1
|
Jiang X, Shan X, Jia J, Yang X, Yang M, Hou S, Chen Y, Ni Z. The role of AbaI quorum sensing molecule synthase in host cell inflammation induced by Acinetobacter baumannii and its effect on zebrafish infection model. Int J Biol Macromol 2024; 278:134568. [PMID: 39116980 DOI: 10.1016/j.ijbiomac.2024.134568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Acinetobacter baumannii is currently one of the most important opportunistic pathogens causing severe nosocomial infections worldwide. Quorum Sensing (QS) system is a widespread mechanism in bacteria to coordinate group behavior by sensing the density of bacterial populations and affect eukaryotic host cell. In Acinetobacter baumannii, AbaI protein is used as QS molecule synthetase to synthesize N- acyl homoserine lactones (AHLs). Currently, QS has made great progress in the study of drug resistance, but there is still a lack of complete understanding of its damage to host cells after adhesion and invasion. Thus, in this study, we examined the effects of abaI mutant (ΔabaI) on the functions of adhesion and invasion, cell viability, inflammation, apoptosis in A. baumannii infected A549 cells, to evaluate the effects of ΔabaI in a zebrafish model. We found the group infected with ΔabaI increased cell viability, reduced adhesion and invasion, cell injury, inflammatory cytokine production and apoptosis. By RNA-Seq, we explored the possibility that abaI stimulated A549 cells inflammation by A. baumannii infection via TLR4/MAPK signaling pathway. In addition, the ΔabaI significantly reduced pathogenicity and recruitment to neutrophils in zebrafish. These observations suggest that abaI plays a major role in A. baumannii infection.
Collapse
Affiliation(s)
- Xingyu Jiang
- Department of Pathogen Biology, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xuchun Shan
- Department of Pathogen Biology, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Junzhen Jia
- Department of Pathogen Biology, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaomeng Yang
- Department of Pathogen Biology, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Ming Yang
- The Second Norman Bethune Clinical Medical College of Jilin University, Changchun, China
| | - Shiqi Hou
- The Second Norman Bethune Clinical Medical College of Jilin University, Changchun, China
| | - Yan Chen
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, China.
| | - Zhaohui Ni
- Department of Pathogen Biology, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
2
|
Pumirat P, Santajit S, Tunyong W, Kong-Ngoen T, Tandhavanant S, Lohitthai S, Rungruengkitkun A, Chantratita N, Ampawong S, Reamtong O, Indrawattana N. Impact of AbaI mutation on virulence, biofilm development, and antibiotic susceptibility in Acinetobacter baumannii. Sci Rep 2024; 14:21521. [PMID: 39277662 PMCID: PMC11401864 DOI: 10.1038/s41598-024-72740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
The quorum sensing (QS) system mediated by the abaI gene in Acinetobacter baumannii is crucial for various physiological and pathogenic processes. In this study, we constructed a stable markerless abaI knockout mutant (ΔabaI) strain using a pEXKm5-based allele replacement method to investigate the impact of abaI on A. baumannii. Proteomic analysis revealed significant alterations in protein expression between the wild type (WT) and ΔabaI mutant strains, particularly in proteins associated with membrane structure, antibiotic resistance, and virulence. Notably, the downregulation of key outer membrane proteins such as SurA, OmpA, OmpW, and BamA suggests potential vulnerabilities in outer membrane integrity, which correlate with structural abnormalities in the ΔabaI mutant strain, including irregular cell shapes and compromised membrane integrity, observed by scanning and transmission electron microscopy. Furthermore, diminished expression of regulatory proteins such as OmpR and GacA-GacS highlights the broader regulatory networks affected by abaI deletion. Functional assays revealed impaired biofilm formation and surface-associated motility in the mutant strain, indicative of altered colonization capabilities. Interestingly, the mutant showed a complex antibiotic susceptibility profile. While it demonstrated increased susceptibility to membrane-targeting antibiotics, its response to beta-lactams was more nuanced. Despite increased expression of metallo-beta-lactamase (MBL) superfamily proteins and DcaP-like protein, the mutant unexpectedly showed lower MICs for carbapenems (imipenem and meropenem) compared to the wild-type strain. This suggests that abaI deletion affects antibiotic susceptibility through multiple, potentially competing mechanisms. Further investigation is needed to fully elucidate the interplay between quorum sensing, antibiotic resistance genes, and overall antibiotic susceptibility in A. baumannii. Our findings underscore the multifaceted role of the abaI gene in modulating various cellular processes and highlight its significance in A. baumannii physiology, pathogenesis, and antibiotic resistance. Targeting the abaI QS system may offer novel therapeutic strategies for this clinically significant pathogen.
Collapse
Affiliation(s)
- Pornpan Pumirat
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Sirijan Santajit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Witawat Tunyong
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Thida Kong-Ngoen
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Sanisa Lohitthai
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | | | - Narisara Chantratita
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Tropical Molecular Biology and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nitaya Indrawattana
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Department of Research, Siriraj Center of Research Excellence in Allergy and Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
3
|
Yao L, Liu N, Guo Y, Zhuo C, Yang X, Wang Y, Wang J, Li F, Li J, He N, Chen J, Lin Y, Xiao S, Zhuo C. Comparison of Hypervirulent and Non-Hypervirulent Carbapenem-Resistant Acinetobacter baumannii Isolated from Bloodstream Infections: Mortality, Potential Virulence Factors, and Combination Therapy In Vitro. Antibiotics (Basel) 2024; 13:807. [PMID: 39334982 PMCID: PMC11428969 DOI: 10.3390/antibiotics13090807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/28/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024] Open
Abstract
Hypervirulent carbapenem-resistant Acinetobacter baumannii (hv-CRAB) has emerged in bloodstream infections (BSI). Cases of BSI caused by hv-CRAB (hv-CRAB-BSI) had posed a significant threat to hospitalized patients. In this study, 31 CRAB strains isolated from Chinese BSI patients were analyzed, of which 24 were identified as hv-CRAB-BSI and 7 as non-hv-CRAB-BSI, using the Galleria mellonella infection model. Patients with hv-CRAB-BSI had higher rates of septic shock (79.2% vs. 14.3%, p = 0.004) and mortality (66.7% vs. 14.3%, p = 0.028). All strains were resistant to most antibiotics but sensitive to colistin. Hv-CRAB-BSI showed lower resistance to minocycline than non-hv-CRAB-BSI (54.2% vs. 100%, p = 0.03). Whole-genome sequencing revealed that the detection rates of immune modulation genes ptk and epsA in hv-CRAB-BSI were significantly higher than in non-hv-CRAB-BSI (91.7% vs. 28.6%, p = 0.002). Additionally, all ST457 hv-CRAB-BSI lacked abaR, and all ST1486 non-hv-CRAB-BSI lacked adeG. The checkerboard dilution method assessed the efficacies of various antibiotic combinations, revealing that although synergism was rarely observed, the combination of colistin and minocycline showed the best efficacy for treating CRAB-BSI, regardless of whether the infections were hv-CRAB-BSI or non-hv-CRAB-BSI. These findings highlight the importance of analyzing molecular characteristics and exploring effective treatment strategies for hv-CRAB-BSI.
Collapse
Affiliation(s)
- Likang Yao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Ningjing Liu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Yingyi Guo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Chuyue Zhuo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Xu Yang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Yijing Wang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Jiong Wang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Feifeng Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Jiahui Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Nanhao He
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Jiakang Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Yexin Lin
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Shunian Xiao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Chao Zhuo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| |
Collapse
|
4
|
Li Y, Cui Y, Song K, Shen L, Xiao L, Jin J, Zhao Y, Yan Y, Zhao S, Yao W, Wang S, Du Z, Yang R, Yi B, Song Y. TagP, a PAAR-domain containing protein, plays roles in the fitness and virulence of Acinetobacter baumannii. Front Cell Infect Microbiol 2024; 14:1379106. [PMID: 39193505 PMCID: PMC11348943 DOI: 10.3389/fcimb.2024.1379106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/03/2024] [Indexed: 08/29/2024] Open
Abstract
Background Type VI secretion system (T6SS) is widely present in Gram-negative bacteria and directly mediates antagonistic prokaryote interactions. PAAR (proline-alanine-alanine-arginine repeats) proteins have been proven essential for T6SS-mediated secretion and target cell killing. Although PAAR proteins are commonly found in A. baumannii, their biological functions are not fully disclosed yet. In this study, we investigated the functions of a PAAR protein termed TagP (T6SS-associated-gene PAAR), encoded by the gene ACX60_RS09070 outside the core T6SS locus of A. baumannii strain ATCC 17978. Methods In this study, tagP null and complement A. baumannii ATCC 17978 strains were constructed. The influence of TagP on T6SS function was investigated through Hcp detection and bacterial competition assay; the influence on environmental fitness was studied through in vitro growth, biofilm formation assay, surface motility assay, survivability in various simulated environmental conditions; the influence on pathogenicity was explored through cell adhesion and invasion assays, intramacrophage survival assay, serum survival assay, and G. melonella Killing assays. Quantitative transcriptomic and proteomic analyses were utilized to observe the global impact of TagP on bacterial status. Results Compared with the wildtype strain, the tagP null mutant was impaired in several tested phenotypes such as surface motility, biofilm formation, tolerance to adverse environments, adherence to eukaryotic cells, endurance to serum complement killing, and virulence to Galleria melonella. Notably, although RNA-Seq and proteomics analysis revealed that many genes were significantly down-regulated in the tagP null mutant compared to the wildtype strain, there is no significant difference in their antagonistic abilities. We also found that Histone-like nucleoid structuring protein (H-NS) was significantly upregulated in the tagP null mutant at both mRNA and protein levels. Conclusions This study enriches our understanding of the biofunction of PAAR proteins in A. baumannii. The results indicates that TagP involved in a unique modulation of fitness and virulence control in A. baumannii, it is more than a classic PAAR protein involved in T6SS, while how TagP play roles in the fitness and virulence of A. baumannii needs further investigation to clarify.
Collapse
Affiliation(s)
- Yanbing Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiming Cui
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Leiming Shen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Liting Xiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Junyan Jin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yanting Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shengyuan Zhao
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenwu Yao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shihua Wang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bin Yi
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
de Souza CM, Silvério de Oliveira W, Fleitas Martínez O, Dos Santos Neto NA, Buccini DF, Nieto Marín V, de Faria Júnior C, Rocha Maximiano M, Soller Ramada MH, Franco OL. Evaluating virulence features of Acinetobacter baumannii resistant to polymyxin B. Lett Appl Microbiol 2024; 77:ovae061. [PMID: 38942450 DOI: 10.1093/lambio/ovae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
The increasing resistance to polymyxins in Acinetobacter baumannii has made it even more urgent to develop new treatments. Anti-virulence compounds have been researched as a new solution. Here, we evaluated the modification of virulence features of A. baumannii after acquiring resistance to polymyxin B. The results showed lineages attaining unstable resistance to polymyxin B, except for Ab7 (A. baumannii polymyxin B resistant lineage), which showed stable resistance without an associated fitness cost. Analysis of virulence by a murine sepsis model indicated diminished virulence in Ab7 (A. baumannii polymyxin B resistant lineage) compared with Ab0 (A. baumannii polymyxin B susceptible lineage). Similarly, downregulation of virulence genes was observed by qPCR at 1 and 3 h of growth. However, an increase in bauE, abaI, and pgAB expression was observed after 6 h of growth. Comparison analysis of Ab0, Ab7, and Pseudomonas aeruginosa suggested no biofilm formation by Ab7. In general, although a decrease in virulence was observed in Ab7 when compared with Ab0, some virulence feature that enables infection could be maintained. In light of this, virulence genes bauE, abaI, and pgAB showed a potential relevance in the maintenance of virulence in polymyxin B-resistant strains, making them promising anti-virulence targets.
Collapse
Affiliation(s)
- Camila Maurmann de Souza
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79.117-900, Brazil
| | - Warley Silvério de Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
| | - Osmel Fleitas Martínez
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
| | | | - Danieli Fernanda Buccini
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79.117-900, Brazil
| | - Valentina Nieto Marín
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79.117-900, Brazil
| | - Célio de Faria Júnior
- Microbiology Department, Laboratório Central de Saúde Pública LACEN, Brasília 70830-010, Brazil
| | - Mariana Rocha Maximiano
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79.117-900, Brazil
| | - Marcelo Henrique Soller Ramada
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79.117-900, Brazil
| |
Collapse
|
6
|
Weng Z, Yang N, Shi S, Xu Z, Chen Z, Liang C, Zhang X, Du X. Outer Membrane Vesicles from Acinetobacter baumannii: Biogenesis, Functions, and Vaccine Application. Vaccines (Basel) 2023; 12:49. [PMID: 38250862 PMCID: PMC10818702 DOI: 10.3390/vaccines12010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
This review focuses on Acinetobacter baumannii, a Gram-negative bacterium that causes various infections and whose multidrug resistance has become a significant challenge in clinical practices. There are multiple bacterial mechanisms in A. baumannii that participate in bacterial colonization and immune responses. It is believed that outer membrane vesicles (OMVs) budding from the bacteria play a significant role in mediating bacterial survival and the subsequent attack against the host. Most OMVs originate from the bacterial membranes and molecules are enveloped in them. Elements similar to the pathogen endow OMVs with robust virulence, which provides a new direction for exploring the pathogenicity of A. baumannii and its therapeutic pathways. Although extensive research has been carried out on the feasibility of OMV-based vaccines against pathogens, no study has yet summarized the bioactive elements, biological activity, and vaccine applicability of A. baumannii OMVs. This review summarizes the components, biogenesis, and function of OMVs that contribute to their potential as vaccine candidates and the preparation methods and future directions for their development.
Collapse
Affiliation(s)
- Zheqi Weng
- The Second Clinical Medical School, Nanjing Medical University, Nanjing 210011, China; (Z.W.); (S.S.); (Z.X.); (Z.C.); (C.L.)
| | - Ning Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China;
| | - Shujun Shi
- The Second Clinical Medical School, Nanjing Medical University, Nanjing 210011, China; (Z.W.); (S.S.); (Z.X.); (Z.C.); (C.L.)
| | - Zining Xu
- The Second Clinical Medical School, Nanjing Medical University, Nanjing 210011, China; (Z.W.); (S.S.); (Z.X.); (Z.C.); (C.L.)
| | - Zixu Chen
- The Second Clinical Medical School, Nanjing Medical University, Nanjing 210011, China; (Z.W.); (S.S.); (Z.X.); (Z.C.); (C.L.)
| | - Chen Liang
- The Second Clinical Medical School, Nanjing Medical University, Nanjing 210011, China; (Z.W.); (S.S.); (Z.X.); (Z.C.); (C.L.)
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China
| | - Xingran Du
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China
| |
Collapse
|
7
|
Mendes SG, Combo SI, Allain T, Domingues S, Buret AG, Da Silva GJ. Co-regulation of biofilm formation and antimicrobial resistance in Acinetobacter baumannii: from mechanisms to therapeutic strategies. Eur J Clin Microbiol Infect Dis 2023; 42:1405-1423. [PMID: 37897520 PMCID: PMC10651561 DOI: 10.1007/s10096-023-04677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 10/30/2023]
Abstract
In recent years, multidrug-resistant Acinetobacter baumannii has emerged globally as a major threat to the healthcare system. It is now listed by the World Health Organization as a priority one for the need of new therapeutic agents. A. baumannii has the capacity to develop robust biofilms on biotic and abiotic surfaces. Biofilm development allows these bacteria to resist various environmental stressors, including antibiotics and lack of nutrients or water, which in turn allows the persistence of A. baumannii in the hospital environment and further outbreaks. Investigation into therapeutic alternatives that will act on both biofilm formation and antimicrobial resistance (AMR) is sorely needed. The aim of the present review is to critically discuss the various mechanisms by which AMR and biofilm formation may be co-regulated in A. baumannii in an attempt to shed light on paths towards novel therapeutic opportunities. After discussing the clinical importance of A. baumannii, this critical review highlights biofilm-formation genes that may be associated with the co-regulation of AMR. Particularly worthy of consideration are genes regulating the quorum sensing system AbaI/AbaR, AbOmpA (OmpA protein), Bap (biofilm-associated protein), the two-component regulatory system BfmRS, the PER-1 β-lactamase, EpsA, and PTK. Finally, this review discusses ongoing experimental therapeutic strategies to fight A. baumannii infections, namely vaccine development, quorum sensing interference, nanoparticles, metal ions, natural products, antimicrobial peptides, and phage therapy. A better understanding of the mechanisms that co-regulate biofilm formation and AMR will help identify new therapeutic targets, as combined approaches may confer synergistic benefits for effective and safer treatments.
Collapse
Affiliation(s)
- Sérgio G Mendes
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Sofia I Combo
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Thibault Allain
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada
| | - Sara Domingues
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Andre G Buret
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada
| | - Gabriela J Da Silva
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada.
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal.
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3000-548, Coimbra, Portugal.
| |
Collapse
|
8
|
Khoshbakht R, Panahi S, Neshani A, Ghavidel M, Ghazvini K. Novel approaches to overcome Colistin resistance in Acinetobacter baumannii: Exploring quorum quenching as a potential solution. Microb Pathog 2023; 182:106264. [PMID: 37474078 DOI: 10.1016/j.micpath.2023.106264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
Acinetobacter baumannii is responsible for a variety of infections, such as nosocomial infections. In recent years, this pathogen has gained resistance to many antibiotics, and thus, carbapenems were used to treat infections with MDR A. baumannii strains in clinical settings. However, as carbapenem-resistant isolates are becoming increasingly prevalent, Colistin is now used as the last line of defense against resistant A. baumannii strains. Unfortunately, reports are increasing on the presence of Colistin-resistant phenotypes in infections caused by A. baumannii, creating an urgent need to find a substitute way to combat these resistant isolates. Quorum sensing inhibition, also known as quorum quenching, is an efficient alternative way of reversing resistance in different Gram-negative bacteria. Quorum sensing is a mechanism used by bacteria to communicate with each other by secreting signal molecules. When the population of bacteria increases and the concentration of signal molecules reaches a certain threshold, bacteria can implement mechanisms to adapt to a hostile environment, such as biofilm formation. Biofilms have many advantages for pathogens, such as antibiotic resistance. Different studies have revealed that disrupting the biofilm of A. baumannii makes it more susceptible to antibiotics. Although very few studies have been conducted on the biofilm disruption through quorum quenching in Colistin-resistant A. baumannii, these studies and similar studies bring hope in finding an alternative way of treating the Colistin-resistant isolates. In conclusion, quorum quenching has the potential to be used against Colistin-resistant A. baumannii.
Collapse
Affiliation(s)
- Reza Khoshbakht
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Susan Panahi
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Neshani
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdis Ghavidel
- Shahid Hasheminejad Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Tu Q, Pu M, Li Y, Wang Y, Li M, Song L, Li M, An X, Fan H, Tong Y. Acinetobacter Baumannii Phages: Past, Present and Future. Viruses 2023; 15:v15030673. [PMID: 36992382 PMCID: PMC10057898 DOI: 10.3390/v15030673] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is one of the most common clinical pathogens and a typical multi-drug resistant (MDR) bacterium. With the increase of drug-resistant A. baumannii infections, it is urgent to find some new treatment strategies, such as phage therapy. In this paper, we described the different drug resistances of A. baumannii and some basic properties of A. baumannii phages, analyzed the interaction between phages and their hosts, and focused on A. baumannii phage therapies. Finally, we discussed the chance and challenge of phage therapy. This paper aims to provide a more comprehensive understanding of A. baumannii phages and theoretical support for the clinical application of A. baumannii phages.
Collapse
Affiliation(s)
- Qihang Tu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingfang Pu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yahao Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuer Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengzhe Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (H.F.); (Y.T.)
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (H.F.); (Y.T.)
| |
Collapse
|
10
|
Pourhajibagher M, Hosseini N, Bahador A. Antimicrobial activity of D-amino acid in combination with photo-sonoactivated hypericin nanoparticles against Acinetobacter baumannii. BMC Microbiol 2023; 23:23. [PMID: 36658487 PMCID: PMC9850556 DOI: 10.1186/s12866-023-02758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The emergence of multidrug-resistant Acinetobacter baumannii strains is increasing worldwide. To overcome these life-threatening infections, the development of new treatment approaches is critical. For this purpose, this study was conducted to determine the antimicrobial photo-sonodynamic therapy (aPSDT) using hypericin nanoparticles (HypNP) in combination with D-Tryptophan (D-Trp) against A. baumannii. MATERIALS AND METHODS HypNP was synthesized and characterized, followed by the determination of the fractional inhibitory concentration (FIC) index of HypNP and D-Trp by checkerboard assay. Next, the antimicrobial and anti-biofilm potential of HypNP@D-Trp-mediated aPSDT against A. baumannii was evaluated. Finally, the anti-virulence activity of aPSDT using HypNP@D-Trp was accessed following the characterization of HypNP@D-Trp interaction with AbaI using in silico virtual screening and molecular docking. RESULTS A synergistic activity in the combination of HypNP and D-Trp against A. baumannii was observed with a FIC index value of 0.5. There was a 5.10 log10 CFU/mL reduction in the cell viability of A. baumannii when the bacterial cells were treated with 1/2 × MIC of HypNP@D-Trp and subsequently exposed to ultrasound waves and blue light (P < 0.05). Moreover, a significant biofilm degradation effect on biofilm-associated cells of A. baumannii was observed after treatment with aPSDT using 2 × MIC of HypNP@D-Trp in comparison with the control groups (P < 0.05). According to the molecular docking analysis of the protein-ligand complex, Hyp with a high affinity for AbaI showed a binding affinity of - 9.41 kcal/mol. Also, the expression level of abaI gene was significantly downregulated by 10.32-fold in A. baumannii treated with aPSDT as comprised with the control group (P < 0.05). CONCLUSIONS It can be concluded that HypNP@D-Trp-mediated aPSDT can be considered a promising strategy to overcome the infections caused by A. baumannii by reducing the growth of bacterial biofilm and decreasing the expression of abaI as a gene involved in A. baumannii biofilm formation.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- grid.411705.60000 0001 0166 0922Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nava Hosseini
- grid.23856.3a0000 0004 1936 8390Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC G1V 0A6 Canada ,grid.23856.3a0000 0004 1936 8390Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6 Canada ,grid.421142.00000 0000 8521 1798Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5 Canada
| | - Abbas Bahador
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Microbiology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Wei C, Chen J, Anwar TM, Huang L, Yang W, Dong X, Chen Q, Yue M, Yu D. Genomic Determinants of Pathogenicity and Antimicrobial Resistance of Nosocomial Acinetobacter baumannii Clinical Isolates of Hospitalized Patients (2019-2021) from a Sentinel Hospital in Hangzhou, China. Infect Drug Resist 2023; 16:2939-2952. [PMID: 37201122 PMCID: PMC10187652 DOI: 10.2147/idr.s407577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/29/2023] [Indexed: 05/20/2023] Open
Abstract
Purpose Acinetobacter baumannii (A. baumannii or AB) is one of the most opportunistic, nosocomial pathogens threatening public healthcare across countries. A. baumannii has become a primary growing concern due to its exceptional ability to acquire antimicrobial resistance (AMR) to multiple antimicrobial agents which is increasingly reported and more prevalent every year. Therefore, there is an urgent need to evaluate the AMR knowledge of A. baumannii for effective clinical treatment of nosocomial infections. This study aimed to investigate the clinical distribution AMR phenotypes and genotypes, and genomic characteristics of A. baumannii isolates recovered from hospitalized patients of different clinical departments of a sentinel hospital to improve clinical practices. Methods A total of 123 clinical isolates were recovered from hospitalized patients of different clinical departments during 2019-2021 to analyze AMR patterns, and further subjected to whole-genome sequencing (WGS) investigations. Multi-locus sequence typing (MLST), as well as the presence of antimicrobial-resistant genes (ARGs), virulence factor genes (VFGs) and insertion sequences (ISs) were also investigated from WGS data. Results The results highlighted that A. baumannii clinical isolates had shown a high AMR rate, particularly from the intensive care unit (ICU), towards routinely used antimicrobials, ie, β-lactams and fluoroquinolones. ST2 was the most prevalent ST in the clinical isolates, it was strongly associated to the resistance of cephalosporins and carbapenems, with blaOXA-23 and blaOXA-66 being the most frequent determinants; moreover, high carrier rate of VFGs was also observed such as all strains containing the ompA, adeF, pgaC, lpsB, and bfmR genes. Conclusion Acinetobacter baumannii clinical isolates are mostly ST2 with high rates of drug resistance and carrier of virulence factors. Therefore, it requires measurements to control its transmission and infection.
Collapse
Affiliation(s)
- Chenxing Wei
- Department of Medical Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Jian Chen
- Department of Medical Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Tanveer Muhammad Anwar
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, 310058, People’s Republic of China
| | - Lingling Huang
- Department of Medical Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Wenjie Yang
- Department of Medical Laboratory, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Xueyan Dong
- Department of Medical Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Qiong Chen
- Department of Medical Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Min Yue
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, 310058, People’s Republic of China
- Hainan Institute, Zhejiang University, Sanya, 572025, People’s Republic of China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People’s Republic of China
- Correspondence: Min Yue; Daojun Yu, Email ;
| | - Daojun Yu
- Department of Medical Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
- Department of Medical Laboratory, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| |
Collapse
|
12
|
He X, Zhang W, Cao Q, Li Y, Bao G, Lin T, Bao J, Chang C, Yang C, Yin Y, Xu J, Ren Z, Jin Y, Lu F. Global Downregulation of Penicillin Resistance and Biofilm Formation by MRSA Is Associated with the Interaction between Kaempferol Rhamnosides and Quercetin. Microbiol Spectr 2022; 10:e0278222. [PMID: 36354319 PMCID: PMC9769653 DOI: 10.1128/spectrum.02782-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
The rapid development of methicillin-resistant Staphylococcus aureus (MRSA) drug resistance and the formation of biofilms seriously challenge the clinical application of classic antibiotics. Extracts of the traditional herb Chenopodium ambrosioides L. were found to have strong antibiofilm activity against MRSA, but their mechanism of action remains poorly understood. This study was designed to investigate the antibacterial and antibiofilm activities against MRSA of flavonoids identified from C. ambrosioides L. in combination with classic antibiotics, including ceftazidime, erythromycin, levofloxacin, penicillin G, and vancomycin. Liquid chromatography-mass spectrometry (LC-MS) was used to analyze the nonvolatile chemical compositions. Reverse transcription (RT)-PCR was used to investigate potential multitargets of flavonoids based on global transcriptional responses of virulence and antibiotic resistance. A synergistic antibacterial and biofilm-inhibiting activity of the alcoholic extract of the ear of C. ambrosioides L. in combination with penicillin G was observed against MRSA, which proved to be closely related to the interaction of the main components of kaempferol rhamnosides with quercetin. In regard to the mechanism, the increased sensitivity of MRSA to penicillin G was shown to be related to the downregulation of penicillinase with SarA as a potential drug target, while the antibiofilm activity was mainly related to downregulation of various virulence factors involved in the initial and mature stages of biofilm development, with SarA and/or σB as drug targets. This study provides a theoretical basis for further exploration of the medicinal activity of kaempferol rhamnosides and quercetin and their application in combination with penicillin G against MRSA biofilm infection. IMPORTANCE In this study, the synergistic antibacterial and antibiofilm effects of the traditional herb C. ambrosioides L. and the classic antibiotic penicillin G on MRSA provide a potential strategy to deal with the rapid development of MRSA antibiotic resistance. This study also provides a theoretical basis for further optimizing the combined effect of kaempferol rhamnosides, quercetin, and penicillin G and exploring anti-MRSA biofilm infection research with SarA and σB as drug targets.
Collapse
Affiliation(s)
- Xinlong He
- Department of Pathogenic Biology, School of Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, School of Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Wenwen Zhang
- Department of Pathogenic Biology, School of Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Qingchao Cao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yinyue Li
- Department of Pathogenic Biology, School of Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Guangyu Bao
- Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China
| | - Tao Lin
- Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China
| | - Jiaojiao Bao
- Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China
| | - Caiwang Chang
- Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China
| | - Changshui Yang
- Department of Pharmacy, School of Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yi Yin
- Department of Pathogenic Biology, School of Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Jiahui Xu
- Department of Pathogenic Biology, School of Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Zhenyu Ren
- Department of Pathogenic Biology, School of Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yingshan Jin
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
| | - Feng Lu
- Department of Pathogenic Biology, School of Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, School of Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
13
|
Yang J, Zhao D, Liu T, Zhang S, Wang W, Yan L, Gu JD. Growth and genome-based insights of Fe(III) reduction of the high-temperature and NaCl-tolerant Shewanella xiamenensis from Changqing oilfield of China. Front Microbiol 2022; 13:1028030. [PMID: 36545192 PMCID: PMC9760863 DOI: 10.3389/fmicb.2022.1028030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/17/2022] [Indexed: 12/09/2022] Open
Abstract
Introduction A facultative anaerobe bacterium Shewanella xiamenensis CQ-Y1 was isolated from the wastewater of Changqing oilfield in Shaanxi Province of China. Shewanella is the important dissimilatory metal-reducing bacteria. It exhibited a well potential application in biodegradation and bioremediation. Methods Genome sequencing, assembling and functional annotation were conducted to explore the genome information of CQ-Y1. The effect of temperatures and NaCl concentrations on the CQ-Y1 growth and Fe(III) reduction were investigated by UV visible spectrophotometry, SEM and XRD. Results Genomic analysis revealed its complete genome was a circular chromosome of 4,710,887 bp with a GC content of 46.50% and 4,110 CDSs genes, 86 tRNAs and 26 rRNAs. It contains genes encoding for Na+/H+ antiporter, K+/Cl- transporter, heat shock protein associated with NaCl and high-temperature resistance. The presence of genes related to flavin, Cytochrome c, siderophore, and other related proteins supported Fe(III) reduction. In addition, CQ-Y1 could survive at 10% NaCl (w/v) and 45°C, and temperature showed more pronounced effects than NaCl concentration on the bacterial growth. The maximum Fe(III) reduction ratio of CQ-Y1 reached 70.1% at 30°C without NaCl, and the reduction reaction remained active at 40°C with 3% NaCl (w/v). NaCl concentration was more effective than temperature on microbial Fe(III) reduction. And the reduction products under high temperature and high NaCl conditions were characterized as Fe3(PO4)2, FeCl2 and Fe(OH)2. Discussion Accordingly, a Fe(III) reduction mechanism of CQ-Y1 mediated by Cytochrome c and flavin was hypothesised. These findings could provide information for a better understanding of the origin and evolution of genomic and metabolic diversity of S. xiamenensis.
Collapse
Affiliation(s)
- Jiani Yang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dan Zhao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tao Liu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China,Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China,Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China,*Correspondence: Lei Yan,
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion – Israel Institute of Technology, Shantou, Guangdong, China,Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion – Israel Institute of Technology, Shantou, Guangdong, China
| |
Collapse
|
14
|
Rahman A, Styczynski A, Khaleque A, Hossain SA, Sadique A, Hossain A, Jain M, Tabassum SN, Khan F, Bhuiyan MSS, Alam J, Khandakar A, Kamruzzaman M, Ahsan CR, Kashem SBA, Chowdhury MEH, Hossain M. Genomic landscape of prominent XDR Acinetobacter clonal complexes from Dhaka, Bangladesh. BMC Genomics 2022; 23:802. [PMID: 36471260 PMCID: PMC9721023 DOI: 10.1186/s12864-022-08991-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/05/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Acinetobacter calcoaceticus-A. baumannii (ACB) complex pathogens are known for their prevalence in nosocomial infections and extensive antimicrobial resistance (AMR) capabilities. While genomic studies worldwide have elucidated the genetic context of antibiotic resistance in major international clones (ICs) of clinical Acinetobacter spp., not much information is available from Bangladesh. In this study, we analysed the AMR profiles of 63 ACB complex strains collected from Dhaka, Bangladesh. Following this, we generated draft genomes of 15 of these strains to understand the prevalence and genomic environments of AMR, virulence and mobilization associated genes in different Acinetobacter clones. RESULTS Around 84% (n = 53) of the strains were extensively drug resistant (XDR) with two showing pan-drug resistance. Draft genomes generated for 15 strains confirmed 14 to be A. baumannii while one was A. nosocomialis. Most A. baumannii genomes fell under three clonal complexes (CCs): the globally dominant CC1 and CC2, and CC10; one strain had a novel sequence type (ST). AMR phenotype-genotype agreement was observed and the genomes contained various beta-lactamase genes including blaOXA-23 (n = 12), blaOXA-66 (n = 6), and blaNDM-1 (n = 3). All genomes displayed roughly similar virulomes, however some virulence genes such as the Acinetobactin bauA and the type IV pilus gene pilA displayed high genetic variability. CC2 strains carried highest levels of plasmidic gene content and possessed conjugative elements carrying AMR genes, virulence factors and insertion sequences. CONCLUSION This study presents the first comparative genomic analysis of XDR clinical Acinetobacter spp. from Bangladesh. It highlights the prevalence of different classes of beta-lactamases, mobilome-derived heterogeneity in genetic architecture and virulence gene variability in prominent Acinetobacter clonal complexes in the country. The findings of this study would be valuable in understanding the genomic epidemiology of A. baumannii clones and their association with closely related pathogenic species like A. nosocomialis in Bangladesh.
Collapse
Affiliation(s)
- Aura Rahman
- NSU Genome Research Institute, North South University, Dhaka, Bangladesh
| | - Ashley Styczynski
- Division of Infectious Diseases and Geographic Medicine, School of Medicine, Stanford University, Palo Alto, California, USA
| | - Abdul Khaleque
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | | | - Abdus Sadique
- NSU Genome Research Institute, North South University, Dhaka, Bangladesh
| | - Arman Hossain
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Mukesh Jain
- The Hormone Lab & Infertility Centre, Dhaka, Bangladesh
| | | | - Fahad Khan
- NSU Genome Research Institute, North South University, Dhaka, Bangladesh
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Mohammad Sami Salman Bhuiyan
- NSU Genome Research Institute, North South University, Dhaka, Bangladesh
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Jahidul Alam
- NSU Genome Research Institute, North South University, Dhaka, Bangladesh
| | - Amith Khandakar
- Department of Electrical Engineering, Qatar University, Doha, 2713, Qatar
| | | | | | - Saad Bin Abul Kashem
- Department of Computer Sciences, AFG College with the University of Aberdeen, Doha, Qatar.
| | | | - Maqsud Hossain
- NSU Genome Research Institute, North South University, Dhaka, Bangladesh.
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh.
| |
Collapse
|
15
|
Kim HJ, Kim NY, Ko SY, Park SY, Oh MH, Shin MS, Lee YC, Lee JC. Complementary Regulation of BfmRS Two-Component and AbaIR Quorum Sensing Systems to Express Virulence-Associated Genes in Acinetobacter baumannii. Int J Mol Sci 2022; 23:13136. [PMID: 36361923 PMCID: PMC9657202 DOI: 10.3390/ijms232113136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 09/22/2023] Open
Abstract
Acinetobacter baumannii expresses various virulence factors to adapt to hostile environments and infect susceptible hosts. This study investigated the regulatory network of the BfmRS two-component and AbaIR quorum sensing (QS) systems in the expression of virulence-associated genes in A. baumannii ATCC 17978. The ΔbfmS mutant exhibited a significant decrease in surface motility, which presumably resulted from the low expression of pilT and A1S_0112-A1S_0119 gene cluster. The ΔbfmR mutant displayed a significant reduction in biofilm and pellicle formation due to the low expression of csu operon. The deletion of abaR did not affect the expression of bfmR or bfmS. However, the expression of abaR and abaI was upregulated in the ΔbfmR mutant. The ΔbfmR mutant also produced more autoinducers than did the wild-type strain, suggesting that BfmR negatively regulates the AbaIR QS system. The ΔbfmS mutant exhibited no autoinducer production in the bioassay system. The expression of the A1S_0112-A1S_0119 gene cluster was downregulated in the ΔabaR mutant, whereas the expression of csu operon was upregulated in this mutant with a high cell density. In conclusion, for the first time, we demonstrated that the BfmRS-AbaIR QS system axis regulated the expression of virulence-associated genes in A. baumannii. This study provides new insights into the complex network system involved in the regulation of virulence-associated genes underlying the pathogenicity of A. baumannii.
Collapse
Affiliation(s)
- Hyo-Jeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Na-Yeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Seo-Yeon Ko
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Seong-Yong Park
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Man-Hwan Oh
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan 16890, Korea
| | - Min-Sang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Yoo-Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Je-Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
16
|
Cui B, Chen X, Guo Q, Song S, Wang M, Liu J, Deng Y. The Cell-Cell Communication Signal Indole Controls the Physiology and Interspecies Communication of Acinetobacter baumannii. Microbiol Spectr 2022; 10:e0102722. [PMID: 35862954 PMCID: PMC9431217 DOI: 10.1128/spectrum.01027-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/16/2022] [Indexed: 11/20/2022] Open
Abstract
Many bacteria utilize quorum sensing (QS) to control group behavior in a cell density-dependent manner. Previous studies have demonstrated that Acinetobacter baumannii employs an N-acyl-L-homoserine lactone (AHL)-based QS system to control biological functions and virulence. Here, we report that indole controls biological functions, virulence and AHL signal production in A. baumannii. The biosynthesis of indole is performed by A1S_3160 (AbiS, Acinetobacter baumannii indole synthase), which is a novel indole synthase annotated as an alpha/beta hydrolase in A. baumannii. Heterologous expression of AbiS in an Escherichia coli indole-deficient mutant also rescued the production of indole by using a distinct biosynthetic pathway from the tryptophanase TnaA, which produces indole directly from tryptophan in E. coli. Moreover, we revealed that indole from A. baumannii reduced the competitive fitness of Pseudomonas aeruginosa by inhibiting its QS systems and type III secretion system (T3SS). As A. baumannii and P. aeruginosa usually coexist in human lungs, our results suggest the crucial roles of indole in both the bacterial physiology and interspecies communication. IMPORTANCE Acinetobacter baumannii is an important human opportunistic pathogen that usually causes high morbidity and mortality. It employs the N-acyl-L-homoserine lactone (AHL)-type quorum sensing (QS) system, AbaI/AbaR, to regulate biological functions and virulence. In this study, we found that A. baumannii utilizes another QS signal, indole, to modulate biological functions and virulence. It was further revealed that indole positively controls the production of AHL signals by regulating abaI expression at the transcriptional levels. Furthermore, indole represses the QS systems and type III secretion system (T3SS) of P. aeruginosa and enhances the competitive ability of A. baumannii. Together, our work describes a QS signaling network where a pathogen uses to control the bacterial physiology and pathogenesis, and the competitive ability in microbial community.
Collapse
Affiliation(s)
- Binbin Cui
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xiayu Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Quan Guo
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shihao Song
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Mingfang Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jingyun Liu
- Department of Stomatology, Zhengzhou Shuqing Medical College, Zhenzhou, China
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
17
|
Xiong L, Yi F, Yu Q, Huang X, Ao K, Wang Y, Xie Y. Transcriptomic analysis reveals the regulatory role of quorum sensing in the Acinetobacter baumannii ATCC 19606 via RNA-seq. BMC Microbiol 2022; 22:198. [PMID: 35971084 PMCID: PMC9380347 DOI: 10.1186/s12866-022-02612-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Background Acinetobacter baumannii has emerged as the major opportunistic pathogen in healthcare-associated infections with high-level antibiotic resistance and high mortality. Quorum sensing (QS) system is a cell-to-cell bacterial communication mediated by the synthesis, secretion, and binding of auto-inducer signals. It is a global regulatory system to coordinate the behavior of individual bacteria in a population. The present study focused on the QS system, aiming to investigate the regulatory role of QS in bacterial virulence and antibiotic resistance. Method The auto-inducer synthase gene abaI was deleted using the A. baumannii ATCC 19606 strain to interrupt the QS process. The RNA-seq was performed to identify the differentially expressed genes (DEGs) and pathways in the mutant (△abaI) strain compared with the wild-type (WT) strain. Results A total of 380 DEGs [the adjusted P value < 0.05 and the absolute value of log2(fold change) > log21.5] were identified, including 256 upregulated genes and 124 downregulated genes in the △abaI strain. The enrichment analysis indicated that the DEGs involved in arginine biosynthesis, purine metabolism, biofilm formation, and type VI secretion system (T6SS) were downregulated, while the DEGs involved in pathways related to fatty acid metabolism and amino acid metabolism were upregulated. Consistent with the expression change of the DEGs, a decrease in biofilm formation was observed in the △abaI strain compared with the WT strain. On the contrary, no obvious changes were found in antimicrobial resistance following the deletion of abaI. Conclusions The present study demonstrated the transcriptomic profile of A. baumannii after the deletion of abaI, revealing an important regulatory role of the QS system in bacterial virulence. The deletion of abaI suppressed the biofilm formation in A. baumannii ATCC 19606, leading to decreased pathogenicity. Further studies on the role of abaR, encoding the receptor of auto-inducer in the QS circuit, are required for a better understanding of the regulation of bacterial virulence and pathogenicity in the QS network. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02612-z.
Collapse
Affiliation(s)
- Li Xiong
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Fanli Yi
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qiuju Yu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiyue Huang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Keping Ao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanfang Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Xie
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
Law SKK, Tan HS. The Role of Quorum Sensing, Biofilm Formation, and Iron Acquisition as Key Virulence Mechanisms in Acinetobacter baumannii and the Corresponding Anti-virulence Strategies. Microbiol Res 2022; 260:127032. [DOI: 10.1016/j.micres.2022.127032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022]
|
19
|
Farshadzadeh Z, Pourhajibagher M, Taheri B, Ekrami A, Modarressi MH, Azimzadeh M, Bahador A. Antimicrobial and anti-biofilm potencies of dermcidin-derived peptide DCD-1L against Acinetobacter baumannii: an in vivo wound healing model. BMC Microbiol 2022; 22:25. [PMID: 35026999 PMCID: PMC8756727 DOI: 10.1186/s12866-022-02439-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/06/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The global emergence of Acinetobacter baumannii resistance to most conventional antibiotics presents a major therapeutic challenge and necessitates the discovery of new antibacterial agents. The purpose of this study was to investigate in vitro and in vivo anti-biofilm potency of dermcidin-1L (DCD-1L) against extensively drug-resistant (XDR)-, pandrug-resistant (PDR)-, and ATCC19606-A. baumannii. METHODS After determination of minimum inhibitory concentration (MIC) of DCD-1L, in vitro anti-adhesive and anti-biofilm activities of DCD-1L were evaluated. Cytotoxicity, hemolytic activity, and the effect of DCD-1L treatment on the expression of various biofilm-associated genes were determined. The inhibitory effect of DCD-1L on biofilm formation in the model of catheter-associated infection, as well as, histopathological examination of the burn wound sites of mice treated with DCD-1L were assessed. RESULTS The bacterial adhesion and biofilm formation in all A. baumannii isolates were inhibited at 2 × , 4 × , and 8 × MIC of DCD-1L, while only 8 × MIC of DCD-1L was able to destroy the pre-formed biofilm in vitro. Also, reduce the expression of genes involved in biofilm formation was observed following DCD-1L treatment. DCD-1L without cytotoxic and hemolytic activities significantly reduced the biofilm formation in the model of catheter-associated infection. In vivo results showed that the count of A. baumannii in infected wounds was significantly decreased and the promotion in wound healing by the acceleration of skin re-epithelialization in mice was observed following treatment with 8 × MIC of DCD-1L. CONCLUSIONS Results of this study demonstrated that DCD-1L can inhibit bacterial attachment and biofilm formation and prevent the onset of infection. Taking these properties together, DCD-1L appears as a promising candidate for antimicrobial and anti-biofilm drug development.
Collapse
Affiliation(s)
- Zahra Farshadzadeh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Behrouz Taheri
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Ekrami
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Masoud Azimzadeh
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Bahador
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
20
|
Pourhajibagher M, Talaei N, Bahador A. Evaluation of antimicrobial effects of photo-sonodynamic antimicrobial chemotherapy based on nano-micelle curcumin on virulence gene expression patterns in Acinetobacter baumannii. Infect Disord Drug Targets 2021; 22:e201221199163. [PMID: 34931970 DOI: 10.2174/1871526522666211220121725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/30/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Abaumannii baumannii rapidly resistance to a wide range of antimicrobial agents. The combination of antimicrobial photodynamic therapy (aPDT) and sonodynamic antimicrobial chemotherapy (SACT) known as photo-sonodynamic antimicrobial chemotherapy (PSACT) has received considerable attention as one of the emerging and promising strategies against microbial infections. OBJECTIVE This study aimed to investigate the antimicrobial effects of PSACT based on nano-micelle curcumin (N-MCur) on the virulence gene expression patterns in A. baumannii. MATERIALS AND METHODS N-MCur as a photo-sonosensitizer was synthesized and confirmed. To determine sub-significant reduction dose of PSACT, sub-significant reduction dose of N-MCur and blue laser light during aPDT, and ultrasound power output during SACT were assessed. Finally, changes in the expression of genes involved in treated A. baumannii by minimum sub-significant reduction dose of PSACT were determined using quantitative real-time-PCR (qRT-PCR). RESULTS PSACT using 12.5 mM N-MCur at the ultrasound power outputs of 28.7, 36.9, and 45.2 mW/cm2 with 4 min irradiation time of blue laser, as well as, 6.2 mM N-MCur at an ultrasound power output of 45.2 mW/cm2 plus 3 min blue laser irradiation time exhibited the significant dose-dependent reduction against A. baumannii cell viability compared to the control group (P<0.05). After treatment of A. baumannii using 3.1 mM N-MCur + 2 min blue laser irradiation time + 28.7 mW/cm2 ultrasound as the minimum sub-significant reduction doses of PSACT, mRNA expression was significantly upregulated to 6.0-, 11.2-, and 13.7-folds in recA, blsA, and dnaK and downregulated to 8.6-, 10.1-, and 14.5-folds in csuE, espA, and abaI, respectively. CONCLUSIONS N-MCur-mediated PSACT could regulate the expression of genes involved in A. baumannii pathogenesis. Therefore, PSACT can be proposed as a promising application to treat infections caused by A. baumannii.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Narjes Talaei
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Khadke SK, Lee JH, Kim YG, Raj V, Lee J. Assessment of Antibiofilm Potencies of Nervonic and Oleic Acid against Acinetobacter baumannii Using In Vitro and Computational Approaches. Biomedicines 2021; 9:biomedicines9091133. [PMID: 34572317 PMCID: PMC8466663 DOI: 10.3390/biomedicines9091133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 12/24/2022] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen, and its biofilms are tolerant to desiccation, nutrient starvation, and antimicrobial treatment on biotic and abiotic surfaces, tissues, and medical devices. Biofilm formation by A. baumannii is triggered by a quorum sensing cascade, and we hypothesized that fatty acids might inhibit its biofilm formation by interfering with quorum sensing. Initially, we investigated the antibiofilm activities of 24 fatty acids against A. baumannii ATCC 17978 and two clinical isolates. Among these fatty acids, two unsaturated fatty acids, nervonic and oleic acid, at 20 μg/mL significantly inhibited A. baumannii biofilm formation without affecting its planktonic cell growth (MICs were >500 μg/mL) and markedly decreased the motility of A. baumannii but had no toxic effect on the nematode Caenorhabditis elegans. Interestingly, molecular dynamic simulations showed that both fatty acids bind to the quorum sensing acyl homoserine lactone synthase (AbaI), and decent conformational stabilities of interactions between the fatty acids and AbaI were exhibited. Our results demonstrate that nervonic and oleic acid inhibit biofilm formation by A. baumannii strains and may be used as lead molecules for the control of persistent A. baumannii infections.
Collapse
Affiliation(s)
| | | | | | | | - Jintae Lee
- Correspondence: ; Tel.: +82-53-810-2533; Fax: +82-53-810-4631
| |
Collapse
|
22
|
Diversity of International High-Risk Clones of Acinetobacter baumannii Revealed in a Russian Multidisciplinary Medical Center during 2017-2019. Antibiotics (Basel) 2021; 10:antibiotics10081009. [PMID: 34439060 PMCID: PMC8389025 DOI: 10.3390/antibiotics10081009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Acinetobacter baumannii is a dangerous bacterial pathogen possessing the ability to persist on various surfaces, especially in clinical settings, and to rapidly acquire the resistance to a broad spectrum of antibiotics. Thus, the epidemiological surveillance of A. baumannii within a particular hospital, region, and across the world is an important healthcare task that currently usually includes performing whole-genome sequencing (WGS) of representative isolates. During the past years, the dissemination of A. baumannii across the world was mainly driven by the strains belonging to two major groups called the global clones or international clones (ICs) of high risk (IC1 and IC2). However, currently nine ICs are already considered. Although some clones were previously thought to spread in particular regions of the world, in recent years this is usually not the case. In this study, we determined five ICs, as well as three isolates not belonging to the major ICs, in one multidisciplinary medical center within the period 2017-2019. We performed WGS using both short- and long-read sequencing technologies of nine representative clinical A. baumannii isolates, which allowed us to determine the antibiotic resistance and virulence genomic determinants, reveal the CRISPR/Cas systems, and obtain the plasmid structures. The phenotypic and genotypic antibiotic resistance profiles are compared, and the possible ways of isolate and resistance spreading are discussed. We believe that the data obtained will provide a better understanding of the spreading and resistance acquisition of the ICs of A. baumannii and further stress the necessity for continuous genomic epidemiology surveillance of this problem-causing bacterial species.
Collapse
|
23
|
Sun X, Ni Z, Tang J, Ding Y, Wang X, Li F. The abaI/ abaR Quorum Sensing System Effects on Pathogenicity in Acinetobacter baumannii. Front Microbiol 2021; 12:679241. [PMID: 34322102 PMCID: PMC8312687 DOI: 10.3389/fmicb.2021.679241] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/08/2021] [Indexed: 12/26/2022] Open
Abstract
Acinetobacter baumannii is a Gram-negative pathogen that has emerged as one of the most troublesome pathogens for healthcare institutions globally. Bacterial quorum sensing (QS) is a process of cell-to-cell communication that relies on the production, secretion, and detection of autoinducer (AI) signals to share information about cell density and regulate gene expression accordingly. The molecular and genetic bases of A. baumannii virulence remains poorly understood. Therefore, the contribution of the abaI/abaR QS system to growth characteristics, morphology, biofilm formation, resistance, motility, and virulence of A. baumannii was studied in detail. RNA sequencing (RNA-seq) analysis indicated that genes involved in various aspects of energy production and conversion; valine, leucine, and isoleucine degradation; and lipid transport and metabolism are associated with bacterial pathogenicity. Our work provides a new insight into the abaI/abaR QS system effects on pathogenicity in A. baumannii. We propose that targeting the acyl homoserine lactone (AHL) synthase enzyme abaI could provide an effective strategy for attenuating virulence. On the contrary, interdicting the AI synthase receptor abaR elicits unpredictable consequences, which may lead to enhanced bacterial virulence.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Zhaohui Ni
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Jie Tang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Yue Ding
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Xinlei Wang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China.,The Key Laboratory for Bionics Engineering, Ministry of Education, Jilin University, Changchun, China.,Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun, China.,Key Laboratory for Biomedical Materials of Jilin Province, Jilin University, Changchun, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang, China
| |
Collapse
|