767-770. [PMID: 37597044 PMCID: PMC10564657 DOI: 10.1007/s00401-023-02623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/21/2023]
Affiliation(s)
- Anke A Dijkstra
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands.
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | - Tjado H J Morrema
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Frederique J Hart de Ruyter
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Amsterdam UMC, Location VUmc, Alzheimer Center, Neurology, Amsterdam, The Netherlands
| | - Priya Gami-Patel
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Frank D Verbraak
- Ophthalmology Department, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Johannes F de Boer
- Department of Physics, Bio Laser Lab, VU University, Amsterdam, The Netherlands
| | - Femke H Bouwman
- Amsterdam UMC, Location VUmc, Alzheimer Center, Neurology, Amsterdam, The Netherlands
| | | | - Jurre den Haan
- Amsterdam UMC, Location VUmc, Alzheimer Center, Neurology, Amsterdam, The Netherlands
| | - Annemieke J Rozemuller
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Miscioscia A, Puthenparampil M, Blasi L, Rinaldi F, Perini P, Sorarù G, Gallo P. Neurodegeneration in the retina of motoneuron diseases: a longitudinal study in amyotrophic lateral sclerosis and Kennedy's disease. J Neurol 2023; 270:4478-4486. [PMID: 37289322 PMCID: PMC10421755 DOI: 10.1007/s00415-023-11802-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND To what extent retinal atrophy in neurodegenerative diseases reflects the severity and/or the chronicity of brain pathology or is a local independent phenomenon remains to be clarified. Moreover, whether retinal atrophy has a clinical (diagnostic and prognostic) value in these diseases remains unclear. OBJECTIVE To add light on the pathological significance and clinical value of retinal atrophy in patients with amyotrophic lateral sclerosis (ALS) and Kennedy's disease (KD). METHODS Thirty-five ALS, thirty-seven KD, and forty-nine age-matched healthy controls (HC) were included in a one-year longitudinal study. Spectrum-domain optical coherence tomography (OCT) was performed at study entry (T0) and after 12 months (T1). Disease duration and functional rating scale (FRS) for ALS and KD patients were correlated to retinal thicknesses. RESULTS Compared to HC, peripapillary retinal nerve fiber layer (pRNFL) thickness was significantly thinner in both ALS (p = 0.034) and KD (p = 0.003). pRNFL was thinner in KD compared to ALS, but the difference was not significant. In KD, pRNFL atrophy significantly correlated with both disease severity (r = 0.296, p = 0.035) and disease duration (r = - 0.308, p = 0.013) while no significant correlation was found in ALS (disease severity: r = 0.147, p = 0.238; disease duration: r = - 0.093, p = 0.459). During the follow-up, pRNFL thickness remained stable in KD while significantly decreased in ALS (p = 0.043). CONCLUSIONS Our study provides evidence of retinal atrophy in both ALS and KD and suggests that retinal thinning is a primary local phenomenon in motoneuron diseases. The clinical value of pRNFL atrophy in KD is worthy of further investigation.
Collapse
Affiliation(s)
- Alessandro Miscioscia
- Department of Neurosciences, DNS, School of Medicine, University of Padua, Padua, Italy.
- Multiple Sclerosis Centre of the Veneto Region (CeSMuV), Neurology Clinic, University Hospital of Padua, Via Giustiniani, 5, 35128, Padua, Italy.
| | - Marco Puthenparampil
- Department of Neurosciences, DNS, School of Medicine, University of Padua, Padua, Italy
- Multiple Sclerosis Centre of the Veneto Region (CeSMuV), Neurology Clinic, University Hospital of Padua, Via Giustiniani, 5, 35128, Padua, Italy
| | - Lorenzo Blasi
- Department of Neurosciences, DNS, School of Medicine, University of Padua, Padua, Italy
- Neuromuscular Center, Neurology Clinic, University Hospital of Padua, Padua, Italy
| | - Francesca Rinaldi
- Multiple Sclerosis Centre of the Veneto Region (CeSMuV), Neurology Clinic, University Hospital of Padua, Via Giustiniani, 5, 35128, Padua, Italy
| | - Paola Perini
- Multiple Sclerosis Centre of the Veneto Region (CeSMuV), Neurology Clinic, University Hospital of Padua, Via Giustiniani, 5, 35128, Padua, Italy
| | - Gianni Sorarù
- Department of Neurosciences, DNS, School of Medicine, University of Padua, Padua, Italy
- Neuromuscular Center, Neurology Clinic, University Hospital of Padua, Padua, Italy
| | - Paolo Gallo
- Department of Neurosciences, DNS, School of Medicine, University of Padua, Padua, Italy
- Multiple Sclerosis Centre of the Veneto Region (CeSMuV), Neurology Clinic, University Hospital of Padua, Via Giustiniani, 5, 35128, Padua, Italy
| |
Collapse
|
9
|
Vasconcelos CFM, Ribas VT, Petrs-Silva H. Shared Molecular Pathways in Glaucoma and Other Neurodegenerative Diseases: Insights from RNA-Seq Analysis and miRNA Regulation for Promising Therapeutic Avenues. Cells 2023; 12:2155. [PMID: 37681887 PMCID: PMC10486375 DOI: 10.3390/cells12172155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
Advances in RNA-sequencing technologies have led to the identification of molecular biomarkers for several diseases, including neurodegenerative diseases, such as Alzheimer's, Parkinson's, Huntington's diseases and Amyotrophic Lateral Sclerosis. Despite the nature of glaucoma as a neurodegenerative disorder with several similarities with the other above-mentioned diseases, transcriptional data about this disease are still scarce. microRNAs are small molecules (~17-25 nucleotides) that have been found to be specifically expressed in the CNS as major components of the system regulating the development signatures of neurodegenerative diseases and the homeostasis of the brain. In this review, we sought to identify similarities between the functional mechanisms and the activated pathways of the most common neurodegenerative diseases, as well as to discuss how those mechanisms are regulated by miRNAs, using RNA-Seq as an approach to compare them. We also discuss therapeutically suitable applications for these disease hallmarks in clinical future studies.
Collapse
Affiliation(s)
- Carlos Franciney Moreira Vasconcelos
- University of Medicine of Göttingen, 37075 Göttingen, Germany
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Vinicius Toledo Ribas
- Institute of Biological Sciences, Universidade Federal de Minas Gerais (ICB/UFMG), Belo Horizonte 31270-901, Brazil;
| | - Hilda Petrs-Silva
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
10
|
Pediconi N, Gigante Y, Cama S, Pitea M, Mautone L, Ruocco G, Ghirga S, Di Angelantonio S. Retinal fingerprints of ALS in patients: Ganglion cell apoptosis and TDP-43/p62 misplacement. Front Aging Neurosci 2023; 15:1110520. [PMID: 37009460 PMCID: PMC10061015 DOI: 10.3389/fnagi.2023.1110520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionAmyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neuron function. Although ophthalmic deficits are not considered a classic symptom of ALS, recent studies suggest that changes in retinal cells, similar to those in the spinal cord motor neurons, have been observed in postmortem human tissues and animal models.MethodsIn this study, we examined by immunofluorescence analysis the retinal cell layers of sporadic ALS patients in post-mortem retinal slices. We evaluated the presence of cytoplasmic TDP-43 and SQSTM1/p62 aggregates, activation of the apoptotic pathway, and microglia and astrocytes reactivity.ResultsWe found in the retinal ganglion cell layer of ALS patients the increase of mislocalized TDP-43, SQSTM1/p62 aggregates, activation of cleaved caspase-3, and microglia density, suggesting that retinal changes can be used as an additional diagnostic tool for ALS.DiscussionThe retina is considered part of the central nervous system, and neurodegenerative changes in the brain may be accompanied by structural and possibly functional changes in the neuroretina and ocular vasculature. Therefore, using in vivo retinal biomarkers as an additional diagnostic tool for ALS may provide an opportunity to longitudinally monitor individuals and therapies over time in a noninvasive and cost-effective manner.
Collapse
Affiliation(s)
- Natalia Pediconi
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Ylenia Gigante
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), Rome, Italy
- D-Tails s.r.l., Rome, Italy
| | - Silvia Cama
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Martina Pitea
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), Rome, Italy
- D-Tails s.r.l., Rome, Italy
| | - Lorenza Mautone
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Silvia Ghirga
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Silvia Ghirga,
| | - Silvia Di Angelantonio
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), Rome, Italy
- D-Tails s.r.l., Rome, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- *Correspondence: Silvia Di Angelantonio,
| |
Collapse
|
11
|
Weinberg J, Gaur M, Swaroop A, Taylor A. Proteostasis in aging-associated ocular disease. Mol Aspects Med 2022; 88:101157. [PMID: 36459837 PMCID: PMC9742340 DOI: 10.1016/j.mam.2022.101157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022]
Abstract
Vision impairment has devastating consequences for the quality of human life. The cells and tissues associated with the visual process must function throughout one's life span and maintain homeostasis despite exposure to a variety of insults. Maintenance of the proteome is termed proteostasis, and is vital for normal cellular functions, especially at an advanced age. Here we describe basic aspects of proteostasis, from protein synthesis and folding to degradation, and discuss the current status of the field with a particular focus on major age-related eye diseases: age-related macular degeneration, cataract, and glaucoma. Our intent is to allow vision scientists to determine where and how to harness the proteostatic machinery for extending functional homeostasis in the aging retina, lens, and trabecular meshwork. Several common themes have emerged despite these tissues having vastly different metabolisms. Continued exposure to insults, including chronic stress with advancing age, increases proteostatic burden and reduces the fidelity of the degradation machineries including the ubiquitin-proteasome and the autophagy-lysosome systems that recognize and remove damaged proteins. This "double jeopardy" results in an exponential accumulation of cytotoxic proteins with advancing age. We conclude with a discussion of the challenges in maintaining an appropriate balance of protein synthesis and degradation pathways, and suggest that harnessing proteostatic capacities should provide new opportunities to design interventions for attenuating age-related eye diseases before they limit sight.
Collapse
Affiliation(s)
- Jasper Weinberg
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Mohita Gaur
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
12
|
Nepal G, Kharel S, Coghlan MA, Yadav JK, Parajuli P, Pandit K, Shing YK, Ojha R. Amyotrophic lateral sclerosis and retinal changes in optical coherence tomography: A systematic review and meta-analysis. Brain Behav 2022; 12:e2741. [PMID: 35996223 PMCID: PMC9480919 DOI: 10.1002/brb3.2741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/20/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Increasing evidence suggests Amyotrophic Lateral Sclerosis (ALS) as a widespread pathological process comprising nonmotor features like fatigue, mild sensory symptoms, cognitive decline, and visual impairment. Measurements of retinal nerve fiber layer (RNFL) thickness using Optical Coherence Tomography (OCT) may correlate with the neurodegeneration associated with ALS. In addition to RNFL thickness, other OCT parameters have been explored in the context of diagnosing ALS and predicting disease severity. In this study, we explore the possibility that OCT parameters of patients with ALS may differ significantly from those of healthy controls and thus serve as biomarkers for the disease and its progression. MATERIALS AND METHODS Between 2010 and 2021, the PubMed and EMBASE databases were examined for English language literature. ALS severity was assessed using the revised ALS functional rating scale (ALSFRS-R). The pooled mean differences in RNFL thickness between ALS patients and controls were calculated using the Standard Mean Difference (Hedges's g) with a 95% confidence interval (CI) in STATA software version 16. RESULTS Eleven studies were reviewed for data collection. RNFL thickness was not statistically significantly different between ALS patients (n = 412) and controls (n = 376) (Hedges's g = -0.22; 95% CI: -0.51 to 0.07, I2 = 73.04%, p = .14). However, the thickness of inner nuclear layer was significantly different between ALS patients and controls (Hedges's g = -0.38; 95% CI: -0.61 to 0.14, I2 = 14.85%, p = .00). CONCLUSION Our meta-analysis found that RNFL thickness as a whole or by individual quadrants was not significantly different between ALS patients and controls while the inner nuclear layer (INL) was substantially thinner.
Collapse
Affiliation(s)
- Gaurav Nepal
- Department of Internal Medicine, Maharajgunj Medical Campus, Tribhuvan University Institute of Medicine, Maharajgunj, Kathmandu, Nepal
| | - Sanjeev Kharel
- Department of Internal Medicine, Maharajgunj Medical Campus, Tribhuvan University Institute of Medicine, Maharajgunj, Kathmandu, Nepal
| | - Megan Ariel Coghlan
- Department of Neurology, University of Louisville School of Medicine, Louisville, Kentucky, US
| | - Jayant Kumar Yadav
- Department of Internal Medicine, Maharajgunj Medical Campus, Tribhuvan University Institute of Medicine, Maharajgunj, Kathmandu, Nepal
| | - Pawan Parajuli
- Department of Internal Medicine, Koshi Hospital, Biratnagar, Nepal
| | - Kamal Pandit
- Department of Ophthalmology, Maharajgunj Medical Campus, Tribhuvan University Institute of Medicine, Maharajgunj, Kathmandu, Nepal
| | - Yow Ka Shing
- Department of Internal Medicine, National University Hospital, Singapore, Singapore
| | - Rajeev Ojha
- Department of Internal Medicine, Maharajgunj Medical Campus, Tribhuvan University Institute of Medicine, Maharajgunj, Kathmandu, Nepal
| |
Collapse
|
13
|
Soldatov VO, Pokrovskiy MV, Puchenkova OA, Zhunusov NS, Krayushkina AM, Grechina AV, Soldatova MO, Lapin KN, Bushueva OY. EPOR/CD131-mediated attenuation of rotenone-induced retinal degeneration is associated with upregulation of autophagy genes. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial dysfunction is a key driver of neurodegeneration. This study aimed to evaluate the protective potential of EPOR/CD131 (heterodimeric erythropoietin receptor) stimulation in the neurodegeneration caused by rotenone-induced mitochondrial dysfunction. The effects of erythropoietin (EPO) and an EPO mimetic peptide pHBSP were assessed using in vivo and in vitro models. Single injections of 10 µg/kg EPO or 5 µg/kg pHBSP significantly alleviated the degeneration of ganglion cells of the retina in a rotenone-induced retinopathy in rats (p < 0.05). Consistently, in vitro exposure of rotenone-treated murine primary neuroglial cultures to 500 nM EPO or pHBSP significantly rescued the survival of the cells (p < 0.005). The observed enhancement of LC3A, ATG7, Beclin-1, Parkin and BNIP3 mRNA expression by EPOR/CD131 agonists implicates the autophagy and mitophagy activation as a plausible mitoprotective mechanism.
Collapse
Affiliation(s)
- VO Soldatov
- Belgorod State National Research University, Belgorod, Russia
| | - MV Pokrovskiy
- Belgorod State National Research University, Belgorod, Russia
| | - OA Puchenkova
- Belgorod State National Research University, Belgorod, Russia
| | - NS Zhunusov
- Belgorod State National Research University, Belgorod, Russia
| | - AM Krayushkina
- Belgorod State National Research University, Belgorod, Russia
| | - AV Grechina
- Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - KN Lapin
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | | |
Collapse
|
14
|
Marchesi N, Fahmideh F, Boschi F, Pascale A, Barbieri A. Ocular Neurodegenerative Diseases: Interconnection between Retina and Cortical Areas. Cells 2021; 10:2394. [PMID: 34572041 PMCID: PMC8469605 DOI: 10.3390/cells10092394] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
The possible interconnection between the eye and central nervous system (CNS) has been a topic of discussion for several years just based on fact that the eye is properly considered an extension of the brain. Both organs consist of neurons and derived from a neural tube. The visual process involves photoreceptors that receive light stimulus from the external environment and send it to retinal ganglionic cells (RGC), one of the cell types of which the retina is composed. The retina, the internal visual membrane of the eye, processes the visual stimuli in electric stimuli to transfer it to the brain, through the optic nerve. Retinal chronic progressive neurodegeneration, which may occur among the elderly, can lead to different disorders of the eye such as glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR). Mainly in the elderly population, but also among younger people, such ocular pathologies are the cause of irreversible blindness or impaired, reduced vision. Typical neurodegenerative diseases of the CSN are a group of pathologies with common characteristics and etiology not fully understood; some risk factors have been identified, but they are not enough to justify all the cases observed. Furthermore, several studies have shown that also ocular disorders present characteristics of neurodegenerative diseases and, on the other hand, CNS pathologies, i.e., Alzheimer disease (AD) and Parkinson disease (PD), which are causes of morbidity and mortality worldwide, show peculiar alterations at the ocular level. The knowledge of possible correlations could help to understand the mechanisms of onset. Moreover, the underlying mechanisms of these heterogeneous disorders are still debated. This review discusses the characteristics of the ocular illnesses, focusing on the relationship between the eye and the brain. A better comprehension could help in future new therapies, thus reducing or avoiding loss of vision and improve quality of life.
Collapse
Affiliation(s)
| | | | | | | | - Annalisa Barbieri
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy; (N.M.); (F.F.); (F.B.); (A.P.)
| |
Collapse
|
15
|
Soldatov VO, Kukharsky MS, Soldatova MO, Puchenkova OA, Nikitina Y, Lysikova EA, Kartashkina NL, Deykin AV, Pokrovskiy MV. Retinal abnormalities in transgenic mice overexpressing aberrant human FUS[1-359] gene. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2021. [DOI: 10.24075/brsmu.2021.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retinal damage is an optional sign in a number of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). The aim of this work was to assess the structural and functional state of the retina in a murine model of ALS caused by overexpression of the aberrant FUS protein [1-359]. The retinal examination was carried out on 12 transgenic and 13 wild-type mice of 2.5–3 months of age. The study revealed not statistically significant higher level of ophthalmoscopic violations in FUS[1-359] mice. Moreover, gene expression assay confirmed an increased expression of the inflammatory genes Vegfa, Il1b, Il6, Icam1, Tnfa. However, despite the detected structural and functional abnormalities, western blot analysis and quantitative PCR did not detect the expression of the protein and mRNA products of the FUS transgene in the retina of FUS[1-359] mice.
Collapse
Affiliation(s)
- VO Soldatov
- Belgorod State National Research University, Belgorod, Russia
| | - MS Kukharsky
- Institute of Physiologically Active Substances, Moscow, Russia
| | | | - OA Puchenkova
- Belgorod State National Research University, Belgorod, Russia
| | - YuA Nikitina
- Institute of Physiologically Active Substances, Moscow, Russia
| | - EA Lysikova
- Institute of Physiologically Active Substances, Moscow, Russia
| | - NL Kartashkina
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - AV Deykin
- Belgorod State National Research University, Belgorod, Russia
| | - MV Pokrovskiy
- Belgorod State National Research University, Belgorod, Russia
| |
Collapse
|