1
|
Bin Yahia NM, Shan M, Zhu Y, Yang Y, Zhang S, Yang Y. From crisis to cure: harnessing the potential of mycobacteriophages in the battle against tuberculosis. J Appl Microbiol 2024; 135:lxae208. [PMID: 39134510 DOI: 10.1093/jambio/lxae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/26/2024] [Accepted: 08/10/2024] [Indexed: 08/30/2024]
Abstract
Tuberculosis (TB) is a serious and fatal disease caused by Mycobacterium tuberculosis (Mtb). The World Health Organization reported an estimated 1.30 million TB-related deaths in 2022. The escalating prevalence of Mtb strains classified as being multi-, extensively, extremely, or totally drug resistant, coupled with the decreasing efficacies of conventional therapies, necessitates the development of novel treatments. As viruses that infect Mycobacterium spp., mycobacteriophages may represent a strategy to combat and eradicate drug-resistant TB. More exploration is needed to provide a comprehensive understanding of mycobacteriophages and their genome structure, which could pave the way toward a definitive treatment for TB. This review focuses on the properties of mycobacteriophages, their potential in diagnosing and treating TB, the benefits and drawbacks of their application, and their use in human health. Specifically, we summarize recent research on mycobacteriophages targeted against Mtb infection and newly developed mycobacteriophage-based tools to diagnose and treat diseases caused by Mycobacterium spp. We underscore the urgent need for innovative approaches and highlight the potential of mycobacteriophages as a promising avenue for developing effective diagnosis and treatment to combat drug-resistant Mycobacterium strains.
Collapse
Affiliation(s)
- Noura M Bin Yahia
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 P.R. China
| | - Minghai Shan
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 P.R. China
- General Hospital of Ningxia Medical University, Yinchuan, 750004 P.R. China
| | - Yue Zhu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 P.R. China
| | - Yuma Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 P.R. China
| | - Sihan Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 P.R. China
| | - Yanhui Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 P.R. China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, 750004 P.R. China
| |
Collapse
|
2
|
Moukendza Koundi L, Ekomi Moure UA, Boni FG, Hamdi I, Fan L, Xie J. Mycobacterium tuberculosis Rv2617c is involved in stress response and phage infection resistance. Heliyon 2024; 10:e27400. [PMID: 38495141 PMCID: PMC10943396 DOI: 10.1016/j.heliyon.2024.e27400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Mycobacterium tuberculosis (M. tuberculosis) is the pathogen of human tuberculosis (TB). Resistance to numerous in vivo stresses, including oxidative stress, is determinant for M. tuberculosis intracellular survival, and understanding associated mechanisms is crucial for developing new therapeutic strategies. M. tuberculosis Rv2617c has been associated with oxidative stress response when interacting with other proteins in M. tuberculosis; however, its functional promiscuity and underlying molecular mechanisms remain elusive. In this study, we investigated the phenotypic changes of Mycobacterium smegmatis (M. smegmatis) expressing Rv2617c (Ms_Rv2617c) and its behavior in the presence of various in vitro stresses and phage infections. We found that Rv2617c conferred resistance to SDS and diamide while sensitizing M. smegmatis to oxidative stress (H2O2) and altered mycobacterial phenotypic properties (single-cell clone and motility), suggestive of reprogrammed mycobacterial cell wall lipid contents exemplified by increased cell wall permeability. Interestingly, we also found that Rv2617c promoted M. smegmatis resistance to infection by phages (SWU1, SWU2, D29, and TM4) and kept phage TM4 from destroying mycobacterial biofilms. Our findings provide new insights into the role of Rv2617c in resistance to oxide and acid stresses and report for the first time on its role in phage resistance in Mycobacterium.
Collapse
Affiliation(s)
- Liadrine Moukendza Koundi
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Ulrich Aymard Ekomi Moure
- The Ninth People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Funmilayo Grâce Boni
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Insaf Hamdi
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Lin Fan
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai Key Laboratory of Tuberculosis, Shanghai, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Yang F, Labani-Motlagh A, Bohorquez JA, Moreira JD, Ansari D, Patel S, Spagnolo F, Florence J, Vankayalapati A, Sakai T, Sato O, Ikebe M, Vankayalapati R, Dennehy JJ, Samten B, Yi G. Bacteriophage therapy for the treatment of Mycobacterium tuberculosis infections in humanized mice. Commun Biol 2024; 7:294. [PMID: 38461214 PMCID: PMC10924958 DOI: 10.1038/s42003-024-06006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 03/02/2024] [Indexed: 03/11/2024] Open
Abstract
The continuing emergence of new strains of antibiotic-resistant bacteria has renewed interest in phage therapy; however, there has been limited progress in applying phage therapy to multi-drug resistant Mycobacterium tuberculosis (Mtb) infections. In this study, we show that bacteriophage strains D29 and DS6A can efficiently lyse Mtb H37Rv in 7H10 agar plates. However, only phage DS6A efficiently kills H37Rv in liquid culture and in Mtb-infected human primary macrophages. We further show in subsequent experiments that, after the humanized mice were infected with aerosolized H37Rv, then treated with DS6A intravenously, the DS6A treated mice showed increased body weight and improved pulmonary function relative to control mice. Furthermore, DS6A reduces Mtb load in mouse organs with greater efficacy in the spleen. These results demonstrate the feasibility of developing phage therapy as an effective therapeutic against Mtb infection.
Collapse
Affiliation(s)
- Fan Yang
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Alireza Labani-Motlagh
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Center for Discovery and Innovation, Hackensack Meridian Health, Hackensack, NJ, USA
| | - Jose Alejandro Bohorquez
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Josimar Dornelas Moreira
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Danish Ansari
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Sahil Patel
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Fabrizio Spagnolo
- Life Sciences Department, Long Island University Post, Brookville, NY, USA
| | - Jon Florence
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Abhinav Vankayalapati
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Tsuyoshi Sakai
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Osamu Sato
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Mitsuo Ikebe
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Ramakrishna Vankayalapati
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - John J Dennehy
- Biology Department, Queens College of The City University of New York, Flushing, NY, USA.
- The Graduate Center of The City University of New York, New York, NY, USA.
| | - Buka Samten
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA.
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA.
| | - Guohua Yi
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, USA.
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA.
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA.
| |
Collapse
|
4
|
Schmalstig AA, Wiggins A, Badillo D, Wetzel KS, Hatfull GF, Braunstein M. Bacteriophage infection and killing of intracellular Mycobacterium abscessus. mBio 2024; 15:e0292423. [PMID: 38059609 PMCID: PMC10790704 DOI: 10.1128/mbio.02924-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE As we rapidly approach a post-antibiotic era, bacteriophage (phage) therapy may offer a solution for treating drug-resistant bacteria. Mycobacterium abscessus is an emerging, multidrug-resistant pathogen that causes disease in people with cystic fibrosis, chronic obstructive pulmonary disease, and other underlying lung diseases. M. abscessus can survive inside host cells, a niche that can limit access to antibiotics. As current treatment options for M. abscessus infections often fail, there is an urgent need for alternative therapies. Phage therapy is being used to treat M. abscessus infections as an option of last resort. However, little is known about the ability of phages to kill bacteria in the host environment and specifically in an intracellular environment. Here, we demonstrate the ability of phages to enter mammalian cells and to infect and kill intracellular M. abscessus. These findings support the use of phages to treat intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Alan A. Schmalstig
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Andrew Wiggins
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Debbie Badillo
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Katherine S. Wetzel
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Miriam Braunstein
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Fajardo-Lubian A, Venturini C. Use of Bacteriophages to Target Intracellular Pathogens. Clin Infect Dis 2023; 77:S423-S432. [PMID: 37932114 DOI: 10.1093/cid/ciad515] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Bacteriophages (phages) have shown great potential as natural antimicrobials against extracellular pathogens (eg, Escherichia coli or Klebsiella pneumoniae), but little is known about how they interact with intracellular targets (eg, Shigella spp., Salmonella spp., Mycobacterium spp.) in the mammalian host. Recent research has demonstrated that phages can enter human cells. However, for the design of successful clinical applications, further investigation is required to define their subcellular behavior and to understand the complex biological processes that underlie the interaction with their bacterial targets. In this review, we summarize the molecular evidence of phage internalization in eucaryotic cells, with specific focus on proof of phage activity against their bacterial targets within the eucaryotic host, and the current proposed strategies to overcome poor penetrance issues that may impact therapeutic use against the most clinically relevant intracellular pathogens.
Collapse
Affiliation(s)
- Alicia Fajardo-Lubian
- Faculty of Medicine and Health, Sydney ID Institute, University of Sydney, Sydney, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Carola Venturini
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Guan J, Peng C, Shang J, Tang X, Sun Y. PhaGenus: genus-level classification of bacteriophages using a Transformer model. Brief Bioinform 2023; 24:bbad408. [PMID: 37965809 DOI: 10.1093/bib/bbad408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/22/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
MOTIVATION Bacteriophages (phages for short), which prey on and replicate within bacterial cells, have a significant role in modulating microbial communities and hold potential applications in treating antibiotic resistance. The advancement of high-throughput sequencing technology contributes to the discovery of phages tremendously. However, the taxonomic classification of assembled phage contigs still faces several challenges, including high genetic diversity, lack of a stable taxonomy system and limited knowledge of phage annotations. Despite extensive efforts, existing tools have not yet achieved an optimal balance between prediction rate and accuracy. RESULTS In this work, we develop a learning-based model named PhaGenus, which conducts genus-level taxonomic classification for phage contigs. PhaGenus utilizes a powerful Transformer model to learn the association between protein clusters and support the classification of up to 508 genera. We tested PhaGenus on four datasets in different scenarios. The experimental results show that PhaGenus outperforms state-of-the-art methods in predicting low-similarity datasets, achieving an improvement of at least 13.7%. Additionally, PhaGenus is highly effective at identifying previously uncharacterized genera that are not represented in reference databases, with an improvement of 8.52%. The analysis of the infants' gut and GOV2.0 dataset demonstrates that PhaGenus can be used to classify more contigs with higher accuracy.
Collapse
Affiliation(s)
- Jiaojiao Guan
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong (SAR), China
| | - Cheng Peng
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong (SAR), China
| | - Jiayu Shang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong (SAR), China
| | - Xubo Tang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong (SAR), China
| | - Yanni Sun
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong (SAR), China
| |
Collapse
|
7
|
Mahmoud M, Tan Y. New advances in the treatments of drug-resistant tuberculosis. Expert Rev Anti Infect Ther 2023; 21:863-870. [PMID: 37477234 DOI: 10.1080/14787210.2023.2240022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
INTRODUCTION TB is associated with high mortality and morbidity among infected individuals and a high transmission rate from person to person. Despite the availability of vaccines and several anti-TB,TB infection continues to increase. Global resistance to TB remains the greatest challenge. There has not been extensive research into a new treatment and management strategy for TB resistance therapy. This review is based on a review of new advances and alternative drugs in the treatment of drug-resistant TB. AREAS COVERED New drug-resistant Mycobacterium tuberculosis therapy involves a combination of the latest TB drugs, new anti-TB drugs based on medicinal plant extracts for drug-resistant TB, mycobacteriophage therapy, the CRISPR/Cas9 system, and nanotechnology. EXPERT OPINION It is necessary to determine the function of individual gene alterations in drug-resistant TB. A combination of the most recent anti-TB drugs, such as bedaquiline and delamanid, is recommended. Longitudinal studies and animal model experiments with some medicinal plant extracts are required for better results. Nanotechnology has the potential to reduce drug side effects. Useful efficacy of phage therapy and CRISPR-cas9 technology as adjunct therapies for the management of drug-resistant TB.
Collapse
Affiliation(s)
- Mohanad Mahmoud
- Department of Medical Microbiology; China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yurong Tan
- Department of Medical Microbiology; China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Friedland AE, Maziarz EK, Wolfe CR, Patel CB, Patel P, Milano CA, Schroder JN, Daneshmand MA, Wallace RJ, Alexander BD, Baker AW. Epidemiology, management, and clinical outcomes of extrapulmonary Mycobacterium abscessus complex infections in heart transplant and ventricular assist device recipients. Am J Transplant 2023; 23:1048-1057. [PMID: 37059177 PMCID: PMC10330292 DOI: 10.1016/j.ajt.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023]
Abstract
Nontuberculous mycobacteria are emerging pathogens, yet data on the epidemiology and management of extrapulmonary nontuberculous mycobacteria infections in orthotopic heart transplantation (OHT) and ventricular assist device (VAD) recipients are scarce. We retrospectively reviewed records of OHT and VAD recipients who underwent cardiac surgery at our hospital and developed Mycobacterium abscessus complex (MABC) infection from 2013 to 2016 during a hospital outbreak of MABC linked to heater-cooler units. We analyzed patient characteristics, medical and surgical management, and long-term outcomes. Ten OHT patients and 7 patients with VAD developed extrapulmonary M. abscessus subspecies abscessus infection. The median time from presumed inoculation during cardiac surgery to the first positive culture was 106 days in OHT and 29 days in VAD recipients. The most common sites of positive cultures were blood (n = 12), sternum/mediastinum (n = 8), and the VAD driveline exit site (n = 7). The 14 patients diagnosed when alive received combination antimicrobial therapy for a median of 21 weeks, developed 28 antibiotic-related adverse events, and underwent 27 surgeries. Only 8 (47%) patients survived longer than 12 weeks after diagnosis, including 2 patients with VAD who experienced long-term survival after an explantation of infected VADs and OHT. Despite aggressive medical and surgical management, OHT and VAD patients with MABC infection experienced substantial morbidity and mortality.
Collapse
Affiliation(s)
- Anne E Friedland
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA; Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| | - Eileen K Maziarz
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Cameron R Wolfe
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Chetan B Patel
- Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Priyesh Patel
- Wake Forest University School of Medicine Department of Cardiology, Sanger Heart and Vascular Institute, Atrium Health, Charlotte, North Carolina, USA
| | - Carmelo A Milano
- Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jacob N Schroder
- Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Mani A Daneshmand
- Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine, Durham, North Carolina, USA; Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Richard J Wallace
- Mycobacteria/Nocardia Research Laboratory, Department of Microbiology, University of Texas Health Science Center, Tyler, Texas, USA
| | - Barbara D Alexander
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA; Duke University Clinical Microbiology Laboratory, Durham, North Carolina, USA
| | - Arthur W Baker
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA; Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina, USA
| |
Collapse
|
9
|
Shang J, Peng C, Tang X, Sun Y. PhaVIP: Phage VIrion Protein classification based on chaos game representation and Vision Transformer. Bioinformatics 2023; 39:i30-i39. [PMID: 37387136 DOI: 10.1093/bioinformatics/btad229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
MOTIVATION As viruses that mainly infect bacteria, phages are key players across a wide range of ecosystems. Analyzing phage proteins is indispensable for understanding phages' functions and roles in microbiomes. High-throughput sequencing enables us to obtain phages in different microbiomes with low cost. However, compared to the fast accumulation of newly identified phages, phage protein classification remains difficult. In particular, a fundamental need is to annotate virion proteins, the structural proteins, such as major tail, baseplate, etc. Although there are experimental methods for virion protein identification, they are too expensive or time-consuming, leaving a large number of proteins unclassified. Thus, there is a great demand to develop a computational method for fast and accurate phage virion protein (PVP) classification. RESULTS In this work, we adapted the state-of-the-art image classification model, Vision Transformer, to conduct virion protein classification. By encoding protein sequences into unique images using chaos game representation, we can leverage Vision Transformer to learn both local and global features from sequence "images". Our method, PhaVIP, has two main functions: classifying PVP and non-PVP sequences and annotating the types of PVP, such as capsid and tail. We tested PhaVIP on several datasets with increasing difficulty and benchmarked it against alternative tools. The experimental results show that PhaVIP has superior performance. After validating the performance of PhaVIP, we investigated two applications that can use the output of PhaVIP: phage taxonomy classification and phage host prediction. The results showed the benefit of using classified proteins over all proteins. AVAILABILITY AND IMPLEMENTATION The web server of PhaVIP is available via: https://phage.ee.cityu.edu.hk/phavip. The source code of PhaVIP is available via: https://github.com/KennthShang/PhaVIP.
Collapse
Affiliation(s)
- Jiayu Shang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong (SAR), China
| | - Cheng Peng
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong (SAR), China
| | - Xubo Tang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong (SAR), China
| | - Yanni Sun
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong (SAR), China
| |
Collapse
|
10
|
Opperman CJ, Wojno J, Goosen W, Warren R. Phages for the treatment of Mycobacterium species. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:41-92. [PMID: 37770176 DOI: 10.1016/bs.pmbts.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Highly drug-resistant strains are not uncommon among the Mycobacterium genus, with patients requiring lengthy antibiotic treatment regimens with multiple drugs and harmful side effects. This alarming increase in antibiotic resistance globally has renewed the interest in mycobacteriophage therapy for both Mycobacterium tuberculosis complex and non-tuberculosis mycobacteria. With the increasing number of genetically well-characterized mycobacteriophages and robust engineering tools to convert temperate phages to obligate lytic phages, the phage cache against extensive drug-resistant mycobacteria is constantly expanding. Synergistic effects between phages and TB drugs are also a promising avenue to research, with mycobacteriophages having several additional advantages compared to traditional antibiotics due to their different modes of action. These advantages include less side effects, a narrow host spectrum, biofilm penetration, self-replication at the site of infection and the potential to be manufactured on a large scale. In addition, mycobacteriophage enzymes, not yet in clinical use, warrant further studies with their additional benefits for rupturing host bacteria thereby limiting resistance development as well as showing promise in vitro to act synergistically with TB drugs. Before mycobacteriophage therapy can be envisioned as part of routine care, several obstacles must be overcome to translate in vitro work into clinical practice. Strategies to target intracellular bacteria and selecting phage cocktails to limit cross-resistance remain important avenues to explore. However, insight into pathophysiological host-phage interactions on a molecular level and innovative solutions to transcend mycobacteriophage therapy impediments, offer sufficient encouragement to explore phage therapy. Recently, the first successful clinical studies were performed using a mycobacteriophage-constructed cocktail to treat non-tuberculosis mycobacteria, providing substantial insight into lessons learned and potential pitfalls to avoid in order to ensure favorable outcomes. However, due to mycobacterium strain variation, mycobacteriophage therapy remains personalized, only being utilized in compassionate care cases until there is further regulatory approval. Therefore, identifying the determinants that influence clinical outcomes that can expand the repertoire of mycobacteriophages for therapeutic benefit, remains key for their future application.
Collapse
Affiliation(s)
- Christoffel Johannes Opperman
- National Health Laboratory Service, Green Point TB-Laboratory, Cape Town, South Africa; DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa; Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa.
| | - Justyna Wojno
- Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa; Lancet Laboratories, Cape Town, South Africa
| | - Wynand Goosen
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| | - Rob Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
11
|
O'Connell LM, Coffey A, O'Mahony JM. Alternatives to antibiotics in veterinary medicine: considerations for the management of Johne's disease. Anim Health Res Rev 2023; 24:12-27. [PMID: 37475561 DOI: 10.1017/s146625232300004x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Antibiotic resistance has become a major health concern globally, with current predictions expecting deaths related to resistant infections to surpass those of cancer by 2050. Major efforts are being undertaken to develop derivative and novel alternatives to current antibiotic therapies in human medicine. What appears to be lacking however, are similar efforts into researching the application of those alternatives, such as (bacterio)phage therapy, in veterinary contexts. Agriculture is still undoubtedly the most prominent consumer of antibiotics, with up to 70% of annual antibiotic usage attributed to this sector, despite policies to reduce their use in food animals. This not only increases the risk of resistant infections spreading from farm to community but also the risk that animals may acquire species-specific infections that subvert treatment. While these diseases may not directly affect human welfare, they greatly affect the profit margin of industries reliant on livestock due to the cost of treatments and (more frequently) the losses associated with animal death. This means actively combatting animal infection not only benefits animal welfare but also global economies. In particular, targeting recurring or chronic conditions associated with certain livestock has the potential to greatly reduce financial losses. This can be achieved by developing novel diagnostics to quickly identify ill animals alongside the design of novel therapies. To explore this concept further, this review employs Johne's disease, a chronic gastroenteritis condition that affects ruminants, as a case study to exemplify the benefits of rapid diagnostics and effective treatment of chronic disease, with particular regard to the diagnostic and therapeutic potential of phage.
Collapse
Affiliation(s)
- Laura M O'Connell
- Department of Biological Sciences, Munster Technological University, Rossa Avenue, Bishopstown, Cork, T12 P928, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, Rossa Avenue, Bishopstown, Cork, T12 P928, Ireland
| | - Jim M O'Mahony
- Department of Biological Sciences, Munster Technological University, Rossa Avenue, Bishopstown, Cork, T12 P928, Ireland
| |
Collapse
|
12
|
Avdeev VV, Kuzin VV, Vladimirsky MA, Vasilieva IA. Experimental Studies of the Liposomal Form of Lytic Mycobacteriophage D29 for the Treatment of Tuberculosis Infection. Microorganisms 2023; 11:1214. [PMID: 37317188 DOI: 10.3390/microorganisms11051214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 06/16/2023] Open
Abstract
We have studied the antimycobacterial efficacy of the liposomal preparation of mycobacteriophage D29 on models of tuberculous granuloma in vitro and in the experiment on laboratory mice of the relatively resistant strain C57BL/6, infected with the virulent strain of M. tuberculosis H37Rv. We have shown the preparation of liposomal preparation of the lytic mycobacteriophages and its characteristics. The experiments showed a significant lytic effect of the liposomal form of mycobacteriophage D29 both on the model of tuberculous granuloma formed by human blood mononuclear cells in vitro, which is formed in the presence of Mycobacterium tuberculosis and on the model of tuberculous infection in C57BL/6 mice. Keywords: mycobacteriophage D29, M. tuberculosis, liposomes, tuberculous granuloma in vitro, tuberculosis infection and its treatment.
Collapse
Affiliation(s)
- Vadim Vadimovich Avdeev
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases of the Health Ministry of the Russian Federation, Moscow 103030, Russia
| | - Victor Vladimirovich Kuzin
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases of the Health Ministry of the Russian Federation, Moscow 103030, Russia
| | - Mikhail Aleksandrovich Vladimirsky
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases of the Health Ministry of the Russian Federation, Moscow 103030, Russia
| | - Irina Anatol'evna Vasilieva
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases of the Health Ministry of the Russian Federation, Moscow 103030, Russia
| |
Collapse
|
13
|
Jones JD, Stacey HJ, Brailey A, Suleman M, Langley RJ. Managing Patient and Clinician Expectations of Phage Therapy in the United Kingdom. Antibiotics (Basel) 2023; 12:502. [PMID: 36978369 PMCID: PMC10044641 DOI: 10.3390/antibiotics12030502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Bacteriophage (phage) therapy is a promising alternative antimicrobial approach which has the potential to transform the way we treat bacterial infections. Phage therapy is currently being used on a compassionate basis in multiple countries. Therefore, if a patient has an antibiotic refractory infection, they may expect their clinician to consider and access phage therapy with the hope of improvement. The expectations of clinicians may be similar and may also include expectations around data collection. However, there are multiple biological and practical barriers to fulfilling patient and clinician expectations. While it is possible to access phage therapy, the path to acquisition is not straightforward and expectations therefore need to be managed appropriately to avoid raising false hope and undermining confidence in phage therapy. Phage scientists have an important contribution to make in educating clinicians and the broader public about phage therapy. However, it is clinicians that are responsible for managing the expectations of their patients and this relies on clear communication about the barriers and limitations.
Collapse
Affiliation(s)
- Joshua D. Jones
- Clinical Microbiology, Ninewells Hospital, NHS Tayside, Dundee DD2 1SG, UK
- Infection Medicine, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Helen J. Stacey
- Public Health, Kings Cross Hospital, Clepington Road, Dundee DD3 8EA, UK
| | - Arlene Brailey
- Antibiotic Research UK, Genesis 5, York Science Park, Church Lane, Heslington, York YO10 5DQ, UK
| | - Mehrunisha Suleman
- The Ethox Centre, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford OX3 7LF, UK
| | - Ross J. Langley
- Department of Paediatric Respiratory and Sleep Medicine, Royal Hospital for Children, 1345 Govan Road, Glasgow G51 4TF, UK
- School of Medicine, Dentistry & Nursing, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
14
|
Kumar S, Sau S, Agnivesh PK, Roy A, Kalia NP. Role of transcription termination factor Rho in anti-tuberculosis drug discovery. Drug Discov Today 2023; 28:103490. [PMID: 36638880 DOI: 10.1016/j.drudis.2023.103490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Mycobacterial infections, including multidrug and extreme drug-resistant (MDR and XDR) infections, are a severe challenge and create a virtual antibiotic-deficient era. Bacterial transcription is an established antimicrobial drug target. In mycobacteria, efficient transcription termination relies on the ATP-dependent RNA helicase factor Rho. Rho factor is essential for Mycobacterium tuberculosis (Mtb) survival, and is a valid antibacterial drug target with no homolog in eukaryotes. Rho maintains genomic stability and virulence and prevents pervasive transcription in Mtb. In this review, we provide an overview of the essentiality of Rho in Mtb, which makes it an attractive drug target for inhibitor discovery.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India
| | - Shashikanta Sau
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India
| | - Puja Kumari Agnivesh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India
| | - Arnab Roy
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India
| | - Nitin Pal Kalia
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India.
| |
Collapse
|
15
|
Yi G, Yang F, Labani-Motlagh A, Moreira JD, Ansari D, Bohorquez JA, Patel S, Spagnolo F, Florence J, Vankayalapati A, Vankayalapati R, Dennehy JJDJ, Samten B. Bacteriophage therapy for the treatment of Mycobacterium tuberculosis infections in humanized mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525188. [PMID: 36747734 PMCID: PMC9900801 DOI: 10.1101/2023.01.23.525188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The continuing emergence of new strains of antibiotic-resistant bacteria has renewed interest in phage therapy; however, there has been limited progress in applying phage therapy to multi-drug resistant Mycobacterium tuberculosis (Mtb) infections. In this study, we tested three bacteriophage strains for their Mtb-killing activities and found that two of them efficiently lysed Mtb H37Rv in 7H10 agar plates. However, only phage DS6A efficiently killed H37Rv in liquid culture and in Mtb-infected human primary macrophages. In subsequent experiments, we infected humanized mice with aerosolized H37Rv, then treated these mice with DS6A intravenously to test its in vivo efficacy. We found that DS6A treated mice showed increased body weight and improved pulmonary function relative to control mice. Furthermore, DS6A reduced Mtb load in mouse organs with greater efficacy in the spleen. These results demonstrated the feasibility of developing phage therapy as an effective therapeutic against Mtb infection.
Collapse
|
16
|
Shang J, Tang X, Sun Y. PhaTYP: predicting the lifestyle for bacteriophages using BERT. Brief Bioinform 2023; 24:bbac487. [PMID: 36659812 PMCID: PMC9851330 DOI: 10.1093/bib/bbac487] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/05/2022] [Accepted: 10/15/2022] [Indexed: 11/24/2022] Open
Abstract
Bacteriophages (or phages), which infect bacteria, have two distinct lifestyles: virulent and temperate. Predicting the lifestyle of phages helps decipher their interactions with their bacterial hosts, aiding phages' applications in fields such as phage therapy. Because experimental methods for annotating the lifestyle of phages cannot keep pace with the fast accumulation of sequenced phages, computational method for predicting phages' lifestyles has become an attractive alternative. Despite some promising results, computational lifestyle prediction remains difficult because of the limited known annotations and the sheer amount of sequenced phage contigs assembled from metagenomic data. In particular, most of the existing tools cannot precisely predict phages' lifestyles for short contigs. In this work, we develop PhaTYP (Phage TYPe prediction tool) to improve the accuracy of lifestyle prediction on short contigs. We design two different training tasks, self-supervised and fine-tuning tasks, to overcome lifestyle prediction difficulties. We rigorously tested and compared PhaTYP with four state-of-the-art methods: DeePhage, PHACTS, PhagePred and BACPHLIP. The experimental results show that PhaTYP outperforms all these methods and achieves more stable performance on short contigs. In addition, we demonstrated the utility of PhaTYP for analyzing the phage lifestyle on human neonates' gut data. This application shows that PhaTYP is a useful means for studying phages in metagenomic data and helps extend our understanding of microbial communities.
Collapse
Affiliation(s)
- Jiayu Shang
- Department of Electrical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China SAR
| | - Xubo Tang
- Department of Electrical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China SAR
| | - Yanni Sun
- Department of Electrical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China SAR
| |
Collapse
|
17
|
Maimaiti Z, Li Z, Xu C, Chen J, Chai W. Global trends and hotspots of phage therapy for bacterial infection: A bibliometric visualized analysis from 2001 to 2021. Front Microbiol 2023; 13:1067803. [PMID: 36699585 PMCID: PMC9868171 DOI: 10.3389/fmicb.2022.1067803] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Background Antibiotic resistance is one of the main global threats to human health, and just the development of new antimicrobial medications is not enough to solve the crisis. Phage therapy (PT), a safe and effective treatment method, has reignited the interest of researchers due to its efficacy in the clinical treatment of drug-resistant bacterial infections. There is, however, no bibliometric analysis of the overall trends on this topic. Therefore, this study aims to provide an overview of the current state of development and research in this area. Methods We extracted all relevant publications from the Web of Science Core Collection (WoSCC) database between 2001 and 2021. We performed bibliometric analysis and visualization using CiteSpace, VOS viewer, and R software. Annual trends of publications, countries/regions distributions, institutions, funding agencies, co-cited journals, author contributions, core journals, references, and keywords were analyzed. Results A total of 6,538 papers were enrolled in this study, including 5,364 articles and 1,174 reviews. Publications have increased drastically from 61 in 2001 to 937 in 2021, with 3,659 articles published in the last 5 years. North America, Western Europe, and East Asia were significant contributor regions. The United States, China, and the United Kingdom were the most productive countries. The Polish Academy of Sciences was the most contributive institution. Frontiers in Microbiology and Applied and Environmental Microbiology were the most productive and co-cited journals. A. Gorski and R. Lavigne published most articles in this field, while V. A. Fischetti was the author with the most cited. Regarding keywords, research focuses include phage biology, phage against clinically important pathogens, phage lysis proteins, phage therapy, biofilm-related research, and recent clinical applications. Conclusion Phage therapy is a potential strategy for combating antibiotic resistance, and it will provide us with an alternative therapeutic option for bacterial infection. According to global trends, the scientific output of PT in bacterial infections is increasing, with developed countries such as the United States leading the way in this area. Although the safety and efficacy of PT have been proven, more clinical trials on the phages against infectious diseases caused by various pathogens are still needed.
Collapse
Affiliation(s)
- Zulipikaer Maimaiti
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China,Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhuo Li
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China,School of Medicine, Nankai University, Tianjin, China
| | - Chi Xu
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China,Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jiying Chen
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China,Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China,*Correspondence: Jiying Chen, ; Wei Chai,
| | - Wei Chai
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China,Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China,*Correspondence: Jiying Chen, ; Wei Chai,
| |
Collapse
|
18
|
Zeynali kelishomi F, Khanjani S, Fardsanei F, Saghi Sarabi H, Nikkhahi F, Dehghani B. Bacteriophages of Mycobacterium tuberculosis, their diversity, and potential therapeutic uses: a review. BMC Infect Dis 2022; 22:957. [PMID: 36550444 PMCID: PMC9773572 DOI: 10.1186/s12879-022-07944-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tuberculosis) is a highly infectious disease and worldwide health problem. Based on the WHO TB report, 9 million active TB cases are emerging, leading to 2 million deaths each year. The recent emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) strains emphasizes the necessity to improve novel therapeutic plans. Among the various developing antibacterial approaches, phage therapy is thought to be a precise hopeful resolution. Mycobacteriophages are viruses that infect bacteria such as Mycobacterium spp., containing the M. tuberculosis complex. Phages and phage-derived proteins can act as promising antimicrobial agents. Also, phage cocktails can broaden the spectrum of lysis activity against bacteria. Recent researches have also shown the effective combination of antibiotics and phages to defeat the infective bacteria. There are limitations and concerns about phage therapy. For example, human immune response to phage therapy, transferring antibiotic resistance genes, emerging resistance to phages, and safety issues. So, in the present study, we introduced mycobacteriophages, their use as therapeutic agents, and their advantages and limitations as therapeutic applications.
Collapse
Affiliation(s)
- Fatemeh Zeynali kelishomi
- grid.412606.70000 0004 0405 433XMedical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Susan Khanjani
- grid.412606.70000 0004 0405 433XMedical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fatemeh Fardsanei
- grid.412606.70000 0004 0405 433XMedical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hediyeh Saghi Sarabi
- grid.412606.70000 0004 0405 433XMedical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farhad Nikkhahi
- grid.412606.70000 0004 0405 433XMedical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Behzad Dehghani
- grid.412571.40000 0000 8819 4698Department of Bacteriology-Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Elbehiry A, Marzouk E, Abalkhail A, El-Garawany Y, Anagreyyah S, Alnafea Y, Almuzaini AM, Alwarhi W, Rawway M, Draz A. The Development of Technology to Prevent, Diagnose, and Manage Antimicrobial Resistance in Healthcare-Associated Infections. Vaccines (Basel) 2022; 10:2100. [PMID: 36560510 PMCID: PMC9780923 DOI: 10.3390/vaccines10122100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
There is a growing risk of antimicrobial resistance (AMR) having an adverse effect on the healthcare system, which results in higher healthcare costs, failed treatments and a higher death rate. A quick diagnostic test that can spot infections resistant to antibiotics is essential for antimicrobial stewardship so physicians and other healthcare professionals can begin treatment as soon as possible. Since the development of antibiotics in the last two decades, traditional, standard antimicrobial treatments have failed to treat healthcare-associated infections (HAIs). These results have led to the development of a variety of cutting-edge alternative methods to combat multidrug-resistant pathogens in healthcare settings. Here, we provide an overview of AMR as well as the technologies being developed to prevent, diagnose, and control healthcare-associated infections (HAIs). As a result of better cleaning and hygiene practices, resistance to bacteria can be reduced, and new, quick, and accurate instruments for diagnosing HAIs must be developed. In addition, we need to explore new therapeutic approaches to combat diseases caused by resistant bacteria. In conclusion, current infection control technologies will be crucial to managing multidrug-resistant infections effectively. As a result of vaccination, antibiotic usage will decrease and new resistance mechanisms will not develop.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32511, Egypt
| | - Eman Marzouk
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Yasmine El-Garawany
- Clinical Pharmacy Program, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Sulaiman Anagreyyah
- Department of Preventive Medicine, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Yaser Alnafea
- Department of Statistics, King Fahad Armed Hospital, Jeddah 23311, Saudi Arabia
| | - Abdulaziz M. Almuzaini
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Waleed Alwarhi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Rawway
- Biology Department, College of Science, Jouf University, Sakaka 42421, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Abdelmaged Draz
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
20
|
Anyaegbunam NJ, Anekpo CC, Anyaegbunam ZKG, Doowuese Y, Chinaka CB, Odo OJ, Sharndama HC, Okeke OP, Mba IE. The resurgence of phage-based therapy in the era of increasing antibiotic resistance: From research progress to challenges and prospects. Microbiol Res 2022; 264:127155. [PMID: 35969943 DOI: 10.1016/j.micres.2022.127155] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/23/2022]
Abstract
Phage therapy was implemented almost a century ago but was subsequently abandoned when antibiotics emerged. However, the rapid emergence of drug-resistant, which has brought to the limelight situation reminiscent of the pre-antibiotic era, coupled with the unavailability of new drugs, has triggered the quest for an alternative therapeutic approach, and this has led to the rebirth of phage-derived therapy. Phages are viruses that infect and replicate in bacterial cells. Phage therapy, especially phage-derived proteins, is being given considerable attention among scientists as an antimicrobial agent. They are used alone or in combination with other biomaterials for improved biological activity. Over the years, much has been learned about the genetics and diversity of bacteriophages. Phage cocktails are currently being exploited for treating several infectious diseases as preliminary studies involving animal models and clinical trials show promising therapeutic efficacy. However, despite its numerous advantages, this approach has several challenges and unaddressed limitations. Addressing these issues requires lots of creativity and innovative ideas from interdisciplinary fields. However, with all available indications, phage therapy could hold the solution in this era of increasing antibiotic resistance. This review discussed the potential use of phages and phage-derived proteins in treating drug-resistant bacterial infections. Finally, we highlight the progress, challenges, and knowledge gaps and evaluate key questions requiring prompt attention for the full clinical application of phage therapy.
Collapse
Affiliation(s)
| | - Chijioke Chinedu Anekpo
- Department of Ear Nose and Throat (ENT), College of Medicine, Enugu state University of Science and Technology, Enugu, Nigeria
| | - Zikora Kizito Glory Anyaegbunam
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria Nsukka, Nigeria; Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Yandev Doowuese
- Department of Microbiology, Federal University of Health Sciences, Otukpo, Nigeria
| | | | | | | | | | | |
Collapse
|
21
|
Complete Genome Sequence of Mycobacteriophage IgnatiusPatJac. Microbiol Resour Announc 2022; 11:e0066422. [PMID: 36129274 PMCID: PMC9584200 DOI: 10.1128/mra.00664-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IgnatiusPatJac is a
Siphoviridae
mycobacteriophage capable of lytic infection in
Mycobacterium smegmatis
and
Mycobacterium tuberculosis
. It was isolated from damp soil in Johannesburg, South Africa. The 51,164-bp double-stranded DNA genome has a GC content of 63.6%, predicted to encode 93 genes. IgnatiusPatJac is classified as an A1 subcluster mycobacteriophage.
Collapse
|
22
|
Doss JH, Barekzi N, Gauthier DT. Improving high-throughput techniques for bacteriophage discovery in multi-well plates. METHODS IN MICROBIOLOGY 2022; 200:106542. [PMID: 35882287 DOI: 10.1016/j.mimet.2022.106542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/21/2022] [Accepted: 07/16/2022] [Indexed: 10/16/2022]
Abstract
Bacteriophages (also called phages) are viruses of bacteria that have numerous applications in medicine, agriculture, ecology, and molecular biology. With the increasing interest in phages for their many uses, it is now especially important to make phage discovery more efficient and economical. Using the host Mycobacterium smegmatis mc2155, which is a model organism for phage discovery research and is closely related to important pathogens of humans and other animals, we investigated three procedures that are an integral part of phage discovery: enrichment of environmental samples, phage isolation and detection (which can also be used for host range determination), and phage purification. Enrichment in 6-well plates was successful with most environmental samples, and enrichment in 24- and 96-well plates was successful with some environmental samples, demonstrating that larger sample volumes are preferred when possible, but smaller sample volumes may be acceptable if the starting concentration of phages is sufficiently high. Measuring absorbance in multi-well plates was at least as sensitive as the traditional plaque assay for the detection of phages. We also demonstrated a technique for the purification of single phage types from mixed cultures in liquid medium. Multi-well techniques can be used as alternatives or complementary approaches to traditional methods of phage discovery and characterization depending on the needs of the researcher in terms of time, available resources, host species, phage-bacteria matches, and specific goals. In the future, these techniques could be applied to the discovery of phages of aquatic mycobacteria and other hosts for which few phages have currently been isolated.
Collapse
Affiliation(s)
- Janis H Doss
- The Association of Public Health Laboratories, Silver Spring, MD, USA.
| | - Nazir Barekzi
- Department of Biology, Norfolk State University, Norfolk, VA, USA.
| | - David T Gauthier
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA.
| |
Collapse
|
23
|
Novel approaches for the treatment of infections due to multidrug-resistant bacterial pathogens. Future Med Chem 2022; 14:1133-1148. [PMID: 35861021 DOI: 10.4155/fmc-2022-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance (AMR), which is a major challenge for global healthcare, emerging because of several reasons including overpopulation, increased global migration and selection pressure due to enhanced use of antibiotics. Antibiotics are the widely used therapeutic options to combat infectious diseases; however, unfortunately, inadequate and irregular antibiotic courses are also major contributing factors in the emergence of AMR. Additionally, persistent failure to develop and commercialize new antibiotics has created the scarcity of effective anti-infective drugs. Thus, there is an urgent need for a new class of antimicrobials and other novel approaches to curb the menace of AMR. Besides the conventional approaches, some novel approaches such as the use of antimicrobial peptides, bacteriophages, immunomodulation, host-directed therapy and antibodies have shown really promising potentials.
Collapse
|
24
|
Hosseiniporgham S, Sechi LA. A Review on Mycobacteriophages: From Classification to Applications. Pathogens 2022; 11:777. [PMID: 35890022 PMCID: PMC9317374 DOI: 10.3390/pathogens11070777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Mycobacterial infections are a group of life-threatening conditions triggered by fast- or slow-growing mycobacteria. Some mycobacteria, such as Mycobacterium tuberculosis, promote the deaths of millions of lives throughout the world annually. The control of mycobacterial infections is influenced by the challenges faced in the diagnosis of these bacteria and the capability of these pathogens to develop resistance against common antibiotics. Detection of mycobacterial infections is always demanding due to the intracellular nature of these pathogens that, along with the lipid-enriched structure of the cell wall, complicates the access to the internal contents of mycobacterial cells. Moreover, recent studies depicted that more than 20% of M. tuberculosis (Mtb) infections are multi-drug resistant (MDR), and only 50% of positive MDR-Mtb cases are responsive to standard treatments. Similarly, the susceptibility of nontuberculosis mycobacteria (NTM) to first-line tuberculosis antibiotics has also declined in recent years. Exploiting mycobacteriophages as viruses that infect mycobacteria has significantly accelerated the diagnosis and treatment of mycobacterial infections. This is because mycobacteriophages, regardless of their cycle type (temperate/lytic), can tackle barriers in the mycobacterial cell wall and make the infected bacteria replicate phage DNA along with their DNA. Although the infectivity of the majority of discovered mycobacteriophages has been evaluated in non-pathogenic M. smegmatis, more research is still ongoing to find mycobacteriophages specific to pathogenic mycobacteria, such as phage DS6A, which has been shown to be able to infect members of the M. tuberculosis complex. Accordingly, this review aimed to introduce some potential mycobacteriophages in the research, specifically those that are infective to the three troublesome mycobacteria, M. tuberculosis, M. avium subsp. paratuberculosis (MAP), and M. abscessus, highlighting their theranostic applications in medicine.
Collapse
Affiliation(s)
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Microbiology and Virology, Azienda Ospedaliera Universitaria (AOU) Sassari, 07100 Sassari, Italy
| |
Collapse
|
25
|
Shang J, Tang X, Guo R, Sun Y. Accurate identification of bacteriophages from metagenomic data using Transformer. Brief Bioinform 2022; 23:6620872. [PMID: 35769000 PMCID: PMC9294416 DOI: 10.1093/bib/bbac258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/22/2022] [Accepted: 06/04/2022] [Indexed: 11/20/2022] Open
Abstract
Motivation Bacteriophages are viruses infecting bacteria. Being key players in microbial communities, they can regulate the composition/function of microbiome by infecting their bacterial hosts and mediating gene transfer. Recently, metagenomic sequencing, which can sequence all genetic materials from various microbiome, has become a popular means for new phage discovery. However, accurate and comprehensive detection of phages from the metagenomic data remains difficult. High diversity/abundance, and limited reference genomes pose major challenges for recruiting phage fragments from metagenomic data. Existing alignment-based or learning-based models have either low recall or precision on metagenomic data. Results In this work, we adopt the state-of-the-art language model, Transformer, to conduct contextual embedding for phage contigs. By constructing a protein-cluster vocabulary, we can feed both the protein composition and the proteins’ positions from each contig into the Transformer. The Transformer can learn the protein organization and associations using the self-attention mechanism and predicts the label for test contigs. We rigorously tested our developed tool named PhaMer on multiple datasets with increasing difficulty, including quality RefSeq genomes, short contigs, simulated metagenomic data, mock metagenomic data and the public IMG/VR dataset. All the experimental results show that PhaMer outperforms the state-of-the-art tools. In the real metagenomic data experiment, PhaMer improves the F1-score of phage detection by 27%.
Collapse
Affiliation(s)
- Jiayu Shang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong (SAR), China
| | - Xubo Tang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong (SAR), China
| | - Ruocheng Guo
- School of Data Science, City University of Hong Kong, Hong Kong (SAR), China
| | - Yanni Sun
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong (SAR), China
| |
Collapse
|
26
|
Nasser A, Mosadegh M, Azimi T, Shariati A. Molecular mechanisms of Shigella effector proteins: a common pathogen among diarrheic pediatric population. Mol Cell Pediatr 2022; 9:12. [PMID: 35718793 PMCID: PMC9207015 DOI: 10.1186/s40348-022-00145-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 05/06/2022] [Indexed: 12/16/2022] Open
Abstract
Different gastrointestinal pathogens cause diarrhea which is a very common problem in children aged under 5 years. Among bacterial pathogens, Shigella is one of the main causes of diarrhea among children, and it accounts for approximately 11% of all deaths among children aged under 5 years. The case-fatality rates for Shigella among the infants and children aged 1 to 4 years are 13.9% and 9.4%, respectively. Shigella uses unique effector proteins to modulate intracellular pathways. Shigella cannot invade epithelial cells on the apical site; therefore, it needs to pass epithelium through other cells rather than the epithelial cell. After passing epithelium, macrophage swallows Shigella, and the latter should prepare itself to exhibit at least two types of responses: (I) escaping phagocyte and (II) mediating invasion of and injury to the recurrent PMN. The presence of PMN and invitation to a greater degree resulted in gut membrane injuries and greater bacterial penetration. Infiltration of Shigella to the basolateral space mediates (A) cell attachment, (B) cell entry, (C) evasion of autophagy recognition, (D) vacuole formation and and vacuole rapture, (E) intracellular life, (F) Shiga toxin, and (G) immune response. In this review, an attempt is made to explain the role of each factor in Shigella infection.
Collapse
Affiliation(s)
- Ahmad Nasser
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Mosadegh
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aref Shariati
- Molecular and medicine research center, Khomein University of Medical Sciences, Khomein, Iran
| |
Collapse
|
27
|
Gleeson LE, Waterer G. Beyond antibiotics: recent developments in the diagnosis and management of nontuberculous mycobacterial infection. Breathe (Sheff) 2022; 18:210171. [PMID: 36337137 PMCID: PMC9584569 DOI: 10.1183/20734735.0171-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) pulmonary disease represents a significant clinical challenge with suboptimal therapy and increasing prevalence globally. Although clinical practice guidelines seek to standardise the approach to diagnosis and treatment of NTM disease, a lack of robust evidence limits their utility and significant variability exists in clinical practice. Here we walk through some novel approaches in diagnosis and therapy that are under development to tackle a disease where traditional strategies are failing. Prevalence of NTM disease is rising globally, yet current diagnostic and therapeutic strategies are lacking. This review describes some burgeoning diagnostic and therapeutic approaches, but it is clear that real progress will need more focused attention.https://bit.ly/3O0K2SP
Collapse
|
28
|
New therapies for nontuberculous mycobacterial lung infection. Curr Opin Infect Dis 2022; 35:176-184. [PMID: 34966084 DOI: 10.1097/qco.0000000000000815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Although nontuberculous mycobacterial pulmonary disease is increasing in incidence, outcomes remain less than optimal highlighting the unmet need for developing novel therapies. RECENT FINDINGS Several new antibiotic formulations, novel antibiotics, and novel nonantibiotic treatments have recently demonstrated positive results in treating nontuberculous mycobacterial pulmonary disease. SUMMARY Promising novel therapies are currently under investigation fueling much needed interest and enthusiasm in the nontuberculous mycobacterial pulmonary disease space and will hopefully lead to improved understanding and outcomes in this complex disease.
Collapse
|
29
|
Sengupta S, Bhawsinghka N, Shaw R, Patra MM, Das Gupta SK. Mycobacteriophage D29 induced association of Mycobacterial RNA polymerase with ancillary factors leads to increased transcriptional activity. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35353035 DOI: 10.1099/mic.0.001158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mycobacteriophage D29 infects species belonging to the genus Mycobacterium including the deadly pathogen Mycobacterium tuberculosis. D29 is a lytic phage, although, related to the lysogenic mycobacteriophage L5. This phage is unable to lysogenize in mycobacteria as it lacks the gene encoding the phage repressor. Infection by many mycobacteriophages cause various changes in the host that ultimately leads to inactivation of the latter. One of the host targets often modified in the process is RNA polymerase. During our investigations with phage D29 infected Mycobacterium smegmatis (Msm) we observed that the promoters from both phage, and to a lesser extent those of the host were found to be more active in cells that were exposed to D29, as compared to the unexposed. Further experiments indicate that the RNA polymerase purified from phage infected cells possessed higher affinity for promoters particularly those that were phage derived. Comparison of the purified RNA polymerase preparations from infected and uninfected cells showed that several ancillary transcription factors, Sigma factor F, Sigma factor H, CarD and RbpA are prominently associated with the RNA polymerase from infected cells. Based on our observations we conclude that the higher activity of RNA polymerase observed in D29 infected cells is due to its increased association with ancillary transcription factors.
Collapse
Affiliation(s)
- Shreya Sengupta
- Department of Microbiology, Bose Institute, P-1/12 C.I.T Road. Scheme VIIM, Kolkata-700054, West Bengal, India
| | - Niketa Bhawsinghka
- Department of Microbiology, Bose Institute, P-1/12 C.I.T Road. Scheme VIIM, Kolkata-700054, West Bengal, India.,Present address: Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Rahul Shaw
- Department of Microbiology, Bose Institute, P-1/12 C.I.T Road. Scheme VIIM, Kolkata-700054, West Bengal, India
| | - Madhu Manti Patra
- Department of Microbiology, Bose Institute, P-1/12 C.I.T Road. Scheme VIIM, Kolkata-700054, West Bengal, India
| | - Sujoy K Das Gupta
- Department of Microbiology, Bose Institute, P-1/12 C.I.T Road. Scheme VIIM, Kolkata-700054, West Bengal, India
| |
Collapse
|
30
|
Chaudhary N, Mohan B, Mavuduru RS, Kumar Y, Taneja N. Characterization, genome analysis and in vitro activity of a novel phage vB_EcoA_RDN8.1 active against multi-drug resistant and extensively drug-resistant biofilm-forming uropathogenic Escherichia coli isolates, India. J Appl Microbiol 2022; 132:3387-3404. [PMID: 34989075 DOI: 10.1111/jam.15439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/23/2022]
Abstract
AIM We aimed to study host range, stability, genome and antibiofilm activity of a novel phage vB_EcoA_RDN8.1 active against multi-drug resistant (MDR) and extensively drug-resistant (XDR) biofilm-forming uropathogenic Escherichia coli isolates. METHODS AND RESULTS A novel lytic phage vB_EcoA_RDN8.1 active against UPEC strains resistant to third-generation cephalosporins, fluoroquinolones, aminoglycosides, imipenem, beta-lactamase inhibitor combination and polymyxins was isolated from community raw sewage water of Chandigarh. It exhibited a clear plaque morphology and a burst size of 250. In the time-kill assay, the maximum amount of killing was achieved at MOI 1.0. vB_EcoA_RDN8.1 belongs to the family Autographiviridae, has a genome size of 39.5 kb with a GC content of 51.6%. It was stable over a wide range of temperatures and pH. It was able to inhibit biofilm formation which may be related to an endolysin encoded by ORF 19. CONCLUSIONS The vB_EcoA_RDN8.1 is a novel lytic phage that has the potential for inclusion into phage cocktails being developed for the treatment of urinary tract infections (UTIs) caused by highly drug-resistant UPEC. SIGNIFICANCE AND IMPACT OF THE STUDY We provide a detailed characterization of a novel lytic Escherichia phage with antibiofilm activity having a potential application against MDR and XDR UPEC causing UTIs.
Collapse
Affiliation(s)
- Naveen Chaudhary
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Balvinder Mohan
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ravimohan S Mavuduru
- Department of Urology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yashwant Kumar
- Central Research Institute, National Salmonella and Escherichia Centre, Kasauli, India
| | - Neelam Taneja
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
31
|
Shariati A, Vesal S, Khoshbayan A, Goudarzi P, Darban-Sarokhalil D, Razavi S, Didehdar M, Chegini Z. Novel strategies for inhibition of bacterial biofilm in chronic rhinosinusitis. J Appl Microbiol 2021; 132:2531-2546. [PMID: 34856045 DOI: 10.1111/jam.15398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/18/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022]
Abstract
An important role has been recently reported for bacterial biofilm in the pathophysiology of chronic diseases, such as chronic rhinosinusitis (CRS). CRS, affecting sinonasal mucosa, is a persistent inflammatory condition with a high prevalence around the world. Although the exact pathological mechanism of this disease has not been elicited yet, biofilm formation is known to lead to a more significant symptom burden and major objective clinical indicators. The high prevalence of multidrug-resistant bacteria has severely restricted the application of antibiotics in recent years. Furthermore, systemic antibiotic therapy, on top of its insufficient concentration to eradicate bacteria in the sinonasal biofilm, often causes toxicity, antibiotic resistance, and an effect on the natural microbiota, in patients. Thus, coming up with alternative therapeutic options instead of systemic antibiotic therapy is emphasized in the treatment of bacterial biofilm in CRS patients. The use of topical antibiotic therapy and antibiotic eluting sinus stents that induce higher antibiotic concentration, and decrease side effects could be helpful. Besides, recent research recognized that various natural products, nitric oxide, and bacteriophage therapy, in addition to the hindered biofilm formation, could degrade the established bacterial biofilm. However, despite these improvements, new antibacterial agents and CRS biofilm interactions are complicated and need extensive research. Finally, most studies were performed in vitro, and more preclinical animal models and human studies are required to confirm the collected data. The present review is specifically discussing potential therapeutic strategies for the treatment of bacterial biofilm in CRS patients.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Soheil Vesal
- Department of Molecular Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parnian Goudarzi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Didehdar
- Department of Medical Parasitology and Mycology, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Diacon AH, Guerrero-Bustamante CA, Rosenkranz B, Rubio Pomar FJ, Vanker N, Hatfull GF. Mycobacteriophages to Treat Tuberculosis: Dream or Delusion? Respiration 2021; 101:1-15. [PMID: 34814151 DOI: 10.1159/000519870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/10/2021] [Indexed: 11/19/2022] Open
Abstract
Rates of antimicrobial resistance are increasing globally while the pipeline of new antibiotics is drying up, putting patients with disease caused by drug-resistant bacteria at increased risk of complications and death. The growing costs for diagnosis and management of drug resistance threaten tuberculosis control where the disease is endemic and resources limited. Bacteriophages are viruses that attack bacteria. Phage preparations served as anti-infective agents long before antibiotics were discovered. Though small in size, phages are the most abundant and diverse biological entity on earth. Phages have co-evolved with their hosts and possess all the tools needed to infect and kill bacteria, independent of drug resistance. Modern biotechnology has improved our understanding of the biology of phages and their possible uses. Phage preparations are available to treat meat, fruit, vegetables, and dairy products against parasites or to prevent contamination with human pathogens, such as Listeria monocytogenes, Escherichia coli, or Staphylococcus aureus. Such phage-treated products are considered fit for human consumption. A number of recent case reports describe in great detail the successful treatment of highly drug-resistant infections with individualized phage preparations. Formal clinical trials with standardized products are slowly emerging. With its highly conserved genome and relative paucity of natural phage defence mechanisms Mycobacterium tuberculosis appears to be a suitable target for phage treatment. A phage cocktail with diverse and strictly lytic phages that kill all lineages of M. tuberculosis, and can be propagated on Mycobacterium smegmatis, has been assembled and is available for the evaluation of optimal dosage and suitable routes of administration for tuberculosis in humans. Phage treatment can be expected to be safe and active on extracellular organisms, but phage penetration to intracellular and granulomatous environments as well as synergistic effects with antibiotics are important questions to address during further evaluation.
Collapse
Affiliation(s)
| | | | - Bernd Rosenkranz
- Division of Pharmacology, Stellenbosch University, Cape Town, South Africa.,Fundisa African Academy of Medicines Development, Cape Town, South Africa
| | | | | | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
33
|
Shield CG, Swift BMC, McHugh TD, Dedrick RM, Hatfull GF, Satta G. Application of Bacteriophages for Mycobacterial Infections, from Diagnosis to Treatment. Microorganisms 2021; 9:2366. [PMID: 34835491 PMCID: PMC8617706 DOI: 10.3390/microorganisms9112366] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium tuberculosis and other non-tuberculous mycobacteria are responsible for a variety of different infections affecting millions of patients worldwide. Their diagnosis is often problematic and delayed until late in the course of disease, requiring a high index of suspicion and the combined efforts of clinical and laboratory colleagues. Molecular methods, such as PCR platforms, are available, but expensive, and with limited sensitivity in the case of paucibacillary disease. Treatment of mycobacterial infections is also challenging, typically requiring months of multiple and combined antibiotics, with associated side effects and toxicities. The presence of innate and acquired drug resistance further complicates the picture, with dramatic cases without effective treatment options. Bacteriophages (viruses that infect bacteria) have been used for decades in Eastern Europe for the treatment of common bacterial infections, but there is limited clinical experience of their use in mycobacterial infections. More recently, bacteriophages' clinical utility has been re-visited and their use has been successfully demonstrated both as diagnostic and treatment options. This review will focus specifically on how mycobacteriophages have been used recently in the diagnosis and treatment of different mycobacterial infections, as potential emerging technologies, and as an alternative treatment option.
Collapse
Affiliation(s)
- Christopher G. Shield
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK;
| | - Benjamin M. C. Swift
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK;
| | - Timothy D. McHugh
- Centre for Clinical Microbiology, University College London, London NW3 2PF, UK; (T.D.M.); (G.S.)
| | - Rebekah M. Dedrick
- Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA; (R.M.D.); (G.F.H.)
| | - Graham F. Hatfull
- Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA; (R.M.D.); (G.F.H.)
| | - Giovanni Satta
- Centre for Clinical Microbiology, University College London, London NW3 2PF, UK; (T.D.M.); (G.S.)
| |
Collapse
|
34
|
The key factors contributing to the risk, diagnosis and treatment of non-tuberculous mycobacterial opportunistic infections. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The incidence and prevalence of diseases caused by non-tuberculous mycobacteria (NTM) have been steadily increasing worldwide. NTM are environmental saprophytic organisms; however, a few strains are known to produce diseases in humans affecting pulmonary and extra-pulmonary sites. Although the environment is a major source of NTM infection, recent studies have shown that person-to-person dissemination could be an important transmission route for these microorganisms. Structural and functional lung defects and immunodeficiency are major risk factors for acquiring NTM infections. Diagnosis of NTM diseases is very complex owing to the necessity of distinguishing between a true pathogen and an environmental contaminant. Identification at the species level is critical due to differences in the antibiotic susceptibility patterns of various NTM strains. Such identification is mainly achieved by molecular methods; additionally, mass spectrometry (e.g., MALDI-TOF) is useful for NTM species determination. Natural resistance of NTM species to a wide spectrum of antibiotics makes prescribing treatment for NTM diseases very difficult. NTM therapy usually takes more than one year and requires multi-drug regimens, yet the outcome often remains poor. Therefore, alternatives to antibiotic therapy treatment methods is an area under active exploration. NTM infections are an active global health problem imposing the necessity for better diagnostic tools and more effective treatment methods.
Collapse
|
35
|
Crane A, Versoza CJ, Hua T, Kapoor R, Lloyd L, Mehta R, Menolascino J, Morais A, Munig S, Patel Z, Sackett D, Schmit B, Sy M, Pfeifer SP. Phylogenetic relationships and codon usage bias amongst cluster K mycobacteriophages. G3 (BETHESDA, MD.) 2021; 11:6353607. [PMID: 34849792 PMCID: PMC8527509 DOI: 10.1093/g3journal/jkab291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/09/2021] [Indexed: 01/21/2023]
Abstract
Bacteriophages infecting pathogenic hosts play an important role in medical research, not only as potential treatments for antibiotic-resistant infections but also offering novel insights into pathogen genetics and evolution. A prominent example is cluster K mycobacteriophages infecting Mycobacterium tuberculosis, a causative agent of tuberculosis in humans. However, as handling M. tuberculosis as well as other pathogens in a laboratory remains challenging, alternative nonpathogenic relatives, such as Mycobacterium smegmatis, are frequently used as surrogates to discover therapeutically relevant bacteriophages in a safer environment. Consequently, the individual host ranges of the majority of cluster K mycobacteriophages identified to date remain poorly understood. Here, we characterized the complete genome of Stinson, a temperate subcluster K1 mycobacteriophage with a siphoviral morphology. A series of comparative genomic analyses revealed strong similarities with other cluster K mycobacteriophages, including the conservation of an immunity repressor gene and a toxin/antitoxin gene pair. Patterns of codon usage bias across the cluster offered important insights into putative host ranges in nature, highlighting that although all cluster K mycobacteriophages are able to infect M. tuberculosis, they are less likely to have shared an evolutionary infection history with Mycobacterium leprae (underlying leprosy) compared to the rest of the genus’ host species. Moreover, subcluster K1 mycobacteriophages are able to integrate into the genomes of Mycobacterium abscessus and Mycobacterium marinum—two bacteria causing pulmonary and cutaneous infections which are often difficult to treat due to their drug resistance.
Collapse
Affiliation(s)
- Adele Crane
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Cyril J Versoza
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Tiana Hua
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Rohan Kapoor
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Lillian Lloyd
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Rithik Mehta
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | | | - Abraham Morais
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Saige Munig
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Zeel Patel
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Daniel Sackett
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Brandon Schmit
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Makena Sy
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Susanne P Pfeifer
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
- Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85281, USA
- Corresponding author: School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85281, USA.
| |
Collapse
|
36
|
Formulation strategies for bacteriophages to target intracellular bacterial pathogens. Adv Drug Deliv Rev 2021; 176:113864. [PMID: 34271022 DOI: 10.1016/j.addr.2021.113864] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022]
Abstract
Bacteriophages (Phages) are antibacterial viruses that are unaffected by antibiotic drug resistance. Many Phase I and Phase II phage therapy clinical trials have shown acceptable safety profiles. However, none of the completed trials could yield data supporting the promising observations noted in the experimental phage therapy. These trials have mainly focused on phage suspensions without enough attention paid to the stability of phage during processing, storage, and administration. This is important because in vivo studies have shown that the effectiveness of phage therapy greatly depends on the ratio of phage to bacterial concentrations (multiplicity of infection) at the infection site. Additionally, bacteria can evade phages through the development of phage-resistance and intracellular residence. This review focuses on the use of phage therapy against bacteria that survive within the intracellular niches. Recent research on phage behavior reveals that some phage can directly interact with, get internalized into, and get transcytosed across mammalian cells, prompting further research on the governing mechanisms of these interactions and the feasibility of harnessing therapeutic phage to target intracellular bacteria. Advances to improve the capability of phage attacking intracellular bacteria using formulation approaches such as encapsulating/conjugating phages into/with vector carriers via liposomes, polymeric particles, inorganic nanoparticles, and cell penetrating peptides, are summarized. While promising progress has been achieved, research in this area is still in its infancy and warrants further attention.
Collapse
|
37
|
Ongenae V, Briegel A, Claessen D. Cell wall deficiency as an escape mechanism from phage infection. Open Biol 2021; 11:210199. [PMID: 34465216 PMCID: PMC8437236 DOI: 10.1098/rsob.210199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/09/2021] [Indexed: 01/04/2023] Open
Abstract
The cell wall plays a central role in protecting bacteria from some environmental stresses, but not against all. In fact, in some cases, an elaborate cell envelope may even render the cell more vulnerable. For example, it contains molecules or complexes that bacteriophages recognize as the first step of host invasion, such as proteins and sugars, or cell appendages such as pili or flagella. In order to counteract phages, bacteria have evolved multiple escape mechanisms, such as restriction-modification, abortive infection, CRISPR/Cas systems or phage inhibitors. In this perspective review, we present the hypothesis that bacteria may have additional means to escape phage attack. Some bacteria are known to be able to shed their cell wall in response to environmental stresses, yielding cells that transiently lack a cell wall. In this wall-less state, the bacteria may be temporarily protected against phages, since they lack the essential entities that are necessary for phage binding and infection. Given that cell wall deficiency can be triggered by clinically administered antibiotics, phage escape could be an unwanted consequence that limits the use of phage therapy for treating stubborn infections.
Collapse
Affiliation(s)
- Véronique Ongenae
- Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Ariane Briegel
- Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
38
|
Fayez MS, Hakim TA, Agwa MM, Abdelmoteleb M, Aly RG, Montaser NN, Abdelsattar AS, Rezk N, El-Shibiny A. Topically Applied Bacteriophage to Control Multi-Drug Resistant Klebsiella pneumoniae Infected Wound in a Rat Model. Antibiotics (Basel) 2021; 10:antibiotics10091048. [PMID: 34572629 PMCID: PMC8470685 DOI: 10.3390/antibiotics10091048] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022] Open
Abstract
(Background): Multi-drug-resistant Klebsiella pneumoniae (MDR-KP) has steadily grown beyond antibiotic control. Wound infection kills many patients each year, due to the entry of multi-drug resistant (MDR) bacterial pathogens into the skin gaps. However, a bacteriophage (phage) is considered to be a potential antibiotic alternative for treating bacterial infections. This research aims at isolating and characterizing a specific phage and evaluate its topical activity against MDR-KP isolated from infected wounds. (Methods): A lytic phage ZCKP8 was isolated by using a clinical isolate KP/15 as a host strain then characterized. Additionally, phage was assessed for its in vitro host range, temperature, ultraviolet (UV), and pH sensitivity. The therapeutic efficiency of phage suspension and a phage-impeded gel vehicle were assessed in vivo against a K. pneumoniae infected wound on a rat model. (Result): The phage produced a clear plaque and was classified as Siphoviridae. The phage inhibited KP/15 growth in vitro in a dose-dependent pattern and it was found to resist high temperature (˂70 °C) and was primarily active at pH 5; moreover, it showed UV stability for 45 min. Phage-treated K. pneumoniae inoculated wounds showed the highest healing efficiency by lowering the infection. The quality of the regenerated skin was evidenced via histological examination compared to the untreated control group. (Conclusions): This research represents the evidence of effective phage therapy against MDR-KP.
Collapse
Affiliation(s)
- Mohamed S. Fayez
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt; (M.S.F.); (A.S.A.); (N.R.)
| | - Toka A. Hakim
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 11223, Egypt; (T.A.H.); (N.N.M.)
| | - Mona M. Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Mohamed Abdelmoteleb
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
| | - Rania G. Aly
- Department of Surgical Pathology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt;
| | - Nada N. Montaser
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 11223, Egypt; (T.A.H.); (N.N.M.)
| | - Abdallah S. Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt; (M.S.F.); (A.S.A.); (N.R.)
- Center for X-ray and Determination of Structure of Matter, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Nouran Rezk
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt; (M.S.F.); (A.S.A.); (N.R.)
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt; (M.S.F.); (A.S.A.); (N.R.)
- Faculty of Environmental Agricultural Sciences, Arish University, Arish 45511, Egypt
- Correspondence:
| |
Collapse
|
39
|
Śliwka P, Ochocka M, Skaradzińska A. Applications of bacteriophages against intracellular bacteria. Crit Rev Microbiol 2021; 48:222-239. [PMID: 34428105 DOI: 10.1080/1040841x.2021.1960481] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Infectious diseases pose a significant threat to both human and animal populations. Intracellular bacteria are a group of pathogens that invade and survive within the interior of eukaryotic cells, which in turn protect them from antibacterial drugs and the host immune system. Limited penetration of antibacterials into host cells results in insufficient bacterial clearance and treatment failure. Bacteriophages have, over the decades, been proved to play an important role in combating bacterial infections (phage therapy), making them an important alternative to classical antibiotic strategies today. Phages have been found to be effective at killing various species of extracellular bacteria, but little is still known about how phages control intracellular infections. With advances in phage genomics and mechanisms of delivery and cell uptake, the development of phage-based antibacterial strategies to address the treatment of intracellular bacteria has general potential. In this review, we present the current state of knowledge regarding the application of bacteriophages against intracellular bacteria. We cover phage deployment against the most common intracellular pathogens with special attention to therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Paulina Śliwka
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Marta Ochocka
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Aneta Skaradzińska
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
40
|
Abstract
Actinobacteriophages are viruses that infect bacterial hosts in the phylum Actinobacteria. More than 17,000 actinobacteriophages have been described and over 3,000 complete genome sequences reported, resulting from large-scale, high-impact, integrated research-education initiatives such as the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Sciences (SEA-PHAGES) program. Their genomic diversity is enormous; actinobacteriophages comprise many architecturally mosaic genomes with distinct DNA sequences. Their genome diversity is driven by the highly dynamic interactions between phages and their hosts, and prophages can confer a variety of systems that defend against attack by genetically distinct phages; phages can neutralize these defense systems by coding for counter-defense proteins. These phages not only provide insights into diverse and dynamic phage populations but also have provided numerous tools for mycobacterial genetics. A case study using a three-phage cocktail to treat a patient with a drug-resistant Mycobacterium abscessus suggests that phages may have considerable potential for the therapeutic treatment of mycobacterial infections.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA;
| |
Collapse
|
41
|
Abd-Allah IM, El-Housseiny GS, Yahia IS, Aboshanab KM, Hassouna NA. Rekindling of a Masterful Precedent; Bacteriophage: Reappraisal and Future Pursuits. Front Cell Infect Microbiol 2021; 11:635597. [PMID: 34136415 PMCID: PMC8201069 DOI: 10.3389/fcimb.2021.635597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Antibiotic resistance is exuberantly becoming a deleterious health problem world-wide. Seeking innovative approaches is necessary in order to circumvent such a hazard. An unconventional fill-in to antibiotics is bacteriophage. Bacteriophages are viruses capable of pervading bacterial cells and disrupting their natural activity, ultimately resulting in their defeat. In this article, we will run-through the historical record of bacteriophage and its correlation with bacteria. We will also delineate the potential of bacteriophage as a therapeutic antibacterial agent, its supremacy over antibiotics in multiple aspects and the challenges that could arise on the way to its utilization in reality. Pharmacodynamics, pharmacokinetics and genetic engineering of bacteriophages and its proteins will be briefly discussed as well. In addition, we will highlight some of the in-use applications of bacteriophages, and set an outlook for their future ones. We will also overview some of the miscellaneous abilities of these tiny viruses in several fields other than the clinical one. This is an attempt to encourage tackling a long-forgotten hive. Perhaps, one day, the smallest of the creatures would be of the greatest help.
Collapse
Affiliation(s)
- Israa M. Abd-Allah
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ghadir S. El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ibrahim S. Yahia
- Research Center for Advanced Materials Science (RCAMS), Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Nanoscience Laboratory for Environmental and Bio-Medical Applications (NLEBA), Semiconductor Lab., Metallurgical Lab, Physics Department, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nadia A. Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
42
|
Decoding the molecular properties of mycobacteriophage D29 Holin provides insights into Holin engineering. J Virol 2021; 95:JVI.02173-20. [PMID: 33627396 PMCID: PMC8139666 DOI: 10.1128/jvi.02173-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Holins are bacteriophage-encoded small transmembrane proteins that determine the phage infection cycle duration by forming non-specific holes in the host cell membrane at a specific time post-infection. Thus, Holins are also termed as "Protein clocks". Holins have one or more transmembrane domains, and a charged C-terminal region, which, although conserved among Holins, has not yet been examined in detail. Here, we characterize the molecular properties of mycobacteriophage D29 Holin C-terminal region, and investigate the significance of the charged residues and coiled coil (CC) domain present therein. We show that the CC domain is indispensable for Holin-mediated efficient bacterial cell lysis. We further demonstrate that out of the positively- and negatively-charged residues present in the C-terminal region, substituting the former, and not the latter, with serine, renders Holin non-toxic. Moreover, the basic residues present between the 59th and the 79th amino acids are the most crucial for Holin-mediated toxicity. We also constructed an engineered Holin, HolHC, by duplicating the C-terminal region. The HolHC protein shows higher toxicity in both Escherichia coli and Mycobacterium smegmatis, and causes rapid killing of both bacteria upon expression, as compared to the wild-type. A similar oligomerization property of HolHC as the wild-type Holin allows us to propose that the C-terminal region of D29 Holin determines the timing, and not the extent, of oligomerization and, thereby, hole formation. Such knowledge-based engineering of mycobacteriophage Holin will help in developing novel phage-based therapeutics to kill pathogenic mycobacteria, including M. tuberculosis ImportanceHolins are bacteriophage-encoded small membrane perforators that play an important role in determining the timing of host cell lysis towards the end of the phage infection cycle. Holin's ability to precisely time the hole formation in the cell membrane ensuing cell lysis is both interesting and intriguing. Here, we examined the molecular properties of the mycobacteriophage D29 Holin C-terminal region that harbours several polar charged residues and a coiled-coil domain. Our data allowed us to engineer Holin with an ability to rapidly kill bacteria and show higher toxicity than the wild-type protein. Due to their ability to kill host bacteria by membrane disruption, it becomes important to explore the molecular properties of Holins that allow them to function in a timely and efficient manner. Understanding these details can help us modulate Holin activity and engineer bacteriophages with superior lytic properties to kill pathogenic bacteria, curtail infections, and combat antimicrobial resistance.
Collapse
|
43
|
Goswami A, Sharma PR, Agarwal R. Combatting intracellular pathogens using bacteriophage delivery. Crit Rev Microbiol 2021; 47:461-478. [PMID: 33818246 DOI: 10.1080/1040841x.2021.1902266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Intracellular pathogens reside in specialised compartments within the host cells restricting the access of antibiotics. Insufficient intracellular delivery of antibiotics along with several other resistance mechanisms weaken the efficacy of current therapies. An alternative to antibiotic therapy could be bacteriophage (phage) therapy. Although phage therapy has been in practice for a century against various bacterial infections, the efficacy of phages against intracellular bacteria is still being explored. In this review, we will discuss the advancement and challenges in phage therapy, particularly against intracellular bacterial pathogens. Finally, we will highlight the uptake mechanisms and approaches to overcome the challenges to phage therapy against intracellular bacteria.
Collapse
Affiliation(s)
- Avijit Goswami
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Pallavi Raj Sharma
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Rachit Agarwal
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
44
|
Senhaji-Kacha A, Esteban J, Garcia-Quintanilla M. Considerations for Phage Therapy Against Mycobacterium abscessus. Front Microbiol 2021; 11:609017. [PMID: 33537013 PMCID: PMC7847891 DOI: 10.3389/fmicb.2020.609017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022] Open
Abstract
There is a global increasing number of Mycobacterium abscessus infections, especially pulmonary infections. Reduced therapeutic options exist against this opportunistic pathogen due to its high intrinsic and acquired levels of antibiotic resistance. Phage therapy is a promising afresh therapy, which uses viruses to lyse bacteria responsible for the infection. Bacteriophages have been recently administered under compassionate use to a 15-year-old patient infected with M. abscessus in combination with antibiotics with excellent results. This mini review highlights different recommendations for future phage administrations such as where to look for new phages, the use of cocktail of mycobacteriophages to broaden phage specificity and to tackle resistance and phage insensitivity due to temperate phages present in bacterial genomes, the combined use of phages and antibiotics to obtain a synergistic effect, the liposomal administration to reach a prolonged effect, intracellular delivery and protection against neutralizing antibodies, and the convenience of using this strategy in patients suffering from cystic fibrosis (CF) since phages are believed to promote immunomodulatory actions and eliminate biofilms.
Collapse
Affiliation(s)
- Abrar Senhaji-Kacha
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | | |
Collapse
|
45
|
Allué-Guardia A, Saranathan R, Chan J, Torrelles JB. Mycobacteriophages as Potential Therapeutic Agents against Drug-Resistant Tuberculosis. Int J Mol Sci 2021; 22:ijms22020735. [PMID: 33450990 PMCID: PMC7828454 DOI: 10.3390/ijms22020735] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 01/21/2023] Open
Abstract
The current emergence of multi-, extensively-, extremely-, and total-drug resistant strains of Mycobacterium tuberculosis poses a major health, social, and economic threat, and stresses the need to develop new therapeutic strategies. The notion of phage therapy against bacteria has been around for more than a century and, although its implementation was abandoned after the introduction of drugs, it is now making a comeback and gaining renewed interest in Western medicine as an alternative to treat drug-resistant pathogens. Mycobacteriophages are genetically diverse viruses that specifically infect mycobacterial hosts, including members of the M. tuberculosis complex. This review describes general features of mycobacteriophages and their mechanisms of killing M. tuberculosis, as well as their advantages and limitations as therapeutic and prophylactic agents against drug-resistant M. tuberculosis strains. This review also discusses the role of human lung micro-environments in shaping the availability of mycobacteriophage receptors on the M. tuberculosis cell envelope surface, the risk of potential development of bacterial resistance to mycobacteriophages, and the interactions with the mammalian host immune system. Finally, it summarizes the knowledge gaps and defines key questions to be addressed regarding the clinical application of phage therapy for the treatment of drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Correspondence: (A.A.-G.); (J.B.T.)
| | - Rajagopalan Saranathan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA; (R.S.); (J.C.)
| | - John Chan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA; (R.S.); (J.C.)
| | - Jordi B. Torrelles
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Correspondence: (A.A.-G.); (J.B.T.)
| |
Collapse
|
46
|
Joao I, Bujdáková H, Jordao L. Opportunist Coinfections by Nontuberculous Mycobacteria and Fungi in Immunocompromised Patients. Antibiotics (Basel) 2020; 9:E771. [PMID: 33147819 PMCID: PMC7693372 DOI: 10.3390/antibiotics9110771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) and many fungal species (spp.) are commonly associated with opportunistic infections (OPIs) in immunocompromised individuals. Moreover, occurrence of concomitant infection by NTM (mainly spp. of Mycobacterium avium complex and Mycobacterium abscessus complex) and fungal spp. (mainly, Aspergillus fumigatus, Histoplasma capsulatum and Cryptococcus neoformans) is very challenging and is associated with poor patient prognosis. The most frequent clinical symptoms for coinfection and infection by single agents (fungi or NTM) are similar. For this reason, the accurate identification of the aetiological agent(s) is crucial to select the best treatment approach. Despite the significance of this topic it has not been sufficiently addressed in the literature. This review aims at summarizing case reports and studies on NTM and fungi coinfection during the last 20 years. In addition, it briefly characterizes OPIs and coinfection, describes key features of opportunistic pathogens (e.g., NTM and fungi) and human host predisposing conditions to OPIs onset and outcome. The review could interest a wide spectrum of audiences, including medical doctors and scientists, to improve awareness of these infections, leading to early identification in clinical settings and increasing research in the field. Improved diagnosis and availability of therapeutic options might contribute to improve the prognosis of patients' survival.
Collapse
Affiliation(s)
- Ines Joao
- National Institute of Health Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal;
| | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - Luisa Jordao
- National Institute of Health Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal;
| |
Collapse
|
47
|
Alternative and Experimental Therapies of Mycobacterium abscessus Infections. Int J Mol Sci 2020; 21:ijms21186793. [PMID: 32948001 PMCID: PMC7555341 DOI: 10.3390/ijms21186793] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium abscessus is a non-tuberculous mycobacterium notoriously known for causing severe, chronic infections. Treatment of these infections is challenging due to either intrinsic or acquired resistance of M. abscessus to multiple antibiotics. Despite prolonged poly-antimicrobial therapy, treatment of M. abscessus infections often fails, leading to progressive morbidity and eventual mortality. Great research efforts are invested in finding new therapeutic options for M. abscessus. Clofazimine and rifabutin are known anti-mycobacterial antibiotics, repurposed for use against M. abscessus. Novel antimicrobials active against M. abscessus include delamanid, pretomanid and PIPD1 and the recently approved beta-lactamase inhibitors avibactam, relebactam and vaborbactam. Previously unused antimicrobial combinations, e.g. vancomycin–clarithromycin and dual beta-lactam therapy, have been shown to have synergistic effect against M. abscessus in experimental models, suggesting their possible use in multiple-drug regimens. Finally, engineered phage therapy has been reported to be clinically successful in a severe case of disseminated M. abscessus infection. While many of these experimental therapeutics have shown activity against M. abscessus in vitro, as well as in intracellular and/or animal models, most have little if any evidence of effect in human infections. Clinical studies of M. abscesssus treatments are needed to reliably determine the value of their incorporation in therapeutic regimens.
Collapse
|
48
|
Taati Moghadam M, Khoshbayan A, Chegini Z, Farahani I, Shariati A. Bacteriophages, a New Therapeutic Solution for Inhibiting Multidrug-Resistant Bacteria Causing Wound Infection: Lesson from Animal Models and Clinical Trials. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1867-1883. [PMID: 32523333 PMCID: PMC7237115 DOI: 10.2147/dddt.s251171] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022]
Abstract
Wound infection kills a large number of patients worldwide each year. Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa are the most important colonizing pathogens of wounds that, with various virulence factors and impaired immune system, causes extensive tissue damage and nonhealing wounds. Furthermore, the septicemia caused by these pathogens increases the mortality rate due to wound infections. Because of the prevalence of antibiotic resistance in recent years, the use of antibiotics to inhibit these pathogens has been restricted, and the topical application of antibiotics in wound infections increases antibiotic resistance. Therefore, finding a new therapeutic strategy against wound infections is so essential since these infections have a destructive effect on the patient’s mental health and high medical costs. In this review, we discussed the use of phages for the prevention of multidrug-resistant (MDR) bacteria, causing wound infection and their role in wound healing in animal models and clinical trials. The results showed that phages have a high ability to inhibit different wound infections caused by MDR bacteria, heal the wound faster, have lower side effects and toxicity, destroy bacterial biofilm, and they are useful in controlling immune responses. Many studies have used animal models to evaluate the function of phages, and this study appears to have a positive impact on the use of phages in clinical practice and the development of a new therapeutic approach to control wound infections, although there are still many limitations.
Collapse
Affiliation(s)
- Majid Taati Moghadam
- Jiroft University of Medical Sciences, Jiroft, Iran.,Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Chegini
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Iman Farahani
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Aref Shariati
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
|
50
|
Bento CM, Gomes MS, Silva T. Looking beyond Typical Treatments for Atypical Mycobacteria. Antibiotics (Basel) 2020; 9:antibiotics9010018. [PMID: 31947883 PMCID: PMC7168257 DOI: 10.3390/antibiotics9010018] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/30/2022] Open
Abstract
The genus Mycobacterium comprises not only the deadliest of bacterial pathogens, Mycobacterium tuberculosis, but several other pathogenic species, including M. avium and M. abscessus. The incidence of infections caused by atypical or nontuberculous mycobacteria (NTM) has been steadily increasing, and is associated with a panoply of diseases, including pulmonary, soft-tissue, or disseminated infections. The treatment for NTM disease is particularly challenging, due to its long duration, to variability in bacterial susceptibility profiles, and to the lack of evidence-based guidelines. Treatment usually consists of a combination of at least three drugs taken from months to years, often leading to severe secondary effects and a high chance of relapse. Therefore, new treatment approaches are clearly needed. In this review, we identify the main limitations of current treatments and discuss different alternatives that have been put forward in recent years, with an emphasis on less conventional therapeutics, such as antimicrobial peptides, bacteriophages, iron chelators, or host-directed therapies. We also review new forms of the use of old drugs, including the repurposing of non-antibacterial molecules and the incorporation of antimicrobials into ionic liquids. We aim to stimulate advancements in testing these therapies in relevant models, in order to provide clinicians and patients with useful new tools with which to treat these devastating diseases.
Collapse
Affiliation(s)
- Clara M. Bento
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.M.B.); (T.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria Salomé Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.M.B.); (T.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence:
| | - Tânia Silva
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.M.B.); (T.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|