1
|
Birgbauer E. Lysophospholipid receptors in neurodegeneration and neuroprotection. EXPLORATION OF NEUROPROTECTIVE THERAPY 2024; 4:349-365. [PMID: 39247084 PMCID: PMC11379401 DOI: 10.37349/ent.2024.00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024]
Abstract
The central nervous system (CNS) is one of the most complex physiological systems, and treatment of CNS disorders represents an area of major medical need. One critical aspect of the CNS is its lack of regeneration, such that damage is often permanent. The damage often leads to neurodegeneration, and so strategies for neuroprotection could lead to major medical advances. The G protein-coupled receptor (GPCR) family is one of the major receptor classes, and they have been successfully targeted clinically. One class of GPCRs is those activated by bioactive lysophospholipids as ligands, especially sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA). Research has been increasingly demonstrating the important roles that S1P and LPA, and their receptors, play in physiology and disease. In this review, I describe the role of S1P and LPA receptors in neurodegeneration and potential roles in neuroprotection. Much of our understanding of the role of S1P receptors has been through pharmacological tools. One such tool, fingolimod (also known as FTY720), which is a S1P receptor agonist but a functional antagonist in the immune system, is clinically efficacious in multiple sclerosis by producing a lymphopenia to reduce autoimmune attacks; however, there is evidence that fingolimod is also neuroprotective. Furthermore, fingolimod is neuroprotective in many other neuropathologies, including stroke, Parkinson's disease, Huntington's disease, Rett syndrome, Alzheimer's disease, and others that are discussed here. LPA receptors also appear to be involved, being upregulated in a variety of neuropathologies. Antagonists or mutations of LPA receptors, especially LPA1, are neuroprotective in a variety of conditions, including cortical development, traumatic brain injury, spinal cord injury, stroke and others discussed here. Finally, LPA receptors may interact with other receptors, including a functional interaction with plasticity related genes.
Collapse
Affiliation(s)
- Eric Birgbauer
- Department of Biology, Winthrop University, Rock Hill, SC 29733, USA
| |
Collapse
|
2
|
Brandt N, Köper F, Hausmann J, Bräuer AU. Spotlight on plasticity-related genes: Current insights in health and disease. Pharmacol Ther 2024; 260:108687. [PMID: 38969308 DOI: 10.1016/j.pharmthera.2024.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/07/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The development of the central nervous system is highly complex, involving numerous developmental processes that must take place with high spatial and temporal precision. This requires a series of complex and well-coordinated molecular processes that are tighly controlled and regulated by, for example, a variety of proteins and lipids. Deregulations in these processes, including genetic mutations, can lead to the most severe maldevelopments. The present review provides an overview of the protein family Plasticity-related genes (PRG1-5), including their role during neuronal differentiation, their molecular interactions, and their participation in various diseases. As these proteins can modulate the function of bioactive lipids, they are able to influence various cellular processes. Furthermore, they are dynamically regulated during development, thus playing an important role in the development and function of synapses. First studies, conducted not only in mouse experiments but also in humans, revealed that mutations or dysregulations of these proteins lead to changes in lipid metabolism, resulting in severe neurological deficits. In recent years, as more and more studies have shown their involvement in a broad range of diseases, the complexity and broad spectrum of known and as yet unknown interactions between PRGs, lipids, and proteins make them a promising and interesting group of potential novel therapeutic targets.
Collapse
Affiliation(s)
- Nicola Brandt
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Franziska Köper
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Jens Hausmann
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Anja U Bräuer
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany; Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| |
Collapse
|
3
|
Lim HK, Kim K, Son YK, Nah SY, Ahn SM, Song M. Gintonin stimulates dendritic growth in striatal neurons by activating Akt and CREB. Front Mol Neurosci 2022; 15:1014497. [PMID: 36385759 PMCID: PMC9643712 DOI: 10.3389/fnmol.2022.1014497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/04/2022] [Indexed: 09/26/2023] Open
Abstract
Gintonin, a glycolipid protein conjugated with lysophosphatidic acid (LPA), is a newly identified compound extracted from Korean ginseng. LPA receptor isotypes exhibit high affinity for gintonin and mediate intracellular calcium signaling in various animal cell models. In this study, we found that gintonin induced the activation of Akt and cAMP-response element binding protein (CREB) in mouse striatal neurons, and chronic treatment with gintonin potently induced dendritic growth and filopodia formation. Gintonin-induced Akt/CREB activation and dendritic development were significantly impaired by LPA receptor (LPAR1/3) inhibition with Ki16425. Intriguingly, prolonged treatment with gintonin ameliorated the reduction in dendritic formation caused by Shank3 and Slitrk5 deficiency in the striatal neurons. In addition, gintonin and brain-derived neurotrophic factor (BDNF) had a synergistic effect on AKT/CREB activation and dendritic growth at suboptimal concentrations. These findings imply that gintonin-stimulated LPA receptors play a role in dendritic growth in striatal neurons and that they may act synergistically with BDNF, which is known to play a role in dendritogenesis.
Collapse
Affiliation(s)
- Hye Kyung Lim
- Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Kitaek Kim
- Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Youn Kyoung Son
- National Institute of Biological Resources, Incheon, South Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Soo Min Ahn
- Department of Pediatric Surgery, Metabolic and Bariatric Surgery Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
4
|
Fuchs J, Bareesel S, Kroon C, Polyzou A, Eickholt BJ, Leondaritis G. Plasma membrane phospholipid phosphatase-related proteins as pleiotropic regulators of neuron growth and excitability. Front Mol Neurosci 2022; 15:984655. [PMID: 36187351 PMCID: PMC9520309 DOI: 10.3389/fnmol.2022.984655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neuronal plasma membrane proteins are essential for integrating cell extrinsic and cell intrinsic signals to orchestrate neuronal differentiation, growth and plasticity in the developing and adult nervous system. Here, we shed light on the family of plasma membrane proteins phospholipid phosphatase-related proteins (PLPPRs) (alternative name, PRGs; plasticity-related genes) that fine-tune neuronal growth and synaptic transmission in the central nervous system. Several studies uncovered essential functions of PLPPRs in filopodia formation, axon guidance and branching during nervous system development and regeneration, as well as in the control of dendritic spine number and excitability. Loss of PLPPR expression in knockout mice increases susceptibility to seizures, and results in defects in sensory information processing, development of psychiatric disorders, stress-related behaviors and abnormal social interaction. However, the exact function of PLPPRs in the context of neurological diseases is largely unclear. Although initially described as active lysophosphatidic acid (LPA) ecto-phosphatases that regulate the levels of this extracellular bioactive lipid, PLPPRs lack catalytic activity against LPA. Nevertheless, they emerge as atypical LPA modulators, by regulating LPA mediated signaling processes. In this review, we summarize the effects of this protein family on cellular morphology, generation and maintenance of cellular protrusions as well as highlight their known neuronal functions and phenotypes of KO mice. We discuss the molecular mechanisms of PLPPRs including the deployment of phospholipids, actin-cytoskeleton and small GTPase signaling pathways, with a focus on identifying gaps in our knowledge to stimulate interest in this understudied protein family.
Collapse
Affiliation(s)
- Joachim Fuchs
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Shannon Bareesel
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Cristina Kroon
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexandra Polyzou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Britta J. Eickholt
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- *Correspondence: Britta J. Eickholt,
| | - George Leondaritis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Institute of Biosciences, University Research Center Ioannina, University of Ioannina, Ioannina, Greece
- George Leondaritis,
| |
Collapse
|
5
|
Vinton J, Aninweze A, Birgbauer E. Ibuprofen does not inhibit RhoA-mediated growth cone collapse of embryonic chicken retinal axons by LPA. Exp Brain Res 2021; 239:2969-2977. [PMID: 34322723 DOI: 10.1007/s00221-021-06172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/15/2021] [Indexed: 11/28/2022]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lysophospholipid that causes neuronal growth cones to collapse and neurites to retract through a RhoA-ROCK mediated pathway. It has been reported that the NSAID ibuprofen improves regeneration after spinal cord injury through a mechanism of inhibiting RhoA. This leads to the hypothesis that ibuprofen should block LPA-mediated growth cone collapse. We tested this hypothesis by treating embryonic chick retinal neurons with ibuprofen followed by LPA. Retinal growth cones collapsed with LPA in the presence of ibuprofen similar to control; however, growth cone collapse was effectively blocked by a ROCK inhibitor. Thus, our results do not support the designation of ibuprofen as a direct RhoA inhibitor.
Collapse
Affiliation(s)
- James Vinton
- Department of Biology, Winthrop University, Rock Hill, SC, 29733, USA
| | - Adaeze Aninweze
- Department of Biology, Winthrop University, Rock Hill, SC, 29733, USA
| | - Eric Birgbauer
- Department of Biology, Winthrop University, Rock Hill, SC, 29733, USA.
| |
Collapse
|
6
|
Birgbauer E. Lysophosphatidic Acid Signalling in Nervous System Development and Function. Neuromolecular Med 2021; 23:68-85. [PMID: 33151452 PMCID: PMC11420905 DOI: 10.1007/s12017-020-08630-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
One class of molecules that are now coming to be recognized as essential for our understanding of the nervous system are the lysophospholipids. One of the major signaling lysophospholipids is lysophosphatidic acid, also known as LPA. LPA activates a variety of G protein-coupled receptors (GPCRs) leading to a multitude of physiological responses. In this review, I describe our current understanding of the role of LPA and LPA receptor signaling in the development and function of the nervous system, especially the central nervous system (CNS). In addition, I highlight how aberrant LPA receptor signaling may underlie neuropathological conditions, with important clinical application.
Collapse
Affiliation(s)
- Eric Birgbauer
- Department of Biology, Winthrop University, Rock Hill, SC, USA.
| |
Collapse
|
7
|
Lidgerwood GE, Morris AJ, Conquest A, Daniszewski M, Rooney LA, Lim SY, Hernández D, Liang HH, Allen P, Connell PP, Guymer RH, Hewitt AW, Pébay A. Role of lysophosphatidic acid in the retinal pigment epithelium and photoreceptors. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:750-761. [DOI: 10.1016/j.bbalip.2018.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/12/2018] [Accepted: 04/11/2018] [Indexed: 11/29/2022]
|
8
|
Cheng J, Sahani S, Hausrat TJ, Yang JW, Ji H, Schmarowski N, Endle H, Liu X, Li Y, Böttche R, Radyushkin K, Maric HM, Hoerder-Suabedissen A, Molnár Z, Prouvot PH, Trimbuch T, Ninnemann O, Huai J, Fan W, Visentin B, Sabbadini R, Strømgaard K, Stroh A, Luhmann HJ, Kneussel M, Nitsch R, Vogt J. Precise Somatotopic Thalamocortical Axon Guidance Depends on LPA-Mediated PRG-2/Radixin Signaling. Neuron 2016; 92:126-142. [PMID: 27641493 PMCID: PMC5065528 DOI: 10.1016/j.neuron.2016.08.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/15/2016] [Accepted: 08/16/2016] [Indexed: 11/30/2022]
Abstract
Precise connection of thalamic barreloids with their corresponding cortical barrels is critical for processing of vibrissal sensory information. Here, we show that PRG-2, a phospholipid-interacting molecule, is important for thalamocortical axon guidance. Developing thalamocortical fibers both in PRG-2 full knockout (KO) and in thalamus-specific KO mice prematurely entered the cortical plate, eventually innervating non-corresponding barrels. This misrouting relied on lost axonal sensitivity toward lysophosphatidic acid (LPA), which failed to repel PRG-2-deficient thalamocortical fibers. PRG-2 electroporation in the PRG-2-/- thalamus restored the aberrant cortical innervation. We identified radixin as a PRG-2 interaction partner and showed that radixin accumulation in growth cones and its LPA-dependent phosphorylation depend on its binding to specific regions within the C-terminal region of PRG-2. In vivo recordings and whisker-specific behavioral tests demonstrated sensory discrimination deficits in PRG-2-/- animals. Our data show that bioactive phospholipids and PRG-2 are critical for guiding thalamic axons to their proper cortical targets.
Collapse
Affiliation(s)
- Jin Cheng
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Sadhna Sahani
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Torben Johann Hausrat
- University Medical Center Hamburg-Eppendorf, Institute for Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg (ZMNH), 20251 Hamburg, Germany
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Haichao Ji
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Nikolai Schmarowski
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Heiko Endle
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Xinfeng Liu
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Yunbo Li
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Rahel Böttche
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Konstantin Radyushkin
- Focus Program Translational Neuroscience, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Hans M Maric
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | - Zoltán Molnár
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Pierre-Hugues Prouvot
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Thorsten Trimbuch
- Institute for Cell Biology and Neurobiology, Charité, 10117 Berlin, Germany
| | - Olaf Ninnemann
- Institute for Cell Biology and Neurobiology, Charité, 10117 Berlin, Germany
| | - Jisen Huai
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Wei Fan
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | | | | | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Albrecht Stroh
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Matthias Kneussel
- University Medical Center Hamburg-Eppendorf, Institute for Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg (ZMNH), 20251 Hamburg, Germany
| | - Robert Nitsch
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| | - Johannes Vogt
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| |
Collapse
|
9
|
Activation of Lysophosphatidic Acid Receptor Type 1 Contributes to Pathophysiology of Spinal Cord Injury. J Neurosci 2015; 35:10224-35. [PMID: 26180199 DOI: 10.1523/jneurosci.4703-14.2015] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Lysophosphatidic acid (LPA) is an extracellular lipid mediator involved in many physiological functions that signals through six known G-protein-coupled receptors (LPA1-LPA6). A wide range of LPA effects have been identified in the CNS, including neural progenitor cell physiology, astrocyte and microglia activation, neuronal cell death, axonal retraction, and development of neuropathic pain. However, little is known about the involvement of LPA in CNS pathologies. Herein, we demonstrate for the first time that LPA signaling via LPA1 contributes to secondary damage after spinal cord injury. LPA levels increase in the contused spinal cord parenchyma during the first 14 d. To model this potential contribution of LPA in the spinal cord, we injected LPA into the normal spinal cord, revealing that LPA induces microglia/macrophage activation and demyelination. Use of a selective LPA1 antagonist or mice lacking LPA1 linked receptor-mediated signaling to demyelination, which was in part mediated by microglia. Finally, we demonstrate that selective blockade of LPA1 after spinal cord injury results in reduced demyelination and improvement in locomotor recovery. Overall, these results support LPA-LPA1 signaling as a novel pathway that contributes to secondary damage after spinal cord contusion in mice and suggest that LPA1 antagonism might be useful for the treatment of acute spinal cord injury. SIGNIFICANCE STATEMENT This study reveals that LPA signaling via LPA receptor type 1 activation causes demyelination and functional deficits after spinal cord injury.
Collapse
|
10
|
Birgbauer E. Lysophospholipids in retinal axon guidance: roles and cell signaling. Neural Regen Res 2015; 10:1067-8. [PMID: 26330827 PMCID: PMC4541235 DOI: 10.4103/1673-5374.160091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2015] [Indexed: 01/26/2023] Open
Affiliation(s)
- Eric Birgbauer
- Department of Biology, Winthrop University, Rock Hill, SC, USA
| |
Collapse
|
11
|
Fincher J, Whiteneck C, Birgbauer E. G-protein-coupled receptor cell signaling pathways mediating embryonic chick retinal growth cone collapse induced by lysophosphatidic acid and sphingosine-1-phosphate. Dev Neurosci 2014; 36:443-53. [PMID: 25138637 DOI: 10.1159/000364858] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/27/2014] [Indexed: 12/12/2022] Open
Abstract
In the development of the nervous system, one of the critical aspects is the proper navigation of axons to their targets, i.e. the problem of axonal guidance. We used the chick visual system as a model to investigate the role of the lysophospholipids lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) as potential axon guidance cues. We showed that both LPA and S1P cause a specific, dose-dependent growth cone collapse of retinal neurons in vitro in the chick model system, with slight differences compared to the mouse but very similar to observations in Xenopus. Because LPA and S1P receptors are G-protein-coupled receptors, we analyzed the intracellular signaling pathways using pharmacological inhibitors in chick retinal neurons. Blocking rho kinase (ROCK) prevented growth cone collapse by LPA and S1P, while blocking PLC or chelating calcium had no effect on growth cone collapse. Inhibition of Gi/o with pertussis toxin resulted in a partial reduction of growth cone collapse, both with LPA and with S1P. Inhibition of p38 blocked growth cone collapse mediated by LPA but not S1P. Thus, in addition to the involvement of the G12/13-ROCK pathway, LPA- and S1P-induced collapse of chick retinal growth cones has a partial requirement for Gi/o.
Collapse
Affiliation(s)
- Jarod Fincher
- Department of Biology, Winthrop University, Rock Hill, S.C., USA
| | | | | |
Collapse
|
12
|
Choi JW, Chun J. Lysophospholipids and their receptors in the central nervous system. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:20-32. [PMID: 22884303 DOI: 10.1016/j.bbalip.2012.07.015] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 02/05/2023]
Abstract
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), two of the best-studied lysophospholipids, are known to influence diverse biological events, including organismal development as well as function and pathogenesis within multiple organ systems. These functional roles are due to a family of at least 11 G protein-coupled receptors (GPCRs), named LPA(1-6) and S1P(1-5), which are widely distributed throughout the body and that activate multiple effector pathways initiated by a range of heterotrimeric G proteins including G(i/o), G(12/13), G(q) and G(s), with actual activation dependent on receptor subtypes. In the central nervous system (CNS), a major locus for these signaling pathways, LPA and S1P have been shown to influence myriad responses in neurons and glial cell types through their cognate receptors. These receptor-mediated activities can contribute to disease pathogenesis and have therapeutic relevance to human CNS disorders as demonstrated for multiple sclerosis (MS) and possibly others that include congenital hydrocephalus, ischemic stroke, neurotrauma, neuropsychiatric disorders, developmental disorders, seizures, hearing loss, and Sandhoff disease, based upon the experimental literature. In particular, FTY720 (fingolimod, Gilenya, Novartis Pharma, AG) that becomes an analog of S1P upon phosphorylation, was approved by the FDA in 2010 as a first oral treatment for MS, validating this class of receptors as medicinal targets. This review will provide an overview and update on the biological functions of LPA and S1P signaling in the CNS, with a focus on results from studies using genetic null mutants for LPA and S1P receptors. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
Affiliation(s)
- Ji Woong Choi
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|