1
|
Butassi E, Blanc AR, Svetaz LA. Phytolacca tetramera berries extracts and its main constituents as potentiators of antifungal drugs against Candida spp. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155569. [PMID: 38795695 DOI: 10.1016/j.phymed.2024.155569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/24/2024] [Accepted: 03/25/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Extensive antifungal drug use has enhanced fungal resistance, resulting in persistent mycoses. Combining antifungal plant extracts/compounds with these drugs offers good alternatives to increase the activity of both partners, minimize side effects, and overcome drug resistance. In our previous study, Phytolacca tetramera berries extracts demonstrated activity against Candida spp., correlating with the amount of the main constituent phytolaccoside B and its genin, phytolaccagenin. The extracts and phytolaccagenin altered the fungal plasma membrane by binding to ergosterol, whereas phytolaccoside B increased chitin synthase activity. However, the presence of triterpenoid saponins in Phytolacca spp. has been linked to acute toxicity in humans. PURPOSE This study aimed to evaluate combinations of P. tetramera berries extracts, phytolaccoside B and phytolaccagenin, together with commercial antifungals [amphotericin B, fluconazole, itraconazole, posaconazole, and caspofungin] against Candida albicans and Candida glabrata, to find synergistic effects with multi-target actions, in which the doses of both partners are reduced, and therefore their toxicity. Additionally, we intended to explore their anti-virulence capacity, thereby hindering the development of drug-resistant strains. METHODS The effects of these combinations were evaluated using both the checkerboard and isobologram methods. Fractional Inhibitory Concentration Index and Dose Reduction Index were calculated to interpret the combination results. To confirm the multi-target effect, studies on mechanisms of action of synergistic mixtures were performed using ergosterol-binding and quantification assays. The ability to inhibit Candida virulence factors, including biofilm formation and eradication from inert surfaces, was also evaluated. Quantification of active markers was performed using a validated UHPLC-ESI-MS method. RESULTS Eight synergistic combinations of P. tetramera extracts or phytolaccagenin (but not phytolaccoside B) with itraconazole or posaconazole were obtained against C. albicans, including a resistant strain. These mixtures acted by binding to ergosterol, decreasing its whole content, and inhibiting Candida biofilm formation in 96-well microplates and feeding tubes in vitro, but were unable to eradicate preformed biofilms. CONCLUSIONS This study demonstrated the synergistic and anti-virulence effects of P. tetramera berries extracts and phytolaccagenin with antifungal drugs against Candida spp., providing novel treatment avenues for fungal infections with reduced doses of both natural products and commercial antifungals, thereby mitigating potential human toxicity concerns.
Collapse
Affiliation(s)
- Estefanía Butassi
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Alan Roy Blanc
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Laura Andrea Svetaz
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| |
Collapse
|
2
|
Babaei F, Mirzababaei M, Tavakkoli A, Nassiri-Asl M, Hosseinzadeh H. Can nonsteroidal anti-inflammatory drugs (NSAIDs) be repurposed for fungal infection? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:59-75. [PMID: 37589736 DOI: 10.1007/s00210-023-02651-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are an important class of anti-inflammatory drugs widely used for the treatment of musculoskeletal disorders, mild-to-moderate pain, and fever. This review aimed to explain the functional role and possible mechanisms of the antifungal effects of NSAIDs alone or in combination with antifungal drugs in vitro and in vivo. Several studies reported that NSAIDs such as aspirin, ibuprofen, diclofenac, indomethacin, ketorolac, celecoxib, flurbiprofen, and nimesulide had antifungal activities in vitro, either fungistatic or fungicidal, against different strains of Candida, Aspergillus, Cryptococcus, Microsporum, and Trichophyton species. These drugs inhibited biofilm adhesion and development, and yeast-to-hypha conversion which may be related to a prostaglandin E2 (PGE2)/PGEx-dependent mechanism. Modulating PGE2 levels by NSAIDs during fungal infection can be introduced as a possible mechanism to overcome. In addition, some important mechanisms of the antifungal activities of NSAIDs and their new derivatives on fungi and host immune responses are summarized. Overall, we believe that using NSAIDs along with classical antifungal drugs has the potential to be investigated as a novel therapeutic strategy in clinical studies. Furthermore, combination therapy can help manage resistant strains, increase the efficacy of antifungal drugs, and reduce toxicity.
Collapse
Affiliation(s)
- Fatemeh Babaei
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19839-63113, Tehran, Iran
| | - Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Tavakkoli
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19839-63113, Tehran, Iran.
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O. Box 9177948954, Mashhad, Iran.
| |
Collapse
|
3
|
Sadanandan B, Vijayalakshmi V, Ashrit P, Babu UV, Sharath Kumar LM, Sampath V, Shetty K, Joglekar AP, Awaknavar R. Aqueous spice extracts as alternative antimycotics to control highly drug resistant extensive biofilm forming clinical isolates of Candida albicans. PLoS One 2023; 18:e0281035. [PMID: 37315001 DOI: 10.1371/journal.pone.0281035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
Candida albicans form biofilm by associating with biotic and abiotic surfaces. Biofilm formation by C. albicans is relevant and significant as the organisms residing within, gain resistance to conventional antimycotics and are therefore difficult to treat. This study targeted the potential of spice-based antimycotics to control C. albicans biofilms. Ten clinical isolates of C. albicans along with a standard culture MTCC-3017 (ATCC-90028) were screened for their biofilm-forming ability. C. albicans M-207 and C. albicans S-470 were identified as high biofilm formers by point inoculation on Trypticase Soy Agar (TSA) medium as they formed a lawn within 16 h and exhibited resistance to fluconazole and caspofungin at 25 mcg and 8 mcg respectively. Aqueous and organic spice extracts were screened for their antimycotic activity against C. albicans M-207 and S-470 by agar and disc diffusion and a Zone of Inhibition was observed. Minimal Inhibitory Concentration was determined based on growth absorbance and cell viability measurements. The whole aqueous extract of garlic inhibited biofilms of C. albicans M-207, whereas whole aqueous extracts of garlic, clove, and Indian gooseberry were effective in controlling C. albicans S-470 biofilm within 12 h of incubation. The presence of allicin, ellagic acid, and gallic acid as dominant compounds in the aqueous extracts of garlic, clove, and Indian gooseberry respectively was determined by High-Performance Thin Layer Chromatography and Liquid Chromatography-Mass Spectrometry. The morphology of C. albicans biofilm at different growth periods was also determined through bright field microscopy, phase contrast microscopy, and fluorescence microscopy. The results of this study indicated that the alternate approach in controlling high biofilm-forming, multi-drug resistant clinical isolates of C. albicans M-207 and S-470 using whole aqueous extracts of garlic, clove, and Indian gooseberry is a safe, potential, and cost-effective one that can benefit the health care needs with additional effective therapeutics to treat biofilm infections.
Collapse
Affiliation(s)
- Bindu Sadanandan
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | | | - Priya Ashrit
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Uddagiri Venkanna Babu
- Department of Phytochemistry, Research and Development, The Himalaya Drug Company, Bengaluru, Karnataka, India
| | | | - Vasulingam Sampath
- Department of Phytochemistry, Research and Development, The Himalaya Drug Company, Bengaluru, Karnataka, India
| | - Kalidas Shetty
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | | | - Rashmi Awaknavar
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Di Bella S, Luzzati R, Principe L, Zerbato V, Meroni E, Giuffrè M, Crocè LS, Merlo M, Perotto M, Dolso E, Maurel C, Lovecchio A, Dal Bo E, Lagatolla C, Marini B, Ippodrino R, Sanson G. Aspirin and Infection: A Narrative Review. Biomedicines 2022; 10:biomedicines10020263. [PMID: 35203473 PMCID: PMC8868581 DOI: 10.3390/biomedicines10020263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
Acetylsalicylic acid (ASA) is one of the most commonly used drugs in the world. It derives from the extract of white willow bark, whose therapeutic potential was known in Egypt since 1534 BC. ASA’s pharmacological effects are historically considered secondary to its anti-inflammatory, platelet-inhibiting properties; however, human studies demonstrating a pro-inflammatory effect of ASA exist. It is likely that we are aware of only part of ASA’s mechanisms of action; moreover, the clinical effect is largely dependent on dosages. During the past few decades, evidence of the anti-infective properties of ASA has emerged. We performed a review of such research in order to provide a comprehensive overview of ASA and viral, bacterial, fungal and parasitic infections, as well as ASA’s antibiofilm properties.
Collapse
Affiliation(s)
- Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (S.D.B.); (R.L.); (L.S.C.); (M.M.); (M.P.); (G.S.)
| | - Roberto Luzzati
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (S.D.B.); (R.L.); (L.S.C.); (M.M.); (M.P.); (G.S.)
| | - Luigi Principe
- Clinical Pathology and Microbiology Unit, “S. Giovanni di Dio” Hospital, 88900 Crotone, Italy;
| | - Verena Zerbato
- Infectious Diseases Unit, Trieste University Hospital, 34149 Trieste, Italy; (V.Z.); (E.D.); (C.M.); (A.L.)
| | - Elisa Meroni
- Clinical Microbiology and Virology Unit, “A. Manzoni” Hospital, 23900 Lecco, Italy;
| | - Mauro Giuffrè
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (S.D.B.); (R.L.); (L.S.C.); (M.M.); (M.P.); (G.S.)
- Correspondence: ; Tel.: +39-040-3994-305
| | - Lory Saveria Crocè
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (S.D.B.); (R.L.); (L.S.C.); (M.M.); (M.P.); (G.S.)
| | - Marco Merlo
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (S.D.B.); (R.L.); (L.S.C.); (M.M.); (M.P.); (G.S.)
| | - Maria Perotto
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (S.D.B.); (R.L.); (L.S.C.); (M.M.); (M.P.); (G.S.)
| | - Elisabetta Dolso
- Infectious Diseases Unit, Trieste University Hospital, 34149 Trieste, Italy; (V.Z.); (E.D.); (C.M.); (A.L.)
| | - Cristina Maurel
- Infectious Diseases Unit, Trieste University Hospital, 34149 Trieste, Italy; (V.Z.); (E.D.); (C.M.); (A.L.)
| | - Antonio Lovecchio
- Infectious Diseases Unit, Trieste University Hospital, 34149 Trieste, Italy; (V.Z.); (E.D.); (C.M.); (A.L.)
| | - Eugenia Dal Bo
- Cardiothoracic-Vascular Department, Azienda Sanitaria Universitaria Integrata, Cattinara University Hospital, 34149 Trieste, Italy;
| | - Cristina Lagatolla
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Bruna Marini
- Ulisse BioMed Labs, Area Science Park, 34149 Trieste, Italy; (B.M.); (R.I.)
| | - Rudy Ippodrino
- Ulisse BioMed Labs, Area Science Park, 34149 Trieste, Italy; (B.M.); (R.I.)
| | - Gianfranco Sanson
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (S.D.B.); (R.L.); (L.S.C.); (M.M.); (M.P.); (G.S.)
| |
Collapse
|
5
|
Kovács R, Majoros L. Antifungal lock therapy: an eternal promise or an effective alternative therapeutic approach? Lett Appl Microbiol 2022; 74:851-862. [PMID: 35032330 PMCID: PMC9306927 DOI: 10.1111/lam.13653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 11/30/2022]
Abstract
Each year, millions of central venous catheter insertions are performed in intensive care units worldwide. The usage of these indwelling devices is associated with a high risk of bacterial and fungal colonization, leading to the development of microbial consortia, namely biofilms. These sessile structures provide fungal cells with resistance to the majority of antifungals, environmental stress and host immune responses. Based on different guidelines, colonized/infected catheters should be removed and changed immediately in the case of Candida‐related central line infections. However, catheter replacement is not feasible for all patient populations. An alternative therapeutic approach may be antifungal lock therapy, which has received high interest, especially in the last decade. This review summarizes the published Candida‐related in vitro, in vivo data and case studies in terms of antifungal lock therapy. The number of clinical studies remains limited and further studies are needed for safe implementation of the antifungal lock therapy into clinical practice.
Collapse
Affiliation(s)
- Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Hungary.,Faculty of Pharmacy, University of Debrecen, Hungary
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Hungary
| |
Collapse
|
6
|
Abd-El-Aziz AS, Benaaisha MR, Abdelghani AA, Bissessur R, Abdel-Rahman LH, Fayez AM, El-ezz DA. Aspirin-Based Organoiron Dendrimers as Promising Anti-Inflammatory, Anticancer, and Antimicrobial Drugs. Biomolecules 2021; 11:1568. [PMID: 34827566 PMCID: PMC8615929 DOI: 10.3390/biom11111568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022] Open
Abstract
Designing nanocarriers with actions directed at a specific organ or tissue is a very promising strategy since it can significantly reduce the toxicity of a bioactive drug. In this study, an organometallic dendrimer was used to synthesize a biocompatible drug delivery system by attaching aspirin to the periphery of the dendrimer. Our goal is to enhance the bioavailability and anticancer activity of aspirin and reduce its toxicity through successive generations of organoiron dendrimers. The biological activity of aspirin-based dendrimer complexes was evaluated. The result of antimicrobial activity of the synthesized dendrimers also demonstrated an increase in their antimicrobial activity with increased generation of the dendrimers for most types of microorganisms. This study reveals for the first time that organoiron dendrimers linked with aspirin exhibit an excellent Gram-negative activity comparable to the reference drug Gentamicin. All synthesized dendrimers were tested for their anticancer activity against breast cancer cell lines (MCF-7), hepatocellular cell lines (Hep-G2), and a non-cancer cell line, Human Embryonic Kidney (HEK293), using the MTT cell viability assay and compared against a standard anticancer drug, Doxorubicin. Compounds G3-D9-Asp and G4-D12-Asp exhibited noticeable activity against both cell lines, both of which were more effective than aspirin itself. In addition, the in vivo anti-inflammatory activity and histopathology of swollen paws showed that the designed aspirin-based dendrimers displayed significant anti-inflammatory activity; however, G2-D6-Asp showed the best anti-inflammatory activity, which was more potent than the reference drug aspirin during the same period. Moreover, the coupling of aspirin to the periphery of organoiron dendrimers showed a significant reduction in the toxicity of aspirin on the stomach.
Collapse
Affiliation(s)
- Alaa S. Abd-El-Aziz
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; (M.R.B.); (A.A.A.); (R.B.)
| | - Maysun R. Benaaisha
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; (M.R.B.); (A.A.A.); (R.B.)
| | - Amani A. Abdelghani
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; (M.R.B.); (A.A.A.); (R.B.)
| | - Rabin Bissessur
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; (M.R.B.); (A.A.A.); (R.B.)
| | | | - Ahmed M. Fayez
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11835, Egypt;
| | - Doaa Abou El-ezz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Giza 8655, Egypt;
| |
Collapse
|
7
|
Chan AKY, Tamrakar M, Jiang CM, Lo ECM, Leung KCM, Chu CH. A Systematic Review on Caries Status of Older Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010662. [PMID: 34682414 PMCID: PMC8535396 DOI: 10.3390/ijerph182010662] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022]
Abstract
The aim of this systematic review was to provide an update on caries prevalence in older adults aged 60 years or above around the globe. Two independent reviewers performed a systematic literature search of English publications from January 2016 to December 2020 using Pubmed, Scopus, Embase/Ovid and Web of Science. The MeSH terms used were “dental caries”, “root caries”, “DMF index”, “aged” and “aged 80 and over”. Further searches in Google Scholar retrieved eight additional publications. The epidemiological surveys reporting the prevalence of dental caries or root caries or caries experience using DMFT (decayed, missing and filled teeth) and DFR (decayed and filled root) in older adults aged 60 years or above were included. Quality of the publications was assessed using the JBI Critical Appraisal Checklist for Studies Reporting Prevalence Data. Among the 5271 identified publications, 39 articles of moderate or good quality were included. Twenty studies were conducted in Asia (China, India, Vietnam, Singapore and Turkey), ten in Europe (Ireland, Norway, Finland, Germany, Portugal, Poland, Romania and Kosovo), three in North America (USA and Mexico), one in South America (Brazil), two in Oceania (Australia) and three in Africa (Malawi, Egypt and South Africa). The prevalence of dental caries ranged from 25% (Australia) to 99% (South Africa), while the prevalence of root caries ranged from 8% (Finland) to 74% (Brazil) in community dwellers. The situation was even worse in institutionalised older adults of which the mean DMFT score varied from 6.9 (Malawi) to 29.7 (South Africa). Based on the included studies published in the last 5 years, caries is still prevalent in older adults worldwide and their prevalence varies across countries.
Collapse
Affiliation(s)
| | | | | | | | | | - Chun Hung Chu
- Correspondence: ; Tel.: +852-28590287; Fax: +852-28582532
| |
Collapse
|
8
|
Common Medical and Dental Problems of Older Adults: A Narrative Review. Geriatrics (Basel) 2021; 6:geriatrics6030076. [PMID: 34449647 PMCID: PMC8395714 DOI: 10.3390/geriatrics6030076] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
The advancement of medicine has reduced the rate of mortality and older adult population is increasing. Among the 7,700,000,000 world population in 2019, 1 in 11 people were at the age of 65 or more. The population is expected to increase to 1 in 6 people by 2050. Older adults have degenerative changes that become more severe with age. This study used the World Health Organization’s websites and PubMed and Google Scholar databases to review current global oral and systemic health issues. Studies generally reported that many older adults have no regular dental checkup. Common oral diseases such as dental caries particularly root caries and periodontal disease are highly prevalent among them. These oral diseases are often interrelated with their systemic problems. A meta-analysis reported diabetes increases the incidence and progression of periodontitis by 86%. A decrease in salivary output is common among older adults having polypharmacy. A review reported the caries risk in older adults increases by 60% with low resting pH and low stimulated salivary flow rate. Many older adults suffer from dementia and depression which complicates the delivery of dental treatment. Proper oral hygiene practice and dental care at supine position are often difficult to be carried out if they have rheumatoid arthritis. With the increasing need of elderly dental care, dentists and other dental personnel should understand interlaced oral and general health in order to provide a successful dental care plan for older adults. The aim of this study is to give an overview of the common medical conditions and dental problems and their impacts on older adults.
Collapse
|