1
|
Markandan K, Tiong YW, Sankaran R, Subramanian S, Markandan UD, Chaudhary V, Numan A, Khalid M, Walvekar R. Emergence of infectious diseases and role of advanced nanomaterials in point-of-care diagnostics: a review. Biotechnol Genet Eng Rev 2024; 40:3438-3526. [PMID: 36243900 DOI: 10.1080/02648725.2022.2127070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022]
Abstract
Infectious outbreaks are the foremost global public health concern, challenging the current healthcare system, which claims millions of lives annually. The most crucial way to control an infectious outbreak is by early detection through point-of-care (POC) diagnostics. POC diagnostics are highly advantageous owing to the prompt diagnosis, which is economical, simple and highly efficient with remote access capabilities. In particular, utilization of nanomaterials to architect POC devices has enabled highly integrated and portable (compact) devices with enhanced efficiency. As such, this review will detail the factors influencing the emergence of infectious diseases and methods for fast and accurate detection, thus elucidating the underlying factors of these infections. Furthermore, it comprehensively highlights the importance of different nanomaterials in POCs to detect nucleic acid, whole pathogens, proteins and antibody detection systems. Finally, we summarize findings reported on nanomaterials based on advanced POCs such as lab-on-chip, lab-on-disc-devices, point-of-action and hospital-on-chip. To this end, we discuss the challenges, potential solutions, prospects of integrating internet-of-things, artificial intelligence, 5G communications and data clouding to achieve intelligent POCs.
Collapse
Affiliation(s)
- Kalaimani Markandan
- Temasek Laboratories, Nanyang Technological University, Nanyang Drive, Singapore
- Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia
| | - Yong Wei Tiong
- NUS Environmental Research Institute, National University of Singapore, Engineering Drive, Singapore
| | - Revathy Sankaran
- Graduate School, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Sakthinathan Subramanian
- Department of Materials & Mineral Resources Engineering, National Taipei University of Technology (NTUT), Taipei, Taiwan
| | | | - Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi, India
| | - Arshid Numan
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster School of Engineering and Technology, Sunway University, Selangor, Malaysia
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster School of Engineering and Technology, Sunway University, Selangor, Malaysia
| | - Rashmi Walvekar
- Department of Chemical Engineering, School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| |
Collapse
|
2
|
Sen S, Bhowmik P, Tiwari S, Peleg Y, Bandyopadhyay B. Versatility of reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) from diagnosis of early pathological infection to mutation detection in organisms. Mol Biol Rep 2024; 51:211. [PMID: 38270670 DOI: 10.1007/s11033-023-09110-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
Loop-mediated isothermal amplification (LAMP) is a rapid, state-of-the-art DNA amplification technology, used primarily for the quick diagnosis and early identification of microbial infection, caused by pathogens such as virus, bacteria and malaria. A target DNA can be amplified within 30 min using the LAMP reaction, taking place at a steady temperature. The LAMP method uses four or six primers to bind eight regions of a target DNA and has a very high specificity. The devices used for conducting LAMP are usually simple since the LAMP method is an isothermal process. When LAMP is coupled with Reverse Transcription (RT), it allows direct detection of RNA in a sample. This greatly enhances the efficiency of diagnosis of RNA viruses in a sample. Recently, the rampant spread of COVID-19 demanded such a rapid, simple, and cost-effective Point of Care Test (PoCT) for the accurate diagnosis of this pandemic. Loop-mediated isothermal amplification (LAMP) assays are not only used for the detection of microbial pathogens, but there are various other applications such as detection of genetic mutations in food and various organisms. In this review, various implementations of RT-LAMP techniques would be discussed.
Collapse
Affiliation(s)
- Srishti Sen
- School of Bioscience, Engineering and Technology, VIT Bhopal University, Bhopal, Madhya Pradesh, India
| | - Priyanka Bhowmik
- Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Shubhangi Tiwari
- School of Bioscience, Engineering and Technology, VIT Bhopal University, Bhopal, Madhya Pradesh, India
| | - Yoav Peleg
- Structural Proteomics Unit (SPU), Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot, Israel
| | - Boudhayan Bandyopadhyay
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India.
| |
Collapse
|
3
|
Jian MJ, Chen CS, Chung HY, Chang CK, Perng CL, Shang HS. Clinical Evaluation of Direct Reverse Transcription PCR for Detection of SARS-CoV-2 Compared to Conventional RT-PCR in Patients with Positive Rapid Antigen Test Results during Circulation of Emerging Viral Variants. Diagnostics (Basel) 2023; 13:3668. [PMID: 38132252 PMCID: PMC10743042 DOI: 10.3390/diagnostics13243668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
The emergence of the Omicron (B.1.1.529) variant of SARS-CoV-2 has precipitated a new global wave of the COVID-19 pandemic. The rapid identification of SARS-CoV-2 infection is imperative for the effective mitigation of transmission. Diagnostic modalities such as rapid antigen testing and real-time reverse transcription polymerase chain reaction (RT-PCR) offer expedient turnaround times of 10-15 min and straightforward implementation. This preliminary study assessed the correlation between outcomes of commercially available rapid antigen tests for home use and conventional reverse transcription polymerase chain reaction (RT-PCR) assays using a limited set of clinical specimens. Patients aged 5-99 years presenting to the emergency department for SARS-CoV-2 testing were eligible for enrollment (n = 5652). Direct PCR and conventional RT-PCR were utilized for the detection of SARS-CoV-2. The entire cohort of 5652 clinical specimens was assessed by both modalities to determine the clinical utility of the direct RT-PCR assay. Timely confirmation of SARS-CoV-2 infection may attenuate viral propagation and guide therapeutic interventions. Additionally, direct RT-PCR as a secondary confirmatory test for at-home rapid antigen test results demonstrated sensitivity comparable to conventional RT-PCR, indicating utility for implementation in laboratories globally, especially in resource-limited settings with constraints on reagents, equipment, and skilled personnel. In summary, direct RT-PCR enables the detection of SARS-CoV-2 with a sensitivity approaching that of conventional RT-PCR while offering expedient throughput and shorter turnaround times. Moreover, direct RT-PCR provides an open-source option for diagnostic laboratories worldwide, particularly in low- and middle-income countries.
Collapse
Affiliation(s)
- Ming-Jr Jian
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (M.-J.J.); (C.-S.C.); (H.-Y.C.); (C.-K.C.); (C.-L.P.)
| | - Chi-Sheng Chen
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (M.-J.J.); (C.-S.C.); (H.-Y.C.); (C.-K.C.); (C.-L.P.)
| | - Hsing-Yi Chung
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (M.-J.J.); (C.-S.C.); (H.-Y.C.); (C.-K.C.); (C.-L.P.)
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114, Taiwan
| | - Chih-Kai Chang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (M.-J.J.); (C.-S.C.); (H.-Y.C.); (C.-K.C.); (C.-L.P.)
| | - Cherng-Lih Perng
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (M.-J.J.); (C.-S.C.); (H.-Y.C.); (C.-K.C.); (C.-L.P.)
| | - Hung-Sheng Shang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (M.-J.J.); (C.-S.C.); (H.-Y.C.); (C.-K.C.); (C.-L.P.)
| |
Collapse
|
4
|
Kim SW, Park Y, Kim D, Jeong SH. A single-center experience on long-term clinical performance of a rapid SARS-CoV-2 Antigen Detection Test, STANDARD Q COVID-19 Ag Test. Sci Rep 2023; 13:20777. [PMID: 38012319 PMCID: PMC10681986 DOI: 10.1038/s41598-023-48194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023] Open
Abstract
The COVID-19 pandemic in Korea has dynamically changed with the occurrence of more easily transmissible variants. A rapid and reliable diagnostic tool for detection of SARS-CoV-2 is needed. While RT-PCR is currently the gold standard for detecting SARS-CoV-2, the procedure is time-consuming and requires expert technicians. The rapid antigen detection test (RADT) was approved as a confirmatory test on 14 March 2022 due to rapid dissemination of the Omicron variant. The benefits of the RADT are speed, simplicity, and point-of-care feasibility. The aim of our study was to evaluate the clinical performance of RADT compared to RT-PCR in a single center over 15 months, fully covering the SARS-CoV-2 'Variants of Concern (VOC).' A total of 14,194 cases was simultaneously tested by RT-PCR and RADT from January 2021 to March 2022 in Gangnam Severance Hospital and were retrospectively reviewed. PowerChek SARS-CoV-2, Influenza A&B Multiplex Real-time PCR Kit, and STANDARD Q COVID-19 Ag Test were used. Positive rates, sensitivities, specificities, positive predictive values (PPV), and negative predictive values (NPV) were estimated for five periods (3 months/period). Receiver operator characteristic curve (ROC) analysis was performed, and Spearman's rank test assessed the correlation between RT-PCR Ct values and semi-quantitative RADT results. The overall positive rate of RT-PCR was 4.64%. The overall sensitivity and specificity were 0.577 [95% confidence interval (CI) 0.539-0.614] and 0.991 [95% CI 0.989-0.993], respectively. ROC analysis resulted in an area under the curve of 0.786 (P < 0.0001, Yuden's index = 0.568). The PCR positive rates were estimated as 0.11%, 0.71%, 4.51%, 2.02%, and 13.72%, and PPV was estimated as 0.045, 0.421, 0.951, 0.720, and 0.798 in Periods 1, 2, 3, 4, and 5, respectively. A significant and moderate negative correlation between PCR Ct values and semi-quantitative RADT results was observed (Spearman's ρ = - 0.646, P < 0.0001). The RADT exhibited good performance in specimens with low Ct values (Ct ≤ 25.00) by RT-PCR. The PPV was significantly higher in Periods 3 and 5, which corresponds to rapid dissemination of the Delta and Omicron variants. The high PPV implies that individuals with a positive RADT result are very likely infected with SARS-CoV-2 and would require prompt quarantine rather than additional RT-PCR testing. The sensitivity of 0.577 indicates that RADT should not replace RT-PCR. Nonetheless, given the high PPV and the ability to track infected persons through rapid results, our findings suggest that RADT could play a significant role in control strategies for further SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Seo Wan Kim
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, South Korea
| | - Yongjung Park
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, South Korea
| | - Dokyun Kim
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, South Korea.
- Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea.
| | - Seok Hoon Jeong
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, South Korea
- Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
5
|
Dorta-Gorrín A, Navas-Méndez J, Gozalo-Margüello M, Miralles L, García-Hevia L. Detection of SARS-CoV-2 Based on Nucleic Acid Amplification Tests (NAATs) and Its Integration into Nanomedicine and Microfluidic Devices as Point-of-Care Testing (POCT). Int J Mol Sci 2023; 24:10233. [PMID: 37373381 DOI: 10.3390/ijms241210233] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The coronavirus SARS-CoV-2 has highlighted the criticality of an accurate and rapid diagnosis in order to contain the spread of the virus. Knowledge of the viral structure and its genome is essential for diagnosis development. The virus is still quickly evolving and the global scenario could easily change. Thus, a greater range of diagnostic options is essential to face this threat to public health. In response to the global demand, there has been a rapid advancement in the understanding of current diagnostic methods. In fact, innovative approaches have emerged, leveraging the benefits of nanomedicine and microfluidic technologies. Although this development has been incredibly fast, several key areas require further investigation and optimization, such as sample collection and preparation, assay optimization and sensitivity, cost effectiveness, scalability device miniaturization, and portability and integration with smartphones. Addressing these gaps in the knowledge and these technological challenges will contribute to the development of reliable, sensitive, and user-friendly NAAT-based POCTs for the diagnosis of SARS-CoV-2 and other infectious diseases, facilitating rapid and effective patient management. This review aims to provide an overview of current SARS-CoV-2 detection methods based on nucleic acid detection tests (NAATs). Additionally, it explores promising approaches that combine nanomedicine and microfluidic devices with high sensitivity and relatively fast 'time to answer' for integration into point-of-care testing (POCT).
Collapse
Affiliation(s)
- Alexis Dorta-Gorrín
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria (UC), 39011 Santander, Spain
- Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
- Environmental Genetics Department, Ecohydros S.L., 39600 Maliaño, Spain
| | - Jesús Navas-Méndez
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria (UC), 39011 Santander, Spain
- Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Mónica Gozalo-Margüello
- Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
- Microbiology Service of University Hospital Marqués de Valdecilla (HUMV), 39008 Santander, Spain
- CIBER de Enfermedades Infecciosas-CIBERINFEC (CB21/13/00068), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Miralles
- Environmental Genetics Department, Ecohydros S.L., 39600 Maliaño, Spain
- Department of Functional Biology, Area of Genetics, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Lorena García-Hevia
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria (UC), 39011 Santander, Spain
- Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| |
Collapse
|
6
|
El-Shershaby A, Hussein N, Ali E, El-Hakim A, Tabll A, Shaheen M, Ali I, Elshall M, Shahein Y. Comparative assessment of homemade ELISA and lateral flow assay (LFA)in the rapid, specific and sensitive detection of SARS-CoV-2 anti-nucleocapsid protein in sera of Egyptian patients. J Immunoassay Immunochem 2023:1-22. [PMID: 37319429 DOI: 10.1080/15321819.2023.2224865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Several diagnostic measures have been employed to precisely detect the SARS-CoV-2 viral infection using viral antigens, nucleic acids, and other serological approaches. The sensitivity and specificity of the serological tests remain a challenging need. Here, we describe the detection of human anti-SARS-CoV-2 IgG and IgM antibodies qualitatively through two optimized in-house ELISA and lateral flow immunoassay. Both approaches are based on the prokaryotic expression of 50 kDa SARS-CoV-2 recombinant nucleocapsid protein. This SARS-CoV-2rN-6×His was used either to coat ELISA plates or to be conjugated to gold nanoparticles followed by colorimetric detection of bound human IgG or IgM. In the LFA, we show the optimization of nanoparticle size, protein-binding capacity, membrane treatment, and finally testing the potential capacity of using either the optimized ELISA or LFA in detecting antibodies raised against viral infection. Assessment of both methods was carried out using human sera-positive and negative SARS-CoV-2 antibodies. The ELISA and LFA tests showed 86%, 96.5% sensitivity, 92%, 93.75% specificity, 97%, 98.2% PPV, and 64%, 88.2% NPV, respectively. In conclusion, both approaches were able to successfully detect human antibodies against SARS-CoV-2 nucleocapsid protein. The importance of both protocols cannot be overstated in the detection and diagnosis of viral infections, especially in developing countries.
Collapse
Affiliation(s)
- Asmaa El-Shershaby
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Nahla Hussein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Esraa Ali
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Amr El-Hakim
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Ashraf Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
- Immunology Department, Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Mohamed Shaheen
- Environmental Virology Laboratory, Water Pollution Research Department, Environmental and Climate Change Research Institute, National Research Centre, Cairo, Egypt
| | - Ibrahim Ali
- Parasitology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mahmoud Elshall
- Parasitology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Yasser Shahein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
7
|
Time to result advantage of point-of-care SARS-CoV-2 PCR testing to confirm COVID-19 in emergency department: a retrospective multicenter study. Eur J Emerg Med 2023; 30:132-134. [PMID: 36815473 DOI: 10.1097/mej.0000000000000984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
8
|
Hasegawa T, Shibayama S, Osumi Y, Sentsui H, Kato M. Quantitative performance of digital ELISA for the highly sensitive quantification of viral proteins and influenza virus. Anal Bioanal Chem 2023; 415:1897-1904. [PMID: 36820912 DOI: 10.1007/s00216-023-04600-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/22/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023]
Abstract
A single-molecule assay (SiMoA) using a digital enzyme-linked immunosorbent assay (ELISA) has been attracting attention as a promising method that can detect viruses with ultra-high sensitivity. However, the quantitative application of digital ELISA has not been adequately reported. Therefore, in this study, we first evaluated the linearity and sensitivity of digital ELISA using a Certified Reference Material of C-reactive protein (NMIJ CRM 6201-c) as a quality control material. Next, we originally screened those antibody pair that are suitable for detecting recombinant viral proteins of influenza A virus, nucleoprotein (NP), and hemagglutinin (HA), and established the measurement system. Under optimized conditions, the limit of detection (LOD) of NP and HA was 0.59 fM and 0.99 fM, and the coefficient of determination, R2, was 0.9998 and 0.9979, respectively. Two subtypes of influenza virus, A/Puerto Rico/8/1934 (H1N1) [PR8] and A/Panama/2007/99 (H3N2) [Pan99], were also quantified under established conditions, and the LOD of PR8 was 3.1 × 102 PFU/mL on targeting NP and 7.4 × 102 PFU/mL on targeting HA. The LOD of Pan99 was 5.3 × 102 PFU/mL on targeting NP. The specificity and robustness of the recombinant viral protein and influenza virus measurements using digital ELISA were also evaluated. Our measurement system showed enough specificity to discriminate the viral subtypes properly and showed sufficient inter- and intra-assay variations for both measurements of recombinant viral proteins and viruses, except for NP-targeting virus measurement.
Collapse
Affiliation(s)
- Takema Hasegawa
- Bio-Medical Standard Group, Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
| | - Sachie Shibayama
- Bio-Medical Standard Group, Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Yukiko Osumi
- Bio-Medical Standard Group, Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Hiroshi Sentsui
- Sensing System Research Center (SSRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Megumi Kato
- Bio-Medical Standard Group, Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
9
|
Ali FEM, Abd El-Aziz MK, Ali MM, Ghogar OM, Bakr AG. COVID-19 and hepatic injury: cellular and molecular mechanisms in diverse liver cells. World J Gastroenterol 2023; 29:425-449. [PMID: 36688024 PMCID: PMC9850933 DOI: 10.3748/wjg.v29.i3.425] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/15/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) represents a global health and economic challenge. Hepatic injuries have been approved to be associated with severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection. The viral tropism pattern of SARS-CoV-2 can induce hepatic injuries either by itself or by worsening the conditions of patients with hepatic diseases. Besides, other factors have been reported to play a crucial role in the pathological forms of hepatic injuries induced by SARS-CoV-2, including cytokine storm, hypoxia, endothelial cells, and even some treatments for COVID-19. On the other hand, several groups of people could be at risk of hepatic COVID-19 complications, such as pregnant women and neonates. The present review outlines and discusses the interplay between SARS-CoV-2 infection and hepatic injury, hepatic illness comorbidity, and risk factors. Besides, it is focused on the vaccination process and the role of developed vaccines in preventing hepatic injuries due to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | | | - Mahmoud M Ali
- Department of Pharmacology, Al-Azhar University, Assiut 71524, Egypt
| | - Osama M Ghogar
- Department of Biochemistry Faculty of Pharmacy, Badr University in Assiut, Egypt
| | - Adel G Bakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
10
|
COVID-19 diagnostics: Molecular biology to nanomaterials. Clin Chim Acta 2023; 538:139-156. [PMID: 36403665 PMCID: PMC9673061 DOI: 10.1016/j.cca.2022.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
The SARS-CoV-2 pandemic has claimed around 6.4 million lives worldwide. The disease symptoms range from mild flu-like infection to life-threatening complications. The widespread infection demands rapid, simple, and accurate diagnosis. Currently used methods include molecular biology-based approaches that consist of conventional amplification by RT-PCR, isothermal amplification-based techniques such as RT-LAMP, and gene editing tools like CRISPR-Cas. Other methods include immunological detection including ELISA, lateral flow immunoassay, chemiluminescence, etc. Radiological-based approaches are also being used. Despite good analytical performance of these current methods, there is an unmet need for less costly and simpler tests that may be performed at point of care. Accordingly, nanomaterial-based testing has been extensively pursued. In this review, we discuss the currently used diagnostic techniques for SARS-CoV-2, their usefulness, and limitations. In addition, nanoparticle-based approaches have been highlighted as another potential means of detection. The review provides a deep insight into the current diagnostic methods and future trends to combat this deadly menace.
Collapse
|
11
|
Hossain MAM, Uddin SMK, Hashem A, Mamun MA, Sagadevan S, Johan MR. Advancements in Detection Approaches of Severe Acute Respiratory Syndrome Coronavirus 2. Malays J Med Sci 2022; 29:15-33. [PMID: 36818907 PMCID: PMC9910375 DOI: 10.21315/mjms2022.29.6.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022] Open
Abstract
Diagnostic testing to identify individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a key role in selecting appropriate treatments, saving people's lives and preventing the global pandemic of COVID-19. By testing on a massive scale, some countries could successfully contain the disease spread. Since early viral detection may provide the best approach to curb the disease outbreak, the rapid and reliable detection of coronavirus (CoV) is therefore becoming increasingly important. Nucleic acid detection methods, especially real-time reverse transcription polymerase chain reaction (RT-PCR)-based assays are considered the gold standard for COVID-19 diagnostics. Some non-PCR-based molecular methods without thermocycler operation, such as isothermal nucleic acid amplification have been proved promising. Serologic immunoassays are also available. A variety of novel and improved methods based on biosensors, Clustered-Regularly Interspaced Short Palindromic Repeats (CRISPR) technology, lateral flow assay (LFA), microarray, aptamer etc. have also been developed. Several integrated, random-access, point-of-care (POC) molecular devices are rapidly emerging for quick and accurate detection of SARS-CoV-2 that can be used in the local hospitals and clinics. This review intends to summarize the currently available detection approaches of SARS-CoV-2, highlight gaps in existing diagnostic capacity, and propose potential solutions and thus may assist clinicians and researchers develop better technologies for rapid and authentic diagnosis of CoV infection.
Collapse
Affiliation(s)
- M. A. Motalib Hossain
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Syed Muhammad Kamal Uddin
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Abu Hashem
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
- Microbial Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - Mohammad Al Mamun
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Chemistry, Jagannath University, Dhaka, Bangladesh
| | - Suresh Sagadevan
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Wong TF, So PK, Yao ZP. Advances in rapid detection of SARS-CoV-2 by mass spectrometry. Trends Analyt Chem 2022; 157:116759. [PMID: 36035092 PMCID: PMC9391230 DOI: 10.1016/j.trac.2022.116759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/01/2022] [Accepted: 08/14/2022] [Indexed: 12/25/2022]
Abstract
COVID-19 has already been lasting for more than two years and it has been severely affecting the whole world. Still, detection of SARS-CoV-2 remains the frontline approach to combat the pandemic, and the reverse transcription polymerase chain reaction (RT-PCR)-based method is the well recognized detection method for the enormous analytical demands. However, the RT-PCR method typically takes a relatively long time, and can produce false positive and false negative results. Mass spectrometry (MS) is a very commonly used technique with extraordinary sensitivity, specificity and speed, and can produce qualitative and quantitative information of various analytes, which cannot be achieved by RT-PCR. Since the pandemic outbreak, various mass spectrometric approaches have been developed for rapid detection of SARS-CoV-2, including the LC-MS/MS approaches that could allow analysis of several hundred clinical samples per day with one MS system, MALDI-MS approaches that could directly analyze clinical samples for the detection, and efforts for the on-site detection with portable devices. In this review, these mass spectrometric approaches were summarized, and their pros and cons as well as further development were also discussed.
Collapse
Affiliation(s)
- Tsz-Fung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,Research Institute for Future Food and Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Pui-Kin So
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,Research Institute for Future Food and Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Zhong-Ping Yao
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,Research Institute for Future Food and Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.,State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
13
|
Monari C, Pisaturo M, Maggi P, Macera M, Di Caprio G, Pisapia R, Gentile V, Fordellone M, Chiodini P, Coppola N. Early predictors of clinical deterioration in a cohort of outpatients with COVID-19 in southern Italy: A multicenter observational study. J Med Virol 2022; 94:5336-5344. [PMID: 35854433 PMCID: PMC9545617 DOI: 10.1002/jmv.28007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/09/2022] [Accepted: 07/17/2022] [Indexed: 12/15/2022]
Abstract
Data regarding early predictors of clinical deterioration in patients with infection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is still scarce. The aim of the study is to identify early symptoms or signs that may be associated with severe coronavirus disease 2019 (COVID-19). We conducted a multicentre prospective cohort study on a cohort of patients with COVID-19 in home isolation from March 2020 to April 2021. We assessed longitudinal clinical data (fever, dyspnea, need for hospitalization) through video calls at three specific time points: the beginning of symptoms or the day of the first positivity of the nasopharyngeal swab for SARS-CoV-2-RNA (t0 ), and 3 (t3 ) and 7 (t7 ) days after the onset of symptoms. We included 329 patients with COVID-19: 182 (55.3%) males, mean age 53.4 ± 17.4 years, median Charlson comorbidity index (CCI) of 1 (0-3). Of the 329 patients enrolled, 171 (51.98%) had a mild, 81 (24.6%) a moderate, and 77 (23.4%) a severe illness; 151 (45.9%) were hospitalized. Compared to patients with mild COVID-19, moderate and severe patients were older (p < 0.001) and had more comorbidities, especially hypertension (p < 0.001) and cardiovascular diseases (p = 0.01). At t3 and t7 , we found a significant higher rate of persisting fever (≥37°C) among patients with moderate (91.4% and 58.0% at t3 and t7 , respectively; p < 0.001) and severe outcome (75.3% and 63.6%, respectively; p < 0.001) compared to mild COVID-19 outcome (27.5% and 11.7%, respectively; p < 0.001). Factors independently associated with a more severe outcome were persisting fever at t3 and t7 , increasing age, and CCI above 2 points. Persisting fever at t3 and t7 seems to be related to a more severe COVID-19. This data may be useful to assess hospitalization criteria and optimize the use of resources in the outpatient setting.
Collapse
Affiliation(s)
- Caterina Monari
- Department of Mental Health and Public Medicine, Infectious Diseases UnitUniversity of Campania Luigi VanvitelliNaplesItaly
| | - Mariantonietta Pisaturo
- Department of Mental Health and Public Medicine, Infectious Diseases UnitUniversity of Campania Luigi VanvitelliNaplesItaly
| | - Paolo Maggi
- Infectious Disease UnitAORN CasertaCasertaItaly
| | | | | | | | - Valeria Gentile
- Department of Mental Health and Public Medicine, Infectious Diseases UnitUniversity of Campania Luigi VanvitelliNaplesItaly
| | - Mario Fordellone
- Medical Statistics UnitUniversity of Campania Luigi VanvitelliNaplesItaly
| | - Paolo Chiodini
- Medical Statistics UnitUniversity of Campania Luigi VanvitelliNaplesItaly
| | - Nicola Coppola
- Department of Mental Health and Public Medicine, Infectious Diseases UnitUniversity of Campania Luigi VanvitelliNaplesItaly
| | | |
Collapse
|
14
|
Budhitresna AAG, Surawan DP, Kartikadewi R, Yoga AH, Lestari PP, Sumadewi NT, Masyeni S. Performance of Two Rapid Antigen Detection Tests for Detecting COVID-19 Compared to RT-PCR in Indonesia. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2022; 15:1271-1275. [DOI: 10.13005/bpj/2463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
Antigen tests to screen coronavirus disease 2019 (COVID-19) is effective in symptomatic patients, leading to its wide usage in informing whether the person is COVID-19 positive or negative. Our current work had an objective to investigate the diagnostic performance of two antigen-detecting rapid diagnostic tests (Ag-RDTs) which are commonly used in Indonesia. A cross-sectional study was carried out to compare specificity, sensitivity, as well as expected predictive values of Anhui Ag-RDT and Lungene Ag-RDT by comparing the results with that obtained from real-time reverse transcription-polymerase chain reaction (RT-PCR) assay. A total of 98samples were tested for both Ag-RDTs and RT-PCR. The median value of the patients age obtained to be 41.78 years old (interquartile range: 1 to 91 years old). The proportion between female and males was: 52.53% vs 47.47%. The sensitivities of Anhui Ag-RDT and Lungene Ag-RDT were 55.56% and 51.58%, where both Ag-RDTs had specificity of 100%. In conclusion, sensitivity values of Lungene Ag-RDT and Anhui Ag-RDT are similar, where both possess 100% specificity with zero false-positive results. Both of the investigated Ag-RDTs are useful since positive results are likely to be COVID-19 positive.
Collapse
Affiliation(s)
- Anak Agung Gede Budhitresna
- 1Department of Internal Medicine, Faculty of Medicine and Health Sciences, Universitas Warmadewa, Denpasar, Bali, 80235, Indonesia
| | - Dewa Putu Surawan
- 3Department of Internal Medicine, Tabanan General Hospital, Tabanan, Bali, 82121, Indonesia
| | - Ratna Kartikadewi
- 1Department of Internal Medicine, Faculty of Medicine and Health Sciences, Universitas Warmadewa, Denpasar, Bali, 80235, Indonesia
| | - Adi Harta Yoga
- 1Department of Internal Medicine, Faculty of Medicine and Health Sciences, Universitas Warmadewa, Denpasar, Bali, 80235, Indonesia
| | - Putri Permana Lestari
- 1Department of Internal Medicine, Faculty of Medicine and Health Sciences, Universitas Warmadewa, Denpasar, Bali, 80235, Indonesia
| | - Nyoman Trisna Sumadewi
- 1Department of Internal Medicine, Faculty of Medicine and Health Sciences, Universitas Warmadewa, Denpasar, Bali, 80235, Indonesia
| | - Sri Masyeni
- 3Department of Internal Medicine, Tabanan General Hospital, Tabanan, Bali, 82121, Indonesia
| |
Collapse
|
15
|
Colorimetric detection of viral RNA fragments based on an integrated logic-operated three-dimensional DNA walker. Biosens Bioelectron 2022; 217:114714. [PMID: 36116222 DOI: 10.1016/j.bios.2022.114714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/28/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022]
Abstract
Timely and accurate detection of virus is crucial for preventing spread of disease and early treatment of the infected cases. Herein we design an integrated logic-operated three-dimensional DNA walker for colorimetric detection of viral RNA fragments, by taking SARS-CoV-2 as an example. The DNA walker is composed of small amounts of dually-blocked walking strands and large amounts of dual-stem-loop track strands on gold nanoparticles. The walking strand contains a swing arm domain and a DNAzyme domain blocked at both sides of catalytic core, while the track strand contains a substrate domain located at the peripheral larger loop. Only the presence of both ORF1ab and N RNA fragments can fully de-block the walking strand, which then continuously hybridizes with track strands and cleaves them by DNAzyme-catalyzed hydrolysis. As the cleavage of track strands from long-stranded, double stem-loop structure to short-stranded, linear sequence, the DNA walker shows much lowered stability due to decreased negative charge density and diminished steric repulsion, which then gets aggregated at high salt concentration, accompanied by a visible color change. The colorimetric DNA walker detects RNA fragments down to 1 nM, responds dual viral genes in a "AND" logic way, and shows high specificity to target sequence. It can further detect large nucleic acids containing ORF1ab and N sequences, and reach 200 copies/mL detection limit by coupling a simple upstream amplification of sample. The method may provide a convenient way for reliable detection of viral RNA.
Collapse
|
16
|
Confirming Multiplex RT-qPCR Use in COVID-19 with Next-Generation Sequencing: Strategies for Epidemiological Advantage. Glob Health Epidemiol Genom 2022; 2022:2270965. [PMID: 35950011 PMCID: PMC9339135 DOI: 10.1155/2022/2270965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022] Open
Abstract
Rapid identification and tracking of emerging SARS-CoV-2 variants are critical for understanding the transmission dynamics and developing strategies for interrupting the transmission chain. Next-Generation Sequencing (NGS) is an exceptional tool for whole-genome analysis and deciphering new mutations. The technique has been instrumental in identifying the variants of concern (VOC) and tracking this pandemic. However, NGS is complex and expensive for large-scale adoption, and epidemiological monitoring with NGS alone could be unattainable in limited-resource settings. In this study, we explored the application of RT-qPCR-based detection of the variant identified by NGS. We analyzed a total of 78 deidentified samples that screened positive for SARS-CoV-2 from two timeframes, August 2020 and July 2021. All 78 samples were classified into WHO lineages by whole-genome sequencing and then compared with two commercially available RT-qPCR assays for spike protein mutation(s). The data showed good concordance between RT-qPCR and NGS analysis for specific SARS-CoV-2 lineages and characteristic mutations. RT-qPCR assays are quick and cost-effective and thus can be implemented in synergy with NGS for screening NGS-identified mutations of SARS-CoV-2 for clinical and epidemiological interest. Strategic use of NGS and RT-qPCR can offer several COVID-19 epidemiological advantages.
Collapse
|
17
|
Prognostic Value of Transaminases and Bilirubin Levels at Admission to Hospital on Disease Progression and Mortality in Patients with COVID-19—An Observational Retrospective Study. Pathogens 2022; 11:pathogens11060652. [PMID: 35745506 PMCID: PMC9227474 DOI: 10.3390/pathogens11060652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/22/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
Introduction: Given the impact of COVID-19 on the world healthcare system, and the efforts of the healthcare community to find prognostic factors for hospitalization, disease progression, and mortality, the aim of the present study was to investigate the prognostic impact of transaminases and bilirubin levels at admission to hospital on disease progression and mortality in COVID-19 patients. Methods: Using the CoviCamp database, we performed a multicenter, observational, retrospective study involving 17 COVID-19 Units in southern Italy. We included all adult patients hospitalized for SARS-CoV-2 infection with at least one determination at hospital admission of aminotransaminases and/or total bilirubin. Results: Of the 2054 patients included in the CoviCamp database, 1641 were included in our study; 789 patients (48%) were considered to have mild COVID-19, 347 (21%) moderate COVID-19, 354 (22%) severe COVID-19, and 151 patients (9%) died during hospitalization. Older age (odds ratio (OR): 1.02; 95% confidence interval (CI) 1.01–1.03), higher Charlson comorbidity index (CCI) (OR 1.088; 95%CI 1.005–1.18), presence of dementia (OR: 2.20; 95% CI: 1.30–3.73), higher serum AST (OR: 1.002; 95% CI: 1.0001–1.004), and total bilirubin (OR: 1.09; 95% CI: 1.002–1.19) values were associated with a more severe clinical outcome. Instead, the 151 patients who died during hospitalization showed a higher serum bilirubin value at admission (OR 1.1165; 95% CI: 1.017–1.335); the same did not apply for AST. Discussion: Patients with COVID-19 with higher levels of AST and bilirubin had an increased risk of disease progression.
Collapse
|
18
|
Rodríguez Díaz C, Lafuente-Gómez N, Coutinho C, Pardo D, Alarcón-Iniesta H, López-Valls M, Coloma R, Milán-Rois P, Domenech M, Abreu M, Cantón R, Galán JC, Bocanegra R, Campos LA, Miranda R, Castellanos M, Somoza Á. Development of colorimetric sensors based on gold nanoparticles for SARS-CoV-2 RdRp, E and S genes detection. Talanta 2022; 243:123393. [PMID: 35325745 PMCID: PMC8923713 DOI: 10.1016/j.talanta.2022.123393] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/20/2022]
Abstract
We present a fast, reliable and easy to scale-up colorimetric sensor based on gold nanoparticles (AuNPs) to detect the sequences coding for the RdRp, E, and S proteins of SARS-CoV-2. The optimization of the system (so-called “the sensor”) includes the evaluation of different sizes of nanoparticles, sequences of oligonucleotides and buffers. It is stable for months without any noticeable decrease in its activity, allowing the detection of SARS-CoV-2 sequences by the naked eye in 15 min. The efficiency and selectivity of detection, in terms of significative colorimetric changes in the solution upon target recognition, are qualitatively (visually) and quantitatively (absorbance measurements) assessed using synthetic samples and samples derived from infected cells and patients. Furthermore, an easy and affordable amplification approach is implemented to increase the system's sensitivity for detecting high and medium viral loads (≥103 - 104 viral RNA copies/μl) in patient samples. The whole process (amplification and detection) takes 2.5 h. Due to the ease of use, stability and minimum equipment requirements, the proposed approach can be a valuable tool for the detection of SARS-CoV-2 at facilities with limited resources.
Collapse
|
19
|
Kumar A, Parihar A, Panda U, Parihar DS. Microfluidics-Based Point-of-Care Testing (POCT) Devices in Dealing with Waves of COVID-19 Pandemic: The Emerging Solution. ACS APPLIED BIO MATERIALS 2022; 5:2046-2068. [PMID: 35473316 PMCID: PMC9063993 DOI: 10.1021/acsabm.1c01320] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/11/2022] [Indexed: 02/08/2023]
Abstract
Recent advances in microfluidics-based point-of-care testing (POCT) technology such as paper, array, and beads have shown promising results for diagnosing various infectious diseases. The fast and timely detection of viral infection has proven to be a critical step for deciding the therapeutic outcome in the current COVID-19 pandemic, which in turn not only enhances the patient survival rate but also reduces the disease-associated comorbidities. In the present scenario, rapid, noninvasive detection of the virus using low cost and high throughput microfluidics-based POCT devices embraces the advantages over existing diagnostic technologies, for which a centralized lab facility, expensive instruments, sample pretreatment, and skilled personnel are required. Microfluidic-based multiplexed POCT devices can be a boon for clinical diagnosis in developing countries that lacks a centralized health care system and resources. The microfluidic devices can be used for disease diagnosis and exploited for the development and testing of drug efficacy for disease treatment in model systems. The havoc created by the second wave of COVID-19 led several countries' governments to the back front. The lack of diagnostic kits, medical devices, and human resources created a huge demand for a technology that can be remotely operated with single touch and data that can be analyzed on a phone. Recent advancements in information technology and the use of smartphones led to a paradigm shift in the development of diagnostic devices, which can be explored to deal with the current pandemic situation. This review sheds light on various approaches for the development of cost-effective microfluidics POCT devices. The successfully used microfluidic devices for COVID-19 detection under clinical settings along with their pros and cons have been discussed here. Further, the integration of microfluidic devices with smartphones and wireless network systems using the Internet-of-things will enable readers for manufacturing advanced POCT devices for remote disease management in low resource settings.
Collapse
Affiliation(s)
- Avinash Kumar
- Department of Mechanical Engineering,
Indian Institute of Information Technology Design & Manufacturing
Kancheepuram, Chennai 600127, India
| | - Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials,
CSIR-Advanced Materials and Processes Research Institute
(AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh 462026,
India
| | - Udwesh Panda
- Department of Mechanical Engineering,
Indian Institute of Information Technology Design & Manufacturing
Kancheepuram, Chennai 600127, India
| | | |
Collapse
|
20
|
Antoine D, Mohammadi M, Vitt M, Dickie JM, Jyoti SS, Tilbury MA, Johnson PA, Wawrousek KE, Wall JG. Rapid, Point-of-Care scFv-SERS Assay for Femtogram Level Detection of SARS-CoV-2. ACS Sens 2022; 7:866-873. [PMID: 35271769 PMCID: PMC8961876 DOI: 10.1021/acssensors.1c02664] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/02/2022] [Indexed: 12/19/2022]
Abstract
Rapid, sensitive, on-site identification of SARS-CoV-2 infections is an important tool in the control and management of COVID-19. We have developed a surface-enhanced Raman scattering (SERS) immunoassay for highly sensitive detection of SARS-CoV-2. Single-chain Fv (scFv) recombinant antibody fragments that bind the SARS-CoV-2 spike protein were isolated by biopanning a human scFv library. ScFvs were conjugated to magnetic nanoparticles and SERS nanotags, followed by immunocomplex formation and detection of the SARS-CoV-2 spike protein with a limit of detection of 257 fg/mL in 30 min in viral transport medium. The assay also detected B.1.1.7 ("alpha"), B.1.351 ("beta"), and B.1.617.2 ("delta") spike proteins, while no cross-reactivity was observed with the common human coronavirus HKU1 spike protein. Inactivated whole SARS-CoV-2 virus was detected at 4.1 × 104 genomes/mL, which was 10-100-fold lower than virus loads typical of infectious individuals. The assay exhibited higher sensitivity for SARS-CoV-2 than commercial lateral flow assays, was compatible with viral transport media and saliva, enabled rapid pivoting to detect new virus variants, and facilitated highly sensitive, point-of-care diagnosis of COVID-19 in clinical and public health settings.
Collapse
Affiliation(s)
- Delphine Antoine
- Microbiology,
College of Science and Engineering, and SFI Centre for Medical Devices
(CÚRAM), National University of Ireland,
Galway (NUI Galway), Galway H91 TK33, Ireland
| | - Moein Mohammadi
- Chemical
Engineering, University of Wyoming, Laramie, Wyoming 82072, United States
| | - Madison Vitt
- Chemical
Engineering, University of Wyoming, Laramie, Wyoming 82072, United States
| | - Julia Marie Dickie
- Chemical
Engineering, University of Wyoming, Laramie, Wyoming 82072, United States
| | | | - Maura A. Tilbury
- Microbiology,
College of Science and Engineering, and SFI Centre for Medical Devices
(CÚRAM), National University of Ireland,
Galway (NUI Galway), Galway H91 TK33, Ireland
| | - Patrick A. Johnson
- Chemical
Engineering, University of Wyoming, Laramie, Wyoming 82072, United States
| | - Karen E. Wawrousek
- Chemical
Engineering, University of Wyoming, Laramie, Wyoming 82072, United States
| | - J. Gerard Wall
- Microbiology,
College of Science and Engineering, and SFI Centre for Medical Devices
(CÚRAM), National University of Ireland,
Galway (NUI Galway), Galway H91 TK33, Ireland
| |
Collapse
|
21
|
Domnich A, Orsi A, Sticchi L, Panatto D, Dini G, Ferrari A, Ogliastro M, Boccotti S, De Pace V, Ricucci V, Bruzzone B, Durando P, Icardi G. Effect of the 2020/21 season influenza vaccine on SARS-CoV-2 infection in a cohort of Italian healthcare workers. Vaccine 2022; 40:1755-1760. [PMID: 35153098 PMCID: PMC8829680 DOI: 10.1016/j.vaccine.2022.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/08/2022] [Accepted: 02/02/2022] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Healthcare workers (HCWs) are a priority group for seasonal influenza vaccination (SIV). The 2020/21 SIV campaign was conducted during the second wave of the COVID-19 pandemic. Vaccines, including SIV, may exert non-specific protective effects on other infectious diseases which may be ascribable to the concept of trained immunity. The aim of this study was to explore the association between 2020/21 SIV and SARS-CoV-2 positivity in a cohort of Italian HCWs. METHODS In this observational study, a cohort of HCWs employed by a large (ca 5000 employees) referral tertiary acute-care university hospital was followed up retrospectively until the start of the COVID-19 vaccination campaign. The independent variable of interest was the 2020/21 SIV uptake. Both egg-based and cell culture-derived quadrivalent SIVs were available. The study outcome was the incidence of new SARS-CoV-2 infections, as determined by RT-PCR. Multivariable Cox regression was applied in order to discern the association of interest. RESULTS The final cohort consisted of 2561 HCWs who underwent ≥1 RT-PCR test and accounted for a total of 94,445 person-days of observation. SIV uptake was 35.6%. During the study period, a total of 290 new SARS-CoV-2 infections occurred. The incidence of new SARS-CoV-2 was 1.62 (95% CI: 1.22-2.10) and 3.91 (95% CI: 3.43-4.45) per 1000 person-days in vaccinated and non-vaccinated HCWs, respectively, with an adjusted non-proportional hazard ratio of 0.37 (95% CI: 0.22-0.62). E-values suggested that unmeasured confounding was unlikely to explain the association. CONCLUSIONS A lower risk of SARS-CoV-2 infection was observed among SIV recipients.
Collapse
Affiliation(s)
- Alexander Domnich
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy.
| | - Andrea Orsi
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy; Department of Health Sciences, University of Genoa, Genoa, Italy; Interuniversity Research Center on Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy.
| | - Laura Sticchi
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy; Department of Health Sciences, University of Genoa, Genoa, Italy.
| | - Donatella Panatto
- Department of Health Sciences, University of Genoa, Genoa, Italy; Interuniversity Research Center on Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy.
| | - Guglielmo Dini
- Department of Health Sciences, University of Genoa, Genoa, Italy; Occupational Medicine Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy.
| | - Allegra Ferrari
- Department of Health Sciences, University of Genoa, Genoa, Italy.
| | | | - Simona Boccotti
- Department of Health Sciences, University of Genoa, Genoa, Italy.
| | - Vanessa De Pace
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy.
| | - Valentina Ricucci
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy.
| | - Bianca Bruzzone
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy.
| | - Paolo Durando
- Department of Health Sciences, University of Genoa, Genoa, Italy; Interuniversity Research Center on Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy; Occupational Medicine Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy.
| | - Giancarlo Icardi
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy; Department of Health Sciences, University of Genoa, Genoa, Italy; Interuniversity Research Center on Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy.
| |
Collapse
|
22
|
Adnan N, Khandker SS, Haq A, Chaity MA, Khalek A, Nazim AQ, Kaitsuka T, Tomizawa K, Mie M, Kobatake E, Ahmed S, Ali NAA, Khondoker MU, Haque M, Jamiruddin MR. Detection of SARS-CoV-2 by antigen ELISA test is highly swayed by viral load and sample storage condition. Expert Rev Anti Infect Ther 2022; 20:473-481. [PMID: 34477019 PMCID: PMC8442762 DOI: 10.1080/14787210.2021.1976144] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/31/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Rapid increase in COVID-19 suspected cases has rendered disease diagnosis challenging, mainly depending upon RT-qPCR. Reliable, rapid, and cost-effective diagnostic assays that complement RT-qPCR should be introduced after thoroughly evaluating their performance upon various disease phases, viral load, and sample storage conditions. OBJECTIVE We investigated the correlation of cycle threshold (Ct) value, which implies the viral load and infection phase, and the storage condition of the clinical specimen with the diagnosis of SARS-CoV-2 through our newly developed in-house rapid enzyme-linked immunosorbent assay (ELISA) system. METHOD Naso-oropharyngeal samples of 339 COVID-19 suspected cases were collected and evaluated through RT-qPCR that were stored up to 30 days in different conditions (i.e. -80°C, -20°C and initially at 4°C followed by -80°C). The clinical specimens were evaluated with our in-house ELISA system after finalizing the assay method through checkerboard assay and minimizing the signal/noise ratio. RESULT The ELISA system showed the highest sensitivity (92.9%) for samples with Ct ≤30 and preserving at -80°C temperature. The sensitivity reduced proportionally with increasing Ct value and preserving temperature. However, the specificity ranged between 98.3% and 100%. CONCLUSION The results indicate the necessity of early infection phase diagnosis and lower temperature preservation of samples to perform rapid antigen ELISA tests.
Collapse
Affiliation(s)
- Nihad Adnan
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - Shahad Saif Khandker
- Department of Research and Development, Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhaka, Bangladesh
| | - Ahsanul Haq
- Department of Research and Development, Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhaka, Bangladesh
| | | | - Abdul Khalek
- Department of Diagnostic Laboratory, Enam Medical College and Hospital, Dhaka, Bangladesh
| | - Anawarul Quader Nazim
- Department of Diagnostic Laboratory, Enam Medical College and Hospital, Dhaka, Bangladesh
| | - Taku Kaitsuka
- Department of Pharmaceutical Sciences, School of Pharmacy, International University of Health and Welfare, Fukuoka, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masayasu Mie
- Department of Life Science and Technology,School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Eiry Kobatake
- Department of Life Science and Technology,School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Sohel Ahmed
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, Bangladesh
| | - nor Azlina A Ali
- Department of Physical Rehabilitation Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Malaysia
| | - Mohib Ullah Khondoker
- Department of Community Medicine, Gonoshasthaya Samaj Vittik Medical College, Dhaka, Bangladesh
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health Universiti Pertahanan, Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, Malaysia
| | | |
Collapse
|
23
|
Sisay A, Abera A, Dufera B, Endrias T, Tasew G, Tesfaye A, Hartnack S, Beyene D, Desta AF. Diagnostic accuracy of three commercially available one step RT-PCR assays for the detection of SARS-CoV-2 in resource limited settings. PLoS One 2022; 17:e0262178. [PMID: 35051204 PMCID: PMC8775315 DOI: 10.1371/journal.pone.0262178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Background COVID-19 is an ongoing public health pandemic regardless of the countless efforts made by various actors. Quality diagnostic tests are important for early detection and control. Notably, several commercially available one step RT-PCR based assays have been recommended by the WHO. Yet, their analytic and diagnostic performances have not been well documented in resource-limited settings. Hence, this study aimed to evaluate the diagnostic sensitivities and specificities of three commercially available one step reverse transcriptase-polymerase chain reaction (RT-PCR) assays in Ethiopia in clinical setting. Methods A cross-sectional study was conducted from April to June, 2021 on 279 respiratory swabs originating from community surveillance, contact cases and suspect cases. RNA was extracted using manual extraction method. Master-mix preparation, amplification and result interpretation was done as per the respective manufacturer. Agreements between RT-PCRs were analyzed using kappa values. Bayesian latent class models (BLCM) were fitted to obtain reliable estimates of diagnostic sensitivities, specificities of the three assays and prevalence in the absence of a true gold standard. Results Among the 279 respiratory samples, 50(18%), 59(21.2%), and 69(24.7%) were tested positive by TIB, Da An, and BGI assays, respectively. Moderate to substantial level of agreement was reported among the three assays with kappa value between 0 .55 and 0.72. Based on the BLCM relatively high specificities (95% CI) of 0.991(0.973–1.000), 0.961(0.930–0.991) and 0.916(0.875–0.952) and considerably lower sensitivities with 0.813(0.658–0.938), 0.836(0.712–0.940) and 0.810(0.687–0.920) for TIB MOLBIOL, Da An and BGI respectively were found. Conclusions While all the three RT-PCR assays displayed comparable sensitivities, the specificities of TIB MOLBIOL and Da An were considerably higher than BGI. These results help adjust the apparent prevalence determined by the three RT-PCRs and thus support public health decisions in resource limited settings and consider alternatives as per their prioritization matrix.
Collapse
Affiliation(s)
- Abay Sisay
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- * E-mail:
| | - Adugna Abera
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Malaria and Neglected Tropical Diseases Research Team, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Boja Dufera
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Malaria and Neglected Tropical Diseases Research Team, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Tujuba Endrias
- Malaria and Neglected Tropical Diseases Research Team, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Geremew Tasew
- Malaria and Neglected Tropical Diseases Research Team, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Abraham Tesfaye
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Diagnostic Unit, Center for Innovative Drug Development and Therapeutic Trials for Africa, CDT- Africa, Addis Ababa, Ethiopia
| | - Sonja Hartnack
- Section of Epidemiology, University of Zurich, Zurich, Switzerland
| | - Dereje Beyene
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Adey Feleke Desta
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
24
|
Abdeldayem OM, Dabbish AM, Habashy MM, Mostafa MK, Elhefnawy M, Amin L, Al-Sakkari EG, Ragab A, Rene ER. Viral outbreaks detection and surveillance using wastewater-based epidemiology, viral air sampling, and machine learning techniques: A comprehensive review and outlook. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149834. [PMID: 34525746 PMCID: PMC8379898 DOI: 10.1016/j.scitotenv.2021.149834] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/05/2021] [Accepted: 08/18/2021] [Indexed: 05/06/2023]
Abstract
A viral outbreak is a global challenge that affects public health and safety. The coronavirus disease 2019 (COVID-19) has been spreading globally, affecting millions of people worldwide, and led to significant loss of lives and deterioration of the global economy. The current adverse effects caused by the COVID-19 pandemic demands finding new detection methods for future viral outbreaks. The environment's transmission pathways include and are not limited to air, surface water, and wastewater environments. The wastewater surveillance, known as wastewater-based epidemiology (WBE), can potentially monitor viral outbreaks and provide a complementary clinical testing method. Another investigated outbreak surveillance technique that has not been yet implemented in a sufficient number of studies is the surveillance of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) in the air. Artificial intelligence (AI) and its related machine learning (ML) and deep learning (DL) technologies are currently emerging techniques for detecting viral outbreaks using global data. To date, there are no reports that illustrate the potential of using WBE with AI to detect viral outbreaks. This study investigates the transmission pathways of SARS-CoV-2 in the environment and provides current updates on the surveillance of viral outbreaks using WBE, viral air sampling, and AI. It also proposes a novel framework based on an ensemble of ML and DL algorithms to provide a beneficial supportive tool for decision-makers. The framework exploits available data from reliable sources to discover meaningful insights and knowledge that allows researchers and practitioners to build efficient methods and protocols that accurately monitor and detect viral outbreaks. The proposed framework could provide early detection of viruses, forecast risk maps and vulnerable areas, and estimate the number of infected citizens.
Collapse
Affiliation(s)
- Omar M Abdeldayem
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands.
| | - Areeg M Dabbish
- Biotechnology Graduate Program, Biology Department, School of Science and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Mahmoud M Habashy
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands
| | - Mohamed K Mostafa
- Faculty of Engineering and Technology, Badr University in Cairo (BUC), Cairo 11829, Egypt
| | - Mohamed Elhefnawy
- CanmetENERGY, 1615 Lionel-Boulet Blvd, P.O. Box 4800, Varennes, Québec J3X 1P7, Canada; Department of Mathematics and Industrial Engineering, Polytechnique Montréal 2500 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada
| | - Lobna Amin
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands; Department of Built Environment, Aalto University, PO Box 15200, FI-00076, Aalto, Finland
| | - Eslam G Al-Sakkari
- Chemical Engineering Department, Cairo University, Cairo University Road, 12613 Giza, Egypt
| | - Ahmed Ragab
- CanmetENERGY, 1615 Lionel-Boulet Blvd, P.O. Box 4800, Varennes, Québec J3X 1P7, Canada; Department of Mathematics and Industrial Engineering, Polytechnique Montréal 2500 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada; Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands
| |
Collapse
|
25
|
Majumdar A, Dey G, Sinha A. Altered hematological profile: The forerunner of fatalities caused by COVID-19. MEDICAL JOURNAL OF BABYLON 2022. [DOI: 10.4103/mjbl.mjbl_44_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
26
|
Domnich A, Orsi A, Panatto D, De Pace V, Ricucci V, Caligiuri P, Guarona G, Chessa V, Ferone D, Boccotti S, Bruzzone B, Icardi G. Comparative Diagnostic Performance of a Novel Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) Kit for the Rapid Detection of SARS-CoV-2. Pathogens 2021; 10:1629. [PMID: 34959584 PMCID: PMC8706056 DOI: 10.3390/pathogens10121629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022] Open
Abstract
Although the reverse transcription-polymerase chain reaction (RT-PCR) is considered a standard-of-care assay for the laboratory diagnosis of SARS-CoV-2, several limitations of this method have been described. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) is an alternative molecular assay and is potentially able to overcome some intrinsic shortcomings of RT-PCR. In this study, we evaluated the diagnostic performance of the novel HG COVID-19 RT-LAMP assay. In this retrospective analysis, a total of 400 routinely collected leftover nasopharyngeal samples with a known RT-PCR result were tested by means of the HG COVID-19 RT-LAMP assay. The overall sensitivity and specificity values of HG COVID-19 RT-LAMP versus RT-PCR were 97.0% (95% CI: 93.6-98.9%) and 98.5% (95% CI: 95.7-99.7%), respectively. Inter-assay agreement was almost perfect (κ = 0.96). Concordance was perfect in samples with high viral loads (cycle threshold < 30). The average time to a positive result on RT-LAMP was 17 min. HG COVID-19 RT-LAMP is a reliable molecular diagnostic kit for detecting SARS-CoV-2, and its performance is comparable to that of RT-PCR. Shorter turnaround times and the possibility of performing molecular diagnostics in the point-of-care setting make it a valuable option for facilities without sophisticated laboratory equipment.
Collapse
Affiliation(s)
- Alexander Domnich
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (A.O.); (V.D.P.); (V.R.); (P.C.); (G.G.); (V.C.); (S.B.); (B.B.); (G.I.)
| | - Andrea Orsi
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (A.O.); (V.D.P.); (V.R.); (P.C.); (G.G.); (V.C.); (S.B.); (B.B.); (G.I.)
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Donatella Panatto
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Vanessa De Pace
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (A.O.); (V.D.P.); (V.R.); (P.C.); (G.G.); (V.C.); (S.B.); (B.B.); (G.I.)
| | - Valentina Ricucci
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (A.O.); (V.D.P.); (V.R.); (P.C.); (G.G.); (V.C.); (S.B.); (B.B.); (G.I.)
| | - Patrizia Caligiuri
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (A.O.); (V.D.P.); (V.R.); (P.C.); (G.G.); (V.C.); (S.B.); (B.B.); (G.I.)
| | - Giulia Guarona
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (A.O.); (V.D.P.); (V.R.); (P.C.); (G.G.); (V.C.); (S.B.); (B.B.); (G.I.)
| | - Valerio Chessa
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (A.O.); (V.D.P.); (V.R.); (P.C.); (G.G.); (V.C.); (S.B.); (B.B.); (G.I.)
| | - Diego Ferone
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy;
- Endocrinology Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy
| | - Simona Boccotti
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (A.O.); (V.D.P.); (V.R.); (P.C.); (G.G.); (V.C.); (S.B.); (B.B.); (G.I.)
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Bianca Bruzzone
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (A.O.); (V.D.P.); (V.R.); (P.C.); (G.G.); (V.C.); (S.B.); (B.B.); (G.I.)
| | - Giancarlo Icardi
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (A.O.); (V.D.P.); (V.R.); (P.C.); (G.G.); (V.C.); (S.B.); (B.B.); (G.I.)
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
27
|
Global Pandemic as a Result of Severe Acute Respiratory Syndrome Coronavirus 2 Outbreak: A Biomedical Perspective. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In December 2019, a novel coronavirus had emerged in Wuhan city, China that led to an outbreak resulting in a global pandemic, taking thousands of lives. The infectious virus was later classified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Individuals infected by this novel virus initially exhibit nonspecific symptoms such as dry cough, fever, dizziness and many more bodily complications. From the “public health emergency of international concern” declaration by the World Health Organisation (WHO), several countries have taken steps in controlling the transmission and many researchers share their knowledge on the SARS-COV-2 characteristics and viral life cycle, that may aid in pharmaceutical and biopharmaceutical companies to develop SARS-CoV-2 vaccine and antiviral drugs that interfere with the viral life cycle. In this literature review the origin, classification, aetiology, life cycle, clinical manifestations, laboratory diagnosis and treatment are all reviewed.
Collapse
|
28
|
Jian MJ, Perng CL, Chung HY, Chang CK, Lin JC, Yeh KM, Chen CW, Hsieh SS, Pan PC, Chang HT, Chang FY, Ho CL, Shang HS. Clinical assessment of SARS-CoV-2 antigen rapid detection compared with RT-PCR assay for emerging variants at a high-throughput community testing site in Taiwan. Int J Infect Dis 2021; 115:30-34. [PMID: 34843956 PMCID: PMC8620016 DOI: 10.1016/j.ijid.2021.11.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
Objectives With the emergence of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) B.1.1.7 lineage in the ongoing coronavirus disease 2019 (COVID-19) pandemic, Taiwan confronted a COVID-19 flare up in May 2021. Large-scale, accurate, affordable and rapid diagnostic tests such as the lateral flow assay can help to prevent community transmission, but their performance characteristics in real-world conditions and relevant subpopulations remain unclear. Methods The COVID-19 Antigen Rapid Test Kit (Eternal Materials, New Taipei City, Taiwan) was used in a high-throughput community testing site; the paired reverse transcription polymerase chain reaction (RT-PCR) results served as a reference for sensitivity and specificity calculations. Results Of 2096 specimens tested using the rapid antigen test, 70 (3.33%) were positive and 2026 (96.7%) were negative. This clinical performance was compared with the RT-PCR results. The sensitivity and specificity of the rapid antigen test were 76.39% [95% confidence interval (CI) 64.91–85.60%] and 99.26% (95% CI 98.78–99.58%), respectively, with high sensitivity in subjects with cycle threshold values ≤24. Further, the rapid antigen test detected the SARS-CoV-2 B.1.1.7 lineage effectively. Conclusions Considering the short turnaround times and lower costs, this simple SARS-CoV-2 antigen detection test for rapid screening combined with RT-PCR as a double confirmatory screening tool can facilitate the prevention of community transmission during COVID-19 emergencies.
Collapse
Affiliation(s)
- Ming-Jr Jian
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defence Medical Centre, Taipei, Taiwan, R.O.C
| | - Cherng-Lih Perng
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defence Medical Centre, Taipei, Taiwan, R.O.C
| | - Hsing-Yi Chung
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defence Medical Centre, Taipei, Taiwan, R.O.C
| | - Chih-Kai Chang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defence Medical Centre, Taipei, Taiwan, R.O.C
| | - Jung-Chung Lin
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Tri-Service General Hospital, National Defence Medical Centre, Taipei, Taiwan, R.O.C
| | - Kuo-Ming Yeh
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Tri-Service General Hospital, National Defence Medical Centre, Taipei, Taiwan, R.O.C
| | - Chien-Wen Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Tri-Service General Hospital, National Defence Medical Centre, Taipei, Taiwan, R.O.C
| | - Shan-Shan Hsieh
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defence Medical Centre, Taipei, Taiwan, R.O.C
| | - Pin-Ching Pan
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defence Medical Centre, Taipei, Taiwan, R.O.C
| | - Hao-Ting Chang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defence Medical Centre, Taipei, Taiwan, R.O.C
| | - Feng-Yee Chang
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Tri-Service General Hospital, National Defence Medical Centre, Taipei, Taiwan, R.O.C
| | - Ching-Liang Ho
- Division of Haematology/Oncology, Department of Medicine, Tri-Service General Hospital, National Defence Medical Centre, Taipei, Taiwan, R.O.C.
| | - Hung-Sheng Shang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defence Medical Centre, Taipei, Taiwan, R.O.C.
| |
Collapse
|
29
|
Al-Mughales JA, Al-Mughales TJ, Saadah OI. Monitoring Specific IgM and IgG Production Among Severe COVID-19 Patients Using Qualitative and Quantitative Immunodiagnostic Assays: A Retrospective Cohort Study. Front Immunol 2021; 12:705441. [PMID: 34539635 PMCID: PMC8446649 DOI: 10.3389/fimmu.2021.705441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study is to monitor specific anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) IgG and IgM antibody production in patients with severe forms of coronavirus disease 2019 (COVID-19) using various commercially available quantitative and qualitative tests. The sera of 23 confirmed COVID-19 patients were processed for anti-SARS-CoV-2 IgG and IgM detection. Three different immunoassays, viz. Abbott Architect® SARS-CoV-2 IgG assay, and two quantitative tests, ANSH® SARS-CoV-2 and AESKULISA® SARS-CoV-2 Nucleocapsid Protein (NP), were performed and the results pooled, from diagnosis to serum collection. Seroconversion rates were computed for all 3 assays, and possible correlations were tested using the Pearson correlation coefficient and Cohen’s kappa coefficient. Overall, 70 combinations of qualitative and quantitative IgG and IgM results were pooled and analyzed. In the early phase (0-4 days after diagnosis), in all tests, IgG seroconversion rates were 43%-61%, and increased in all tests gradually to 100% after 15 days. The Pearson correlation coefficient showed a strong positive relationship between the qualitative IgG test results and both quantitative IgG tests. IgM detection was inconsistent, with maximal concentrations and seroconversion rates between 10-15 days after diagnosis and slight-to-fair agreement between the two quantitative immunoassays. There was no significant association between mortality with IgG or IgM seroconversion or concentrations. Patients with severe COVID-19 develop an early, robust anti-SARS-CoV-2 specific humoral immune response involving IgG immunoglobulins. Further comparative studies are warranted to analyze the value of serological testing in predicting the severity of COVID-19 and detecting prior exposure.
Collapse
Affiliation(s)
- Jamil A Al-Mughales
- Department of Clinical Laboratory Medicine, Diagnostic Immunology Division, King Abdulaziz University Hospital, Jeddah, Saudi Arabia.,Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Omar I Saadah
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
30
|
Lee CJ, Shin W, Mun S, Yu M, Choi YB, Kim DH, Han K. Diagnostic evaluation of qRT-PCR-based kit and dPCR-based kit for COVID-19. Genes Genomics 2021; 43:1277-1288. [PMID: 34524612 PMCID: PMC8441239 DOI: 10.1007/s13258-021-01162-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022]
Abstract
Background Coronavirus disease of 2019 (COVID-19) is well known as a fatal disease, first discovered at Wuhan in China, ranging from mild to death, such as shortness of breath and fever. Early diagnosis of COVID-19 is a crucial point in preventing global prevalence. Objective We aimed to evaluate the diagnostic competency and efficiency with the Allplex™ 2019-nCoV Assay kit and the Dr. PCR 20 K COVID-19 Detection kit, designed based on the qRT-PCR and dPCR technologies, respectively. Methods A total of 30 negative and 20 COVID-19 positive specimens were assigned to the diagnostic test by using different COVID-19 diagnosis kits. Diagnostic accuracy was measured by statistical testing with sensitivity, specificity, and co-efficiency calculations. Results Comparing both diagnostic kits, we confirmed that the diagnostic results of 30 negative and 20 positive cases were the same pre-diagnostic results. The diagnostic statistics test results were perfectly matched with value (1). Cohen’s Kappa coefficient was demonstrated that the given kits in two different ways were “almost perfect” with value (1). In evaluating the detection capability, the dilutional linearity experiments substantiate that the Dr. PCR 20 K COVID-19 Detection kit could detect SARS-CoV-2 viral load at a concentration ten times lower than that of the Allplex™ 2019-nCoV Assay kit. Conclusions In this study, we propose that the dPCR diagnosis using LOAA dPCR could be a powerful method for COVID-19 point-of-care tests requiring immediate diagnosis in a limited time and space through the advantages of relatively low sample concentration and small equipment size compared to conventional qRT-PCR. Supplementary Information The online version contains supplementary material available at 10.1007/s13258-021-01162-4.
Collapse
Affiliation(s)
- Cherl-Joon Lee
- Department of Bio-Convergence Engineering, Dankook University, Jukjeon, 16890, Republic of Korea
| | - Wonseok Shin
- NGS Clinical Laboratory, Dankook University Hospital, Cheonan, 31116, Republic of Korea
| | - Seyoung Mun
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116, Republic of Korea.,Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea.,DKU-Theragen institute for NGS analysis (DTiNa), Cheonan, 31116, Republic of Korea
| | - Minjae Yu
- DKU-Theragen institute for NGS analysis (DTiNa), Cheonan, 31116, Republic of Korea.,Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Young-Bong Choi
- Department of Chemistry, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Dong Hee Kim
- Department of Anesthesiology and Pain Management, Dankook University College of Medicine, Cheonan, 31116, Republic of Korea.
| | - Kyudong Han
- Department of Bio-Convergence Engineering, Dankook University, Jukjeon, 16890, Republic of Korea. .,NGS Clinical Laboratory, Dankook University Hospital, Cheonan, 31116, Republic of Korea. .,Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea. .,DKU-Theragen institute for NGS analysis (DTiNa), Cheonan, 31116, Republic of Korea. .,Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
31
|
Mohit E, Rostami Z, Vahidi H. A comparative review of immunoassays for COVID-19 detection. Expert Rev Clin Immunol 2021; 17:573-599. [PMID: 33787412 DOI: 10.1080/1744666x.2021.1908886] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: The gold standard for diagnosis of coronavirus disease 2019 (COVID-19) is detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by reverse transcription polymerase chain reaction (RT-PCR), which is expensive, time-consuming and may result in false-negative results. Serological tests can be employed for RT-PCR negative patients, contact tracing, determining the probability of protection against re-infection, and seroepidemiological studies.Areas covered: The main methodologies of serology-based tests for the detection of SARS-CoV-2 including enzyme-linked immunosorbent assays (ELISAs), chemiluminescent immunoassays (CLIAs) and lateral flow immunoassays (LFIAs) were reviewed and their diagnostic performances were compared. Herein, a literature review on the databases of PubMed, Scopus and Google Scholar between January 1, 2020 and June 30, 2020 based on the main serological methods for COVID-19 detection with the focus on comparative experiments was performed. The review was updated on December 31, 2020.Expert opinion: Serology testing could be considered as a part of diagnostic panel two-week post symptom onset. Higher sensitivity for serology-based tests could be achieved by determining combined IgG/IgM titers. Furthermore, higher sensitive serological test detecting neutralization antibody could be developed by targeting spike (S) antigen. It was also demonstrated that the sensitivity of ELISA/CLIA-based methods are higher than LFIA devices.
Collapse
Affiliation(s)
- Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Rostami
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Vahidi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Jian MJ, Chung HY, Chang CK, Lin JC, Yeh KM, Chen CW, Li SY, Hsieh SS, Liu MT, Yang JR, Tang SH, Perng CL, Chang FY, Shang HS. Clinical Comparison of Three Sample-to-Answer Systems for Detecting SARS-CoV-2 in B.1.1.7 Lineage Emergence. Infect Drug Resist 2021; 14:3255-3261. [PMID: 34429623 PMCID: PMC8380303 DOI: 10.2147/idr.s328327] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/04/2021] [Indexed: 01/02/2023] Open
Abstract
Purpose Accurate molecular diagnostic assays for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, are needed for epidemiology studies and to support infection-control measures. We evaluated the analytical sensitivity and clinical performance of three sample-to-answer molecular-diagnostics systems for detecting SARS-CoV-2 using 325 nasopharyngeal swab clinical samples from symptomatic patients. Methods The BioFire Respiratory Panel 2.1 (RP2.1), cobas Liat SARS-CoV-2 and Influenza A/B, and Cepheid Xpert Xpress SARS-CoV-2/Flu/RSV platforms, which have been granted emergency-use authorization by the US FDA, were tested and compared. Results The positive percent agreement, negative percent agreement, and overall percent agreement among the three point of care testing systems were 98–100%, including for the wild-type SARS-CoV-2 (non-B.1.1.7) and a variant of concern (B.1.1.7). Notably, the BioFire RP2.1 may fail to detect the SARS-CoV-2 S gene in the B.1.1.7 lineage because of the spike protein mutation. Conclusion All three point of care testing platforms provided highly sensitive, robust, and almost accurate results for rapidly detecting SARS-CoV-2. These automated molecular diagnostic assays can increase the effectiveness of control and prevention measures for infectious diseases.
Collapse
Affiliation(s)
- Ming-Jr Jian
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Hsing-Yi Chung
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chih-Kai Chang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Jung-Chung Lin
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Kuo-Ming Yeh
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chien-Wen Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Shih-Yi Li
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Shan-Shan Hsieh
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Ming-Tsan Liu
- Centers for Disease Control, Taipei, Taiwan, Republic of China
| | - Ji-Rong Yang
- Centers for Disease Control, Taipei, Taiwan, Republic of China
| | - Sheng-Hui Tang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Cherng-Lih Perng
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Feng-Yee Chang
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Hung-Sheng Shang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| |
Collapse
|
33
|
Chatterjee S, Mishra S, Chowdhury KD, Ghosh CK, Saha KD. Various theranostics and immunization strategies based on nanotechnology against Covid-19 pandemic: An interdisciplinary view. Life Sci 2021; 278:119580. [PMID: 33991549 PMCID: PMC8114615 DOI: 10.1016/j.lfs.2021.119580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/12/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023]
Abstract
COVID-19 pandemic is still a major risk to human civilization. Besides the global immunization policy, more than five lac new cases are documented everyday. Some countries newly implement partial/complete nationwid lockdown to mitigate recurrent community spreading. To avoid the new modified stain of SARS-CoV-2 spreading, some countries imposed any restriction on the movement of the citizens within or outside the country. Effective economical point of care diagnostic and therapeutic strategy is vigorously required to mitigate viral spread. Besides struggling with repurposed medicines, new engineered materials with multiple unique efficacies and specific antiviral potency against SARS-CoV-2 infection may be fruitful to save more lives. Nanotechnology-based engineering strategy sophisticated medicine with specific, effective and nonhazardous delivery mechanism for available repurposed antivirals as well as remedial for associated diseases due to malfeasance in immuno-system e.g. hypercytokinaemia, acute respiratory distress syndrome. This review will talk about gloomy but critical areas for nanoscientists to intervene and will showcase about the different laboratory diagnostic, prognostic strategies and their mode of actions. In addition, we speak about SARS-CoV-2 pathophysiology, pathogenicity and host specific interation with special emphasis on altered immuno-system and also perceptualized, copious ways to design prophylactic nanomedicines and next-generation vaccines based on recent findings.
Collapse
Affiliation(s)
- Sujan Chatterjee
- Molecular Biology and Tissue Culture Laboratory, Post Graduate Department of Zoology, Vidyasagar College, Kolkata-700006, India
| | - Snehasis Mishra
- Cancer and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata-700032, India
| | - Kaustav Dutta Chowdhury
- Cyto-genetics Laboratory, Department of Zoology, Rammohan College, 102/1, Raja Rammohan Sarani, Kolkata-700009, India
| | - Chandan Kumar Ghosh
- School of Material Science and Nanotechnology, Jadavpur University, Kolkata-700032, India.
| | - Krishna Das Saha
- Cancer and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
34
|
Aisyah DN, Mayadewi CA, Igusti G, Manikam L, Adisasmito W, Kozlakidis Z. Laboratory Readiness and Response for SARS-Cov-2 in Indonesia. Front Public Health 2021; 9:705031. [PMID: 34350153 PMCID: PMC8326463 DOI: 10.3389/fpubh.2021.705031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
The laboratory diagnosis of SARS-CoV-2 infection comprises the informational cornerstone in the effort to contain the infections. Therefore, the ability to leverage laboratories' capacity in diagnostic testing and to increase the number of people being tested are critical. This paper reviews the readiness of Indonesian laboratories during the early months of the pandemic. It discusses the success of cross-sectoral collaboration among previously siloed national and sub-national government institutions, international development agencies, and private sector stakeholders. This collaboration managed to scale-up the COVID-19 referral laboratory network from one Ministry of Health NIHRD laboratory in the capital to 685 laboratories across 34 provinces. However, this rapid growth within 12 months since the first Indonesian case was discovered remained insufficient to cater for the constantly surging testing demands within the world's fourth most populous country. Reflecting on how other countries built their current pandemic preparedness from past emergencies, this paper highlights challenges and opportunities in workforce shortage, logistic distribution, and complex administration that need to be addressed.
Collapse
Affiliation(s)
- Dewi N. Aisyah
- Department of Epidemiology and Public Health, Institute of Epidemiology and Health Care, University College London, London, United Kingdom
- Indonesia One Health University Network, Depok, Indonesia
| | | | - Gayatri Igusti
- Aceso Global Health Consultants Limited, London, United Kingdom
| | - Logan Manikam
- Department of Epidemiology and Public Health, Institute of Epidemiology and Health Care, University College London, London, United Kingdom
- Aceso Global Health Consultants Limited, London, United Kingdom
| | - Wiku Adisasmito
- Indonesia One Health University Network, Depok, Indonesia
- Faculty of Public Health, Universitas Indonesia, Depok, Indonesia
| | - Zisis Kozlakidis
- International Agency for Research on Cancer World Health Organization, Lyon, France
| |
Collapse
|
35
|
Rahman MM, Ahmed M, Islam MT, Khan MR, Sultana S, Maeesa SK, Hasan S, Hossain MA, Ferdous KS, Mathew B, Rauf A, Uddin MS. Nanotechnology-Based Approaches and Investigational Therapeutics against COVID-19. Curr Pharm Des 2021; 28:948-968. [PMID: 34218774 DOI: 10.2174/1381612827666210701150315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/30/2021] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus which is currently responsible for the global pandemic since December 2019. This class of coronavirus has affected 217 countries around the world. Most of the countries have taken some non-remedial preventive actions like country lockdown, work from home, travel bans, and the most significant one is social isolation. Pharmacists, doctors, nurses, technologists, and all other healthcare professionals are playing a pivotal role during this pandemic. Unluckily, there is no specific drug that can treat patients who are confirmed with COVID-19, though favipiravir and remdesivir have appeared as favorable antiviral drugs. Some vaccines have already developed, and vaccination has started worldwide. Different nanotechnologies are in the developing stage in many countries for preventing SARS-COV-2 and treating COVID-19 conditions. In this article, we review the COVID-19 pandemic situation as well as the nanotechnology-based approaches and investigational therapeutics against COVID-19.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka. Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka. Bangladesh
| | - Mohammad Touhidul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka. Bangladesh
| | - Md Robin Khan
- Bangladesh Reference Institute for Chemical Measurements, Dhaka. Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka. Bangladesh
| | - Saila Kabir Maeesa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka. Bangladesh
| | - Sakib Hasan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka. Bangladesh
| | - Md Abid Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka. Bangladesh
| | - Kazi Sayma Ferdous
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka. Bangladesh
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pakhtunkhwa. Bangladesh
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka. Bangladesh
| |
Collapse
|
36
|
Shirazi S, Stanford CM, Cooper LF. Testing for COVID-19 in dental offices: Mechanism of action, application, and interpretation of laboratory and point-of-care screening tests. J Am Dent Assoc 2021; 152:514-525.e8. [PMID: 34176567 PMCID: PMC8096195 DOI: 10.1016/j.adaj.2021.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND The dental office potentially possesses all transmission risk factors for severe acute respiratory syndrome coronavirus 2. Anticipating the future widespread use of COVID-19 testing in dental offices, the authors wrote this article as a proactive effort to provide dental health care providers with current and necessary information surrounding the topic. METHODS The authors consulted all relevant and current guidelines from the Centers for Disease Control and Prevention and the US Food and Drug Administration, as well as online resources and review articles. RESULTS Routine COVID-19 screening and triage protocols are unable to detect all infected people. With the advancements in diagnostic tools and techniques, COVID-19 testing at home or in the dental office may provide dentists with the ability to evaluate the disease status of their patients. At-home or point-of-care (POC) tests, providing results within minutes of being administered, would allow for appropriate measures and rapid decisions about dental patients' care process. In this review, the authors provide information about available laboratory and POC COVID-19 screening methods and identify and elaborate on the options available for use by dentists as well as the regulatory requirements of test administration. CONCLUSIONS Dentists need to be familiar with COVID-19 POC testing options. In addition to contributing to public health, such tests may deliver rapid, accurate, and actionable results to clinical and infection control teams to enhance the safe patient flow in dental practices. PRACTICAL IMPLICATIONS Oral health care must continue to offer safety in this or any future pandemics. Testing for severe acute respiratory syndrome coronavirus 2 at the POC offers a control mechanism contributing to and enhancing the real and perceived safety of care in the dental office setting.
Collapse
|
37
|
Misra R, Acharya S, Sushmitha N. Nanobiosensor-based diagnostic tools in viral infections: Special emphasis on Covid-19. Rev Med Virol 2021; 32:e2267. [PMID: 34164867 PMCID: PMC8420101 DOI: 10.1002/rmv.2267] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/10/2021] [Indexed: 01/09/2023]
Abstract
The rapid propagation of novel human coronavirus 2019 and its emergence as a pandemic raising morbidity calls for taking more appropriate measures for rapid improvement of present diagnostic techniques which are time‐consuming, labour‐intensive and non‐portable. In this scenario, biosensors can be considered as a means to outmatch customary techniques and deliver point‐of‐care diagnostics for many diseases in a much better way owing to their speed, cost‐effectiveness, accuracy, sensitivity and selectivity. Besides this, these biosensors have been aptly used to detect a wide spectrum of viruses thus facilitating timely delivery of correct therapy. The present review is an attempt to analyse such different kinds of biosensors that have been implemented for virus detection. Recently, the field of nanotechnology has given a great push to diagnostic techniques by the development of smart and miniaturised nanobiosensors which have enhanced the diagnostic procedure and taken it to a new level. The portability, hardiness and affordability of nanobiosensor make them an apt diagnostic agent for different kinds of viruses including SARS‐CoV‐2. The role of such novel nanobiosensors in the diagnosis of SARS‐CoV‐2 has also been addressed comprehensively in the present review. Along with this, the challenges and future position of developing such ultrasensitive nanobiosensors which should be taken into consideration before declaring these nano‐weapons as the ideal futuristic gold standard of diagnosis has also been accounted for here.
Collapse
Affiliation(s)
- Ranjita Misra
- Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Sarbari Acharya
- Department of Life Science, School of Applied Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Nehru Sushmitha
- Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
38
|
Kriegova E, Fillerova R, Raska M, Manakova J, Dihel M, Janca O, Sauer P, Klimkova M, Strakova P, Kvapil P. Excellent option for mass testing during the SARS-CoV-2 pandemic: painless self-collection and direct RT-qPCR. Virol J 2021; 18:95. [PMID: 33947425 PMCID: PMC8094981 DOI: 10.1186/s12985-021-01567-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/29/2021] [Indexed: 11/10/2022] Open
Abstract
The early identification of asymptomatic yet infectious cases is vital to curb the 2019 coronavirus (COVID-19) pandemic and to control the disease in the post-pandemic era. In this paper, we propose a fast, inexpensive and high-throughput approach using painless nasal-swab self-collection followed by direct RT-qPCR for the sensitive PCR detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This approach was validated in a large prospective cohort study of 1038 subjects, analysed simultaneously using (1) nasopharyngeal swabs obtained with the assistance of healthcare personnel and analysed by classic two-step RT-qPCR on RNA isolates and (2) nasal swabs obtained by self-collection and analysed with direct RT-qPCR. Of these subjects, 28.6% tested positive for SARS-CoV-2 using nasopharyngeal swab sampling. Our direct RT-qPCR approach for self-collected nasal swabs performed well with results similar to those of the two-step RT-qPCR on RNA isolates, achieving 0.99 positive and 0.98 negative predictive values (cycle threshold [Ct] < 37). Our research also reports on grey-zone viraemia, including samples with near-cut-off Ct values (Ct ≥ 37). In all investigated subjects (n = 20) with grey-zone viraemia, the ultra-small viral load disappeared within hours or days with no symptoms. Overall, this study underscores the importance of painless nasal-swab self-collection and direct RT-qPCR for mass testing during the SARS-CoV-2 pandemic and in the post-pandemic era.
Collapse
Affiliation(s)
- Eva Kriegova
- Department of Immunology, OLGEN, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hnevotinska 3, 77900 Olomouc, Czech Republic
| | - Regina Fillerova
- Department of Immunology, OLGEN, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hnevotinska 3, 77900 Olomouc, Czech Republic
| | - Milan Raska
- Department of Immunology, OLGEN, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hnevotinska 3, 77900 Olomouc, Czech Republic
| | - Jirina Manakova
- Department of Immunology, OLGEN, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hnevotinska 3, 77900 Olomouc, Czech Republic
| | - Martin Dihel
- Department of Immunology, OLGEN, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hnevotinska 3, 77900 Olomouc, Czech Republic
| | - Ondrej Janca
- Department of Immunology, OLGEN, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hnevotinska 3, 77900 Olomouc, Czech Republic
| | - Pavel Sauer
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | | | | | - Petr Kvapil
- Institute of Applied Biotechnologies a.s., Prague, Czech Republic
| |
Collapse
|
39
|
Bruzzone B, De Pace V, Caligiuri P, Ricucci V, Guarona G, Pennati BM, Boccotti S, Orsi A, Domnich A, Da Rin G, Icardi G. Comparative diagnostic performance of rapid antigen detection tests for COVID-19 in a hospital setting. Int J Infect Dis 2021; 107:215-218. [PMID: 33930540 PMCID: PMC8078031 DOI: 10.1016/j.ijid.2021.04.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The availability of accurate and rapid diagnostic tools for COVID-19 is essential for tackling the ongoing pandemic. Our study aimed to quantify the performance of available antigen-detecting rapid diagnostic tests (Ag-RDTs) in a real-world hospital setting. METHODS In this retrospective analysis, the diagnostic performance of 7 Ag-RDTs was compared with real-time reverse transcription quantitative polymerase chain reaction assay in terms of sensitivity, specificity and expected predictive values. RESULTS A total of 321 matched Ag-RDTreal-time reverse transcription quantitative polymerase chain reaction samples were analyzed retrospectively. The overall sensitivity and specificity of the Ag-RDTs was 78.7% and 100%, respectively. However, a wide range of sensitivity estimates by brand (66.0%-93.8%) and cycle threshold (Ct) cut-off values (Ct <25: 96.2%; Ct 30-35: 31.1%) was observed. The optimal Ct cut-off value that maximized sensitivity was 29. CONCLUSIONS The routine use of Ag-RDTs may be convenient in moderate-to-high intensity settings when high volumes of specimens are tested every day. However, the diagnostic performance of the commercially available tests may differ substantially.
Collapse
Affiliation(s)
- Bianca Bruzzone
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Vanessa De Pace
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Patrizia Caligiuri
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Valentina Ricucci
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Giulia Guarona
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| | | | - Simona Boccotti
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy; Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Andrea Orsi
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy; Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Alexander Domnich
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy.
| | - Giorgio Da Rin
- Laboratory Medicine, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy
| | - Giancarlo Icardi
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy; Department of Health Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
40
|
Esposito S, Marchetti F, Lanari M, Caramelli F, De Fanti A, Vergine G, Iughetti L, Fornaro M, Suppiej A, Zona S, Pession A, Biasucci G. COVID-19 Management in the Pediatric Age: Consensus Document of the COVID-19 Working Group in Paediatrics of the Emilia-Romagna Region (RE-CO-Ped), Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3919. [PMID: 33917940 PMCID: PMC8068343 DOI: 10.3390/ijerph18083919] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/02/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
Since December 2019, coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread, becoming the first pandemic of the 21st century by number of deaths (over 2,000,000 worldwide). Many aspects of SARS-CoV-2 infection in children and adolescents remain unclear, and optimal treatment has not yet been defined. Therefore, our goal was to develop a consensus document, practically synthesizing the accumulated data and clinical experience of our expert group. Literature research was carried out using the keywords "COVID-19" or "SARS-CoV-2" and "children" or "pediatrics" and "prevention" or "diagnosis" or "MIS-C" or "treatment" in electronic databases (MEDLINE, PUBMED), existing guidelines and gray literature. The fact that the majority of the problems posed by SARS-CoV-2 infection in pediatric age do not need hospital care and that, therefore, infected children and adolescents can be managed at home highlights the need for a strengthening of territorial pediatric structures. The sharing of hospitalization and therapeutic management criteria for severe cases between professionals is essential to ensure a fair approach based on the best available knowledge. Moreover, the activity of social and health professionals must also include the description, management and limitation of psychophysical-relational damage resulting from the SARS-CoV-2 pandemic on the health of children and adolescents, whether or not affected by COVID-19. Due to the characteristics of COVID-19 pathology in pediatric age, the importance of strengthening the network between hospital and territorial pediatrics, school, educational, social and family personnel both for strictly clinical management and for the reduction in discomfort, with priority in children of more frail families, represents a priority.
Collapse
Affiliation(s)
- Susanna Esposito
- Paediatric Clinic, Department of Medicine and Surgery, University Hospital, 43126 Parma, Italy
| | - Federico Marchetti
- Paediatrics and Neonatology Unit, Ravenna Hospital, AUSL Romagna, 48121 Ravenna, Italy;
| | - Marcello Lanari
- Paediatric Emergency Unit, Scientific Institute for Research and Healthcare (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Fabio Caramelli
- Paediatric Intensive Care Unit, Scientific Institute for Research and Healthcare (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Alessandro De Fanti
- Paediatrics Unit, Santa Maria Nuova Hospital, AUSL-IRCCS of Reggio Emilia, 42123 Reggio Emilia, Italy;
| | | | - Lorenzo Iughetti
- Paediatric Unit, Department of Medical and Surgical Sciences of Mothers, Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Martina Fornaro
- Paediatrics Unit, G.B. Morgagni—L. Pierantoni, AUSL Romagna, 47121 Forlì, Italy;
| | - Agnese Suppiej
- Paediatric Clinic, University of Ferrara, 44124 Ferrara, Italy;
| | | | - Andrea Pession
- Paediatric Unit, Scientific Institute for Research and Healthcare (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Giacomo Biasucci
- Paediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy;
| | | |
Collapse
|
41
|
Migliaccio MG, Di Mauro M, Ricciolino R, Spiniello G, Carfora V, Verde N, Mottola FF, Coppola N. Renal Involvement in COVID-19: A Review of the Literature. Infect Drug Resist 2021; 14:895-903. [PMID: 33707958 PMCID: PMC7943324 DOI: 10.2147/idr.s288869] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023] Open
Abstract
Kidney injury may be a severe complication of acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and contributes to worsen the prognosis. Various pathophysiological mechanisms can contribute to organ damage and impair renal function, proving the complexity of the virus activity and the resulting immunity response. We summarized the evidence of the literature on the prevalence of kidney involvement, on the pathogenic pathways and on its management.
Collapse
Affiliation(s)
- Marco Giuseppe Migliaccio
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Marco Di Mauro
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Riccardo Ricciolino
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giorgio Spiniello
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Vincenzo Carfora
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Nicoletta Verde
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Filiberto Fausto Mottola
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Nicola Coppola
- Department of Mental Health and Public Medicine, Infectious Diseases Unit, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - On behalf of the Vanvitelli COVID-19 Group
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Department of Mental Health and Public Medicine, Infectious Diseases Unit, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
42
|
Araya S, Wordofa M, Mamo MA, Tsegay YG, Hordofa A, Negesso AE, Fasil T, Berhanu B, Begashaw H, Atlaw A, Niguse T, Cheru M, Tamir Z. The Magnitude of Hematological Abnormalities Among COVID-19 Patients in Addis Ababa, Ethiopia. J Multidiscip Healthc 2021; 14:545-554. [PMID: 33688198 PMCID: PMC7936683 DOI: 10.2147/jmdh.s295432] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/29/2021] [Indexed: 01/08/2023] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is a systemic infection with cardiovascular, pulmonary, gastrointestinal, neurological, and hematological manifestations. Abnormal hematological findings are thought to have a role in early risk stratification and prognostication of COVID-19 patients. However, the data on hematological abnormalities associated with the disease among Ethiopian COVID-19 patients are limited. Objective To determine the magnitude of hematological abnormalities among COVID-19 patients admitted at Millennium COVID-19 referral treatment center, Addis Ababa, Ethiopia. Methods A prospective cross-sectional study was conducted among COVID-19 patients admitted to Millennium COVID-19 referral treatment center from May to July, 2020. A total of 334 COVID-19 patients were included using convenience sampling. Socio-demographic data and disease severity status of admitted patients were recorded. Three milliliters of venous blood was collected and analyzed by Beckman Coulter DXH-600 automated analyzer to determine complete blood count (CBC). The data were entered and analyzed using SPSS version 23 software. Association of age, sex, and disease severity with hematological abnormalities was analyzed using binary logistic regression. An odds ratio and 95% confidence interval were used to measure the strength of association. P-value <0.05 was considered as statistically significant. Results Of 334 admitted COVID-19 patients, the majority were males (62.3%) and 69.8% had moderate disease conditions. The overall magnitude of any cytopenia and pancytopenia was 41% and 1.8%, respectively. The magnitude of anemia, thrombocytopenia, and leukopenia was 24.9%, 21.6%, and 5.4%, respectively. Lymphopenia (72.2%) was the most common hematological abnormality. COVID-19 patients with severe and critical disease were more likely to develop anemia, leukocytosis, neutrophilia, and combined neutrophilia-lymphopenia than those with moderate disease condition, with a significant association. Conclusion Lymphopenia was the most common hematological abnormality observed among COVID-19 patients. Hematological abnormalities such as anemia, leukocytosis, neutrophilia, and combined neutrophilia-lymphopenia were significantly associated with disease severity. Monitoring and evaluation of hematological parameters could provide prognostic insight into the management and risk stratification of COVID-19 patients. However, further studies are required to fully understand the utility of hematological parameters for the prognosis of COVID-19 disease.
Collapse
Affiliation(s)
- Shambel Araya
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.,Department of Medical Laboratory, Millennium COVID-19 Treatment and Care Centre, St. Paul Millennium Medical College, Addis Ababa, Ethiopia
| | - Moges Wordofa
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mintesnot Aragaw Mamo
- Department of Medical Laboratory, Millennium COVID-19 Treatment and Care Centre, St. Paul Millennium Medical College, Addis Ababa, Ethiopia.,Department of Medical Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Yakob Gebregziabher Tsegay
- Department of Medical Laboratory, Millennium COVID-19 Treatment and Care Centre, St. Paul Millennium Medical College, Addis Ababa, Ethiopia.,Department of Medical Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia.,Research and Development Center, College of Health Sciences, Defense University, Addis Ababa, Ethiopia
| | - Abebe Hordofa
- Department of Medical Laboratory, Millennium COVID-19 Treatment and Care Centre, St. Paul Millennium Medical College, Addis Ababa, Ethiopia.,Department of Medical Laboratory, Legehare General Hospital, Addis Ababa, Ethiopia
| | - Abebe Edao Negesso
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tewodros Fasil
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Betelhem Berhanu
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Hermela Begashaw
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Asegdew Atlaw
- Department of Medical Laboratory, Millennium COVID-19 Treatment and Care Centre, St. Paul Millennium Medical College, Addis Ababa, Ethiopia
| | - Tirhas Niguse
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mahlet Cheru
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Zemenu Tamir
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
43
|
Development and validation of viral load assays to quantitate SARS-CoV-2. J Virol Methods 2021; 291:114100. [PMID: 33600849 PMCID: PMC7883709 DOI: 10.1016/j.jviromet.2021.114100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/23/2022]
Abstract
SARS-CoV-2 has infected more than 30 million persons throughout the world. A subset of patients suffer serious consequences that require hospitalization and ventilator support. Current tests for SARS-CoV-2 generate qualitative results and are vital to make a diagnosis of the infection. However, they are not helpful to follow changes in viral loads after diagnosis. The ability to quantitatively assess viral levels is necessary to determine the effectiveness of therapy with anti-viral or immune agents. Viral load analysis is also necessary to determine the replicative potential of strains with different mutations, emergence of resistance to anti-viral agents and the stability of viral nucleic acid and degree of RT-PCR inhibition in different types of collection media. Quantitative viral load analysis in body fluids, plasma and tissue may be helpful to determine the effects of the infection in various organ systems. To address these needs, we developed two assays to quantitate SARS-CoV-2. The assays target either the S or E genes in the virus, produce comparable viral load results, are highly sensitive and specific and have a wide range of quantitation. We believe that these assays will be helpful to manage the clinical course of infected patients and may also help to better understand the biology of infection with SARS-CoV-2.
Collapse
|
44
|
Eshghifar N, Busheri A, Shrestha R, Beqaj S. Evaluation of Analytical Performance of Seven Rapid Antigen Detection Kits for Detection of SARS-CoV-2 Virus. Int J Gen Med 2021; 14:435-440. [PMID: 33603450 PMCID: PMC7886288 DOI: 10.2147/ijgm.s297762] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/15/2021] [Indexed: 12/31/2022] Open
Abstract
Background Early diagnosis of the novel coronavirus disease of 2019 (COVID-19) in asymptomatic and symptomatic patients is crucial to identify infectious individuals and to help prevent the spread of the virus in the community. Several assays have been developed and are in use in today’s clinical practice. These assays vary in their analytical and clinical performance. For an accurate diagnosis, medical professionals must become more familiar with the test’s utility to select the most appropriate test. This study aims to evaluate the analytical performance of rapid antigen tests used for the detection of SARS-CoV-2 viral antigen compared to RT-PCR SARS-CoV-2 molecular assay. Methods Oropharyngeal swab specimens from five COVID-19 patients were tested by seven rapid antigen tests developed by different IVD companies. RT-PCR to detect specific RNA fragments of SARS-CoV-2 was used as a confirmatory test. The cycle threshold (Ct) value, which often reflects viral load, in these specimens ranged from 15 to 35. For the analytical evaluation, extraction fluid of each antigen kit was spiked with attenuated ATCC virus at different concentrations ranging from 4.6x104/mL to 7.5x105/mL and tested with antigen testing kits. Results Out of five confirmed positive SARS-CoV-2 specimens by RT-PCR, only one sample showed a positive result by one of the seven evaluated antigen testing kits. The positive result was observed in the specimen with a Ct value of 15. All other evaluated rapid tests were negative for all five positive specimens. This was further confirmed with the spiking study using ATCC attenuated virus, where extraction fluid of each rapid test was spiked with concentrations ranging from 4.6x104/mL to 7.5x105/mL. None of these spiked specimens showed positive results, indicating very low sensitivity of these antigen kits. Conclusion This comparison study shows that rapid antigen tests are less sensitive than RT-PCR tests and are not reliable tests for testing asymptomatic patients, who often carry low viral load. Analytical performance of rapid antigen tests should be thoroughly evaluated before implementing it at clinical decision level.
Collapse
Affiliation(s)
| | - Ali Busheri
- UltimateDx Laboratories, Los Angeles, CA, USA
| | - Rojeet Shrestha
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
45
|
Piekarski P, Sateja M, Maciejewski T, Issat T. No COVID-19 Cases Detected Between April and September 2020 After Screening All 838 Admissions to a Maternity Unit in Poland. Med Sci Monit 2021; 27:e929123. [PMID: 33551448 PMCID: PMC7879584 DOI: 10.12659/msm.929123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Between April and September 2020, there were <10 000 reported cases of COVID-19 in the Masovia district, Poland, and <1000 new cases daily in Poland. During this period, all new hospital admissions to a maternity unit of a teaching hospital in Warsaw were screened for the COVID-19 infection. This retrospective study presents the findings from the reverse transcription-polymerase chain reaction (RT-PCR) test for COVID-19. MATERIAL AND METHODS This study included 838 women admitted for delivery between April 20 and September 20, 2020. All the admitted women were assigned to a low-risk or a high-risk group for COVID-19 and underwent RT-PCR nasopharyngeal swab tests (GeneFinder™-COVID-19-Plus-RealAmpKit. OSANG Healthcare Co., Ltd., Gyeonggi-do, Korea) for COVID-19. The testing protocol included repeated testing in case of inconclusive results or negative results in the symptomatic patients. The maternal and neonatal data from these cases were collected and analyzed. RESULTS All of the 838 women tested negative for COVID-19. Two women (0.24%) were classified as high risk for COVID-19. For 4 (0.48%) women, the results were initially inconclusive and negative when repeated. One hundred and eighty-one (21.5%) women presented with comorbidities, and 60 (7.2%) women were ≥40 years old. CONCLUSIONS The findings from this study show that between April and September 2020, there were no cases of COVID-19 infections at the maternity unit of a teaching hospital in Warsaw, Poland. However, the infection rates for COVID-19 across Europe continue to change. Testing protocols have been developed and established for all hospital admissions and it is anticipated that testing methods will become more rapid and accurate.
Collapse
|
46
|
Thuy-Boun PS, Mehta S, Gruening B, McGowan T, Nguyen A, Rajczewski A, Johnson JE, Griffin TJ, Wolan DW, Jagtap PD. Metaproteomics Analysis of SARS-CoV-2-Infected Patient Samples Reveals Presence of Potential Coinfecting Microorganisms. J Proteome Res 2021; 20:1451-1454. [PMID: 33393790 PMCID: PMC7805602 DOI: 10.1021/acs.jproteome.0c00822] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 01/06/2023]
Abstract
In this Letter, we reanalyze published mass spectrometry data sets of clinical samples with a focus on determining the coinfection status of individuals infected with SARS-CoV-2 coronavirus. We demonstrate the use of ComPIL 2.0 software along with a metaproteomics workflow within the Galaxy platform to detect cohabitating potential pathogens in COVID-19 patients using mass spectrometry-based analysis. From a sample collected from gargling solutions, we detected Streptococcus pneumoniae (opportunistic and multidrug-resistant pathogen) and Lactobacillus rhamnosus (a probiotic component) along with SARS-Cov-2. We could also detect Pseudomonas sps. Bc-h from COVID-19 positive samples and Acinetobacter ursingii and Pseudomonas monteilii from COVID-19 negative samples collected from oro- and nasopharyngeal samples. We believe that the early detection and characterization of coinfections by using metaproteomics from COVID-19 patients will potentially impact the diagnosis and treatment of patients affected by SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | - Bjoern Gruening
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | | | - An Nguyen
- University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | |
Collapse
|
47
|
Eftekhari A, Alipour M, Chodari L, Maleki Dizaj S, Ardalan M, Samiei M, Sharifi S, Zununi Vahed S, Huseynova I, Khalilov R, Ahmadian E, Cucchiarini M. A Comprehensive Review of Detection Methods for SARS-CoV-2. Microorganisms 2021; 9:232. [PMID: 33499379 PMCID: PMC7911200 DOI: 10.3390/microorganisms9020232] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 12/14/2022] Open
Abstract
Recently, the outbreak of the coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, in China and its subsequent spread across the world has caused numerous infections and deaths and disrupted normal social activity. Presently, various techniques are used for the diagnosis of SARS-CoV-2 infection, with various advantages and weaknesses to each. In this paper, we summarize promising methods, such as reverse transcription-polymerase chain reaction (RT-PCR), serological testing, point-of-care testing, smartphone surveillance of infectious diseases, nanotechnology-based approaches, biosensors, amplicon-based metagenomic sequencing, smartphone, and wastewater-based epidemiology (WBE) that can also be utilized for the detection of SARS-CoV-2. In addition, we discuss principles, advantages, and disadvantages of these detection methods, and highlight the potential methods for the development of additional techniques and products for early and fast detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, Maragheh 5515878151, Iran;
| | - Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166615731, Iran; (M.A.); (S.M.D.); (S.S.)
| | - Leila Chodari
- Physiology Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 571478334, Iran;
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166615731, Iran; (M.A.); (S.M.D.); (S.S.)
| | - Mohammadreza Ardalan
- Kidney Research Center, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz 5166615731, Iran; (M.A.); (S.Z.V.)
| | - Mohammad Samiei
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166615731, Iran;
| | - Simin Sharifi
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166615731, Iran; (M.A.); (S.M.D.); (S.S.)
| | - Sepideh Zununi Vahed
- Kidney Research Center, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz 5166615731, Iran; (M.A.); (S.Z.V.)
| | - Irada Huseynova
- Institute of Molecular Biology & Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev, Baku AZ 1073, Azerbaijan;
| | - Rovshan Khalilov
- Department of Biophysics and Biochemistry, Baku State University, Baku AZ 1148, Azerbaijan;
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, 82100 Drohobych, Ukraine
| | - Elham Ahmadian
- Kidney Research Center, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz 5166615731, Iran; (M.A.); (S.Z.V.)
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany
| |
Collapse
|
48
|
Recent Developments in SARS-CoV-2 Neutralizing Antibody Detection Methods. Curr Med Sci 2021; 41:1052-1064. [PMID: 34935114 PMCID: PMC8692081 DOI: 10.1007/s11596-021-2470-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
The ongoing Coronavirus disease 19 pandemic has likely changed the world in ways not seen in the past. Neutralizing antibody (NAb) assays play an important role in the management of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak. Using these tools, we can assess the presence and duration of antibody-mediated protection in naturally infected individuals, screen convalescent plasma preparations for donation, test the efficacy of immunotherapy, and analyze NAb titers and persistence after vaccination to predict vaccine-induced protective effects. This review briefly summarizes the various methods used for the detection of SARS-CoV-2 NAbs and compares their advantages and disadvantages to facilitate their development and clinical application.
Collapse
|
49
|
Updated insight into COVID-19 disease and health management to combat the pandemic. ENVIRONMENTAL AND HEALTH MANAGEMENT OF NOVEL CORONAVIRUS DISEASE (COVID-19 ) 2021. [PMCID: PMC8237642 DOI: 10.1016/b978-0-323-85780-2.00017-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 disease in humans and is the responsible viral agent for the currently ongoing pandemic. Early cases of COVID-19 were reported from Wuhan, Hubei province of China, the likely birthplace of this outbreak. Currently, over 92 million people in the globe are actively battling this virus, and over 2 million individuals have already succumbed to the disease. The high human-to-human transmission capacity of the virus is among the primary causes for such a rapid global spread of COVID-19. In humans, it causes acute to severe respiratory distress in the form of pneumonia. The presentation of clinical features of the disease ranges from mild in healthy adults to severe among individuals with weakened or immunocompromised immune systems and the elderly. Thus, increasing patient cases of COVID-19 warrants a growing demand for medical attention that is eventually overburdening our health care systems. Rapid detection of COVID-19 in suspected individuals and isolation are among the crucial intervention norms in health management strategies to control the COVID-19 pandemic, in addition to strict observance of public hygienic practices such as reduced public gathering, use of facial masks, and practicing of social distancing. This chapter provides an overview of the epidemiology of COVID-19 and the current classical health management strategies and issues to tackle this pandemic. It particularly highlights the role of standard as well as novel biomolecular diagnostic techniques as a tool for successful implementation of such public safety measures issued by medical policy makers and the governing bodies.
Collapse
|
50
|
Russo A, Calò F, Di Fraia A, Starace M, Minichini C, Gentile V, Angelillo IF, Coppola N. Assessment and Comparison of Two Serological Approaches for the Surveillance of Health Workers Exposed to SARS-CoV-2. Infect Drug Resist 2020; 13:4501-4507. [PMID: 33364797 PMCID: PMC7751610 DOI: 10.2147/idr.s282652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/18/2020] [Indexed: 12/29/2022] Open
Abstract
Background and Aim The aim of the present study was to assess the diagnostic performance of an LFA compared with an ELISA test in a cohort of HWs operating in a COVID-19 unit of a teaching hospital in southern Italy. Methods We performed an observational, prospective, interventional study including 65 COVID-19 unit personnel. On a total of 196 serum samples (at least 2 serum samples for each HW), LFA and ELISA tests for SARS-COV-2 IgG and IgM were performed. Also, 32 serum samples of SARS-CoV-2 RNA positive patients at least 21 days before sampling, and 30 serum samples of patients obtained up to November 2019, before COVID-19 outbreak in China, were used as positive and negative controls, respectively. Findings Of the 65 HWs enrolled, 6 were positive in LFA; overall, of the 196 serum samples, 20 were positive in LFA. All ELISA tests performed on serum samples collected from HWs were negative. The specificity of LFAs was 90.77% considering the 65 HWs and 89.80% considering all the 196 health workers serum samples analyzed. Considering the data on HWs, ELISA test for SARS-COV-2 antibodies showed a specificity of 100%, including all the 196 serum samples collected, and 100% including the 65 HWs. The ELISA and LFAs performed after 21 days last COVID-19 patient was discharged were all negative. Conclusion LFAs compared to ELISA tests result in less specificity, considering COVID-19 negative personnel and patients. Thus, LFAs seem to be not adequate in the active surveillance of HWs.
Collapse
Affiliation(s)
- Antonio Russo
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania, Naples, Italy
| | - Federica Calò
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania, Naples, Italy
| | - Alessandra Di Fraia
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania, Naples, Italy
| | - Mario Starace
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania, Naples, Italy
| | - Carmine Minichini
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania, Naples, Italy
| | - Valeria Gentile
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania, Naples, Italy
| | | | - Nicola Coppola
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania, Naples, Italy
| | | |
Collapse
|