1
|
Malandris K, Kalopitas G, Theocharidou E, Germanidis G. The Role of RASs /RVs in the Current Management of HCV. Viruses 2021; 13:2096. [PMID: 34696525 PMCID: PMC8539246 DOI: 10.3390/v13102096] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022] Open
Abstract
The approval of combination therapies with direct-acting antiviral (DAA) regimens has led to significant progress in the field of hepatitis C virus (HCV) treatment. Although most patients treated with these agents achieve a virological cure, resistance to DAAs is a major issue. The rapid emergence of resistance-associated substitutions (RASs), in particular in the context of incomplete drug pressure, has an impact on sustained virological response (SVR) rates. Several RASs in NS3, NS5A and NS5B have been linked with reduced susceptibility to DAAs. RAS vary based on HCV characteristics and the different drug classes. DAA-resistant HCV variant haplotypes (RVs) are dominant in cases of virological failure. Viruses with resistance to NS3-4A protease inhibitors are only detected in the peripheral blood in a time frame ranging from weeks to months following completion of treatment, whereas NS5A inhibitor-resistant viruses may persist for years. Novel agents have been developed that demonstrate promising results in DAA-experienced patients. The recent approval of broad-spectrum drug combinations with a high genetic barrier to resistance and antiviral potency may overcome the problem of resistance.
Collapse
Affiliation(s)
- Konstantinos Malandris
- Second Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (K.M.); (E.T.)
| | - Georgios Kalopitas
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Eleni Theocharidou
- Second Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (K.M.); (E.T.)
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
2
|
Liu Z, Mao X, Wu J, Yu K, Yang Q, Suo C, Lu M, Jin L, Zhang T, Chen X. World-wide Prevalence of Substitutions in HCV Genome Associated With Resistance to Direct-Acting Antiviral Agents. Clin Gastroenterol Hepatol 2021; 19:1906-1914.e25. [PMID: 31683059 DOI: 10.1016/j.cgh.2019.10.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/07/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The efficacy of direct-acting antiviral agents against hepatitis C virus (HCV) infection can be compromised by substitutions in the HCV genome that occur before treatment (resistance-associated substitutions [RASs]). We performed a meta-analysis to determine the prevalence of RASs and their effects. METHODS We searched publication databases for studies of HCV RNA substitutions that mediate resistance to direct-acting antiviral agents. Findings from 50 studies of the prevalence of RAS in HCV, from 32 countries, were used in a meta-analysis. We retrieved the HCV RNA sequence from the Los Alamos HCV sequence database to estimate the prevalence of the RASs. The degree of resistance to treatment conferred by each RAS was determined based on fold-change in the 50% effective concentration of the drugs. RESULTS Our final analysis included data from 49,744 patients with HCV infection and 12,612 HCV sequences. We estimated the prevalence of 56 RASs that encoded amino acids and 114 specific RASs. The average prevalence of RASs was highest in HCV genotype (GT) 6, followed by HCV GT1a, GT2, GT1b, GT3, and GT4. The highest prevalence of RASs observed encoded Q80K in NS3 to NS4A of HCV GT1a, Y93T in NS5A of GT1a, and C316N in NS5B of GT1b. The greatest number of RASs were observed at D168 in NS3 to NS4A, at Y93 in NS5A, and at C316 in NS5B. The prevalence of RASs and mutation burdens were high in Japan, the United States, Germany, Thailand, and the United Kingdom; low in Russia, Brazil, Egypt, and India; and intermediate in China, Canada, Australia, Spain, and France. CONCLUSIONS In a meta-analysis, we found evidence for 114 RASs in HCV of different genotypes. Patients with HCV infection should be tested for RASs before treatment is selected, especially in regions with a high prevalence of RASs.
Collapse
Affiliation(s)
- Zhenqiu Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Xianhua Mao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Jiaqi Wu
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Kangkang Yu
- Department of Infectious Diseases, Huashan Hospital, Shanghai, China
| | - Qin Yang
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Suo
- Department of Epidemiology, School of Public Health, Shanghai, China; Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Beijing, China
| | - Ming Lu
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, China; Human Phenome Institute, Fudan University, Shanghai, China
| | - Tiejun Zhang
- Department of Epidemiology, School of Public Health, Shanghai, China; Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Beijing, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, China; Human Phenome Institute, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Lu J, Feng Y, Chen L, Zeng Z, Liu X, Cai W, Wang H, Guo X, Zhou H, Tao W, Xie Q. Subtype-Specific Prevalence of Hepatitis C Virus NS5A Resistance Associated Substitutions in Mainland China. Front Microbiol 2019; 10:535. [PMID: 30941111 PMCID: PMC6433824 DOI: 10.3389/fmicb.2019.00535] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/01/2019] [Indexed: 12/21/2022] Open
Abstract
Resistance associated substitutions (RASs) can reduce the efficacy of direct-acting antiviral agents (DAAs) targeting hepatitis C virus (HCV) and lead to treatment failure. Clinical data of HCV NS5A RASs prevalence are limited in China and need to be investigated. A total of 878 unique patient samples with different genotypes (GT) (1b: n = 489, 2a: n = 203, 3a: n = 60, 3b: n = 78, 6a: n = 48) were collected from around mainland China by KingMed Laboratory and analyzed for NS5A RASs distribution by Sanger sequencing. Phylogeographic analyses based on NS5A domain 1 sequences indicated circulation of both locally and nationally epidemic strains. Relatively high frequency of Y93H (14.1%) was only detected in GT1b but not in other subtypes. High frequency of L31M was found in both GT2a (95.6%) and GT3b (98.7%) sequences. Due to the overlapping incidence of A30K, 96% of GT3b isolates had NS5A RASs combination A30K + L31M, which confers high levels of resistance to most NS5A inhibitors. No RASs were detected in GT6a strains. Meanwhile, baseline NS5A RASs fingerprints were also evaluated in 185 DAA treatment-naive GT1b patients with next generation sequencing method. Patients presenting with Y93H had statistically higher entropy of HCV NS5A sequences. Taken together, subtype-specific distribution patterns of NS5A RASs were observed. GT1b patients with higher HCV complexity tend to have a greater chance of Y93H presence, while GT3b patients are naturally resistant to current NS5A inhibitors and their treatment may pose a challenge to real-world DAA application.
Collapse
Affiliation(s)
- Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yupeng Feng
- Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
| | - Lichang Chen
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyu Zeng
- Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
| | - Xianliang Liu
- Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
| | - Wei Cai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolei Guo
- Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
| | - Huijuan Zhou
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanyin Tao
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|