1
|
Sivori F, Cavallo I, Truglio M, De Maio F, Sanguinetti M, Fabrizio G, Licursi V, Francalancia M, Fraticelli F, La Greca I, Lucantoni F, Camera E, Mariano M, Ascenzioni F, Cristaudo A, Pimpinelli F, Di Domenico EG. Staphylococcus aureus colonizing the skin microbiota of adults with severe atopic dermatitis exhibits genomic diversity and convergence in biofilm traits. Biofilm 2024; 8:100222. [PMID: 39381779 PMCID: PMC11460521 DOI: 10.1016/j.bioflm.2024.100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder exacerbated by Staphylococcus aureus colonization. The specific factors that drive S. aureus overgrowth and persistence in AD remain poorly understood. This study analyzed skin barrier functions and microbiome diversity in lesional (LE) and non-lesional (NL) forearm sites of individuals with severe AD compared to healthy control subjects (HS). Notable differences were found in transepidermal water loss, stratum corneum hydration, and microbiome composition. Cutibacterium was more prevalent in HS, while S. aureus and S. lugdunensis were predominantly found in AD LE skin. The results highlighted that microbial balance depends on inter-species competition. Specifically, network analysis at the genus level demonstrated that overall bacterial correlations were higher in HS, indicating a more stable microbial community. Notably, network analysis at the species level revealed that S. aureus engaged in competitive interactions in NL and LE but not in HS. Whole-genome sequencing (WGS) showed considerable genetic diversity among S. aureus strains from AD. Despite this variability, the isolates exhibited convergence in key phenotypic traits such as adhesion and biofilm formation, which are crucial for microbial persistence. These common phenotypes suggest an adaptive evolution, driven by competition in the AD skin microenvironment, of S. aureus and underscoring the interplay between genetic diversity and phenotypic convergence in microbial adaptation.
Collapse
Affiliation(s)
- Francesca Sivori
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Ilaria Cavallo
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Truglio
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Rome, Italy
| | - Giorgia Fabrizio
- Department of Biology and Biotechnology “C. Darwin” Sapienza University of Rome, Rome, Italy
| | - Valerio Licursi
- Institute of Molecular Biology and Pathology, National Research Council of Italy, Rome, Italy
| | - Massimo Francalancia
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Fulvia Fraticelli
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Ilenia La Greca
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Federica Lucantoni
- Department of Biology and Biotechnology “C. Darwin” Sapienza University of Rome, Rome, Italy
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Maria Mariano
- Clinical Dermatology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Fiorentina Ascenzioni
- Department of Biology and Biotechnology “C. Darwin” Sapienza University of Rome, Rome, Italy
| | - Antonio Cristaudo
- Clinical Dermatology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Enea Gino Di Domenico
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
2
|
Ai L, Fang L, Zhou C, Liu B, Yang Q, Gong F. The impact of the COVID-19 pandemic on Staphylococcus aureus infections in pediatric patients admitted with community acquired pneumonia. Sci Rep 2024; 14:15737. [PMID: 38977804 PMCID: PMC11231152 DOI: 10.1038/s41598-024-66071-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
The COVID-19 pandemic has significantly transformed the infection spectrum of various pathogens. This study aimed to evaluate the impact of the COVID-19 pandemic on Staphylococcus aureus (S. aureus) infections among pediatric patients with community acquired pneumonia (CAP). We retrospectively reviewed pediatric CAP admissions before (from 2018 to 2019) and during (from 2020 to 2022) the COVID-19 pandemic. The epidemiology and antimicrobial resistance (AMR) profiles of S. aureus isolates were examined to assess the pandemic's effect. As a result, a total of 399 pediatric CAP patients with S. aureus infections were included. The positivity rate, gender, and age distribution of patients were similar across both periods. There was a marked reduction in respiratory co-infections with Haemophilus influenzae (H. influenzae) during the COVID-19 pandemic, compared to 2019. Additionally, there were significant changes in the resistance profiles of S. aureus isolates to various antibiotics. Resistance to oxacillin and tetracycline increased, whereas resistance to penicillin, gentamicin, and quinolones decreased. Notably, resistance to erythromycin significantly decreased in methicillin-resistant S. aureus (MRSA) strains. The number of S. aureus isolates, the proportion of viral co-infections, and the number of resistant strains typically peaked seasonally, primarily in the first or fourth quarters of 2018, 2019, and 2021. However, shifts in these patterns were noted in the first quarter of 2020 and the fourth quarter of 2022. These findings reveal that the COVID-19 pandemic has significantly altered the infection dynamics of S. aureus among pediatric CAP patients, as evidenced by changes in respiratory co-infections, AMR patterns, and seasonal trends.
Collapse
Affiliation(s)
- Ling Ai
- Department of General Practice, Yongchuan Hospital of Chongqing Medical University, No. 439, Xuanhua Street, Chongqing, 402160, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Liang Fang
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Chanjuan Zhou
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Beizhong Liu
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education,, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Quan Yang
- Department of Radiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Fang Gong
- Department of General Practice, Yongchuan Hospital of Chongqing Medical University, No. 439, Xuanhua Street, Chongqing, 402160, China.
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China.
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China.
| |
Collapse
|
3
|
Gu J, Xiong M, Zhang J, Li Y. Prevalence and characterization of community-associated Staphylococcus aureus isolates from human mastitis in Beijing, China. Int J Med Microbiol 2024; 315:151623. [PMID: 38781847 DOI: 10.1016/j.ijmm.2024.151623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/14/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVES Staphylococcus aureus (S. aureus) spreads worldwide and occurrence of mastitis caused by it holds significant implications for public health. We aim to reveal the molecular typing, antibiotic resistance and virulence gene profile of S. aureus causing mastitis through investigation. METHODS A total of 200 isolates of S. aureus were collected from outpatients infected with mastitis in a hospital in Beijing from 2020.7 to 2021.7. The molecular characteristics were analyzed by MLST and spa typing, virulence genes were screened by PCR, antibiotic susceptible test was performed by VITEK® 2 Compact system and phylogenetic analysis was performed by MEGA11 and iTOL. RESULTS Nineteen sequence types (STs) belonging to 9 clone complexes (CCs) were identified. ST22 was the most dominant clone (77.0%, 154/200). MRSA accounted for 19.0% (38/200) and 89.5% (34/38) of MRSA isolates belonged to CC22 and CC59. The isolates had relatively low levels of antibiotic resistance, with the exception of β-lactams and macrolides with resistance rates above 50.0%. The carrying rate of pvl in the ST22-MRSA strains were 84.2% and the detection rates of seb and pvl in the MRSA isolates were significantly higher than those in the MSSA isolates, while the hlg, fnbA and sdrD showed opposite results. Whole genome sequenced specimens of MRSA strains X4 and B5 show the same evolutionary origin as ST22 EMRSA-15 (HE681097), which is popular in Europe. CONCLUSIONS The method based on molecular epidemiology is an important tool for tracking the spread of S. aureus infections. We need to be alert to the major MRSA clones CC22 and CC59 in the region and be vigilant to the possible pandemic and spread of ST22 EMRSA-15.
Collapse
Affiliation(s)
- Jihong Gu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengyuan Xiong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Zhang
- Department of Laboratory Medicine, Beijing Haidian Maternal and Child Health Hospital, Beijing, China.
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Zhou C, Zhao L, Zhang J, Qi Y, Huang B, She Z. Prevalence, Antibiotic Resistance, and Molecular Typing of Staphylococcus aureus Isolated from Ready-to-Eat Foods in Guangdong, South China. Foodborne Pathog Dis 2024. [PMID: 38407833 DOI: 10.1089/fpd.2023.0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
The increasing global popularity of ready-to-eat (RTE) foods for their convenience simultaneously brings along a risk, as these products can be contaminated with various microorganisms, including potentially harmful pathogens. We aimed to investigate the food contamination of Staphylococcus aureus (S. aureus) in RTE foods in Guangdong, South China. All S. aureus isolates were subjected to characterization through antimicrobial susceptibility tests, multilocus sequence typing (MLST), and PCR analysis for detecting mec and blaZ genes. A total of 824 RTE food samples were collected from 2017 to 2022, of which 73 (8.9%) were found to be contaminated with S. aureus. Contamination levels were mostly in the range of 0.3-1.0 most probable number (MPN)/g, with 10 samples exceeding 110 MPN/g. Of the 73 S. aureus isolates, 10 were identified as methicillin-resistant S. aureus (MRSA). In MRSA, resistance was most frequently observed to penicillin (100%, 10/10), followed by erythromycin (80.0%, 8/10) and tetracycline (70%, 7/10). And in methicillin-sensitive S. aureus (MSSA), resistance was most frequently observed to penicillin (98.4%, 62/63), followed by tetracycline (30.2%, 19/63) and erythromycin (23.8%, 15/63). Overall, 98.6% (72/73) of the isolates demonstrated resistance to at least one antimicrobial agent, whereas 31.5% (23/73) were resistant to three or more antimicrobials. Fifty-seven S. aureus isolates harbored the penicillin-resistant gene blaZ, and 10 isolates carried the mec gene. In addition, 30.1% of the isolates harbored genes for classical staphylococcal enterotoxins (SEs), with seb being the most frequently detected SE gene. MLST revealed that the 73 isolates belonged to 14 different sequence types (STs), the most prevalent of which was ST7. In MRSA, the most common prevalent clone is ST6, and in MSSA, ST7 was the most common isolates. The prevalent multidrug resistance indicates that the resistance situation of foodborne S. aureus in Guangdong is severe, posing a potential threat to consumer safety and health.
Collapse
Affiliation(s)
- Chenqing Zhou
- Guangdong Testing Institute of Product Quality Supervision, Foshan, China
| | - Ling Zhao
- Guangdong Testing Institute of Product Quality Supervision, Foshan, China
| | - Juan Zhang
- Guangdong Testing Institute of Product Quality Supervision, Foshan, China
| | - Yan Qi
- Guangdong Testing Institute of Product Quality Supervision, Foshan, China
| | - Baoying Huang
- Guangdong Testing Institute of Product Quality Supervision, Foshan, China
| | - Zhiyun She
- Guangdong Testing Institute of Product Quality Supervision, Foshan, China
| |
Collapse
|
5
|
Wang W, Zhong Q, Cheng K, Tan L, Huang X. Molecular Characteristics, Antimicrobial Susceptibility, Biofilm-Forming Ability of Clinically Invasive Staphylococcus aureus Isolates. Infect Drug Resist 2023; 16:7671-7681. [PMID: 38144224 PMCID: PMC10743705 DOI: 10.2147/idr.s441989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023] Open
Abstract
Purpose This study aimed to investigate the molecular characteristics, antimicrobial resistance, and biofilm-forming ability of Staphylococcus aureus isolates from invasive infections. Methods A total of 92 non-repetitive S. aureus isolates from invasive infections were analyzed by Multi-locus Sequence Typing (MLST), spa typing, and chromosomal cassette mec (SCCmec) typing. Antibiotic susceptibility testing was performed using the disk diffusion and agar dilution methods. Biofilm-forming ability was assessed using crystal violet assay. The presence and expression of biofilm-associated genes were examined using PCR and RT-qPCR. Results Among the 55 Methicillin-resistant S. aureus (MRSA) and 41 Methicillin-sensitive S. aureus (MSSA) isolates, ST59 (43.6%) predominated in MRSA, while ST7 (39.0%) was most common in MSSA. As expected, MRSA exhibited higher antibiotic resistance rates compared to MSSA isolates. Biofilm formation assays revealed that the majority of isolates (88.5%) produced biofilms, with 26.0% classified as strong producers (OD570 ≥ 1.0) and 62.5% as weak producers (0.2 ≤ OD570<1.0). MSSA exhibited a higher biofilm-forming ability than MRSA (P < 0.01), with variations across clones. Notably, ST7 isolates displayed greater biofilm-forming ability than other sequence types (ST59, ST5, and ST239). RT-qPCR results revealed that ST7 isolates exhibited higher expression levels of icaA compared to other sequence types. Conclusion This study revealed significant molecular heterogeneity among invasive S. aureus isolates, with ST59 and ST7 as dominant clones. The strong biofilm-forming capacity of ST7 merits concern given its rising prevalence regionally. Continuous surveillance of emerging successful lineages is critical to help guide infection control strategies against invasive S. aureus infections.
Collapse
Affiliation(s)
- Weiguo Wang
- Department of Clinical Laboratory, The First Hospital of Nanchang, Nanchang, Jiangxi, People’s Republic of China
| | - Qiuxaing Zhong
- Department of Clinical Laboratory, The First Hospital of Nanchang, Nanchang, Jiangxi, People’s Republic of China
| | - Ke Cheng
- Department of Clinical Laboratory, The First Hospital of Nanchang, Nanchang, Jiangxi, People’s Republic of China
| | - Lili Tan
- Department of Clinical Laboratory, The First Hospital of Nanchang, Nanchang, Jiangxi, People’s Republic of China
| | - Xincheng Huang
- Department of Clinical Laboratory, The First Hospital of Nanchang, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
6
|
Chang J, Zhang Y, Zhang Z, Chen B, He S, Zhan Z, Zhong N, Tian X, Kang S, Arunachalam K, Shi C. Prevalence, antimicrobial resistance, and genetic characteristics of Staphylococcus aureus isolates in frozen flour and rice products in Shanghai, China. Curr Res Food Sci 2023; 7:100631. [PMID: 38021263 PMCID: PMC10660022 DOI: 10.1016/j.crfs.2023.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Staphylococcus aureus is widely recognized as a highly hazardous pathogen that poses significant threats to food safety and public health. This study aimed to assess the prevalence, antimicrobial resistance, and genetic characteristics of S. aureus isolates recovered from 288 frozen flour and rice product samples in Shanghai, China, between September 2019 and May 2020. A total of 81 S. aureus isolates were obtained, representing 25 sequence types (STs), with ST7 being the most prevalent (17.28%, n = 14). The majority of S. aureus isolates (85.19%, n = 69) carried at least one enterotoxin gene, with the seg gene being the most frequently detected (51.85%, n = 42). Additionally, 12 isolates (14.81%) were identified as methicillin-resistant S. aureus (MRSA) through mecA gene detection. Notably, this study reported the presence of an ST398 MRSA isolate in frozen flour and rice products for the first time. All MRSA isolates displayed multidrug resistance, with the highest resistance observed against cefoxitin (100.00%), followed by penicillin (91.67%) and erythromycin (66.67%). Genomic analysis of the 12 MRSA isolates revealed the presence of twenty distinct acquired antimicrobial resistance genes (ARGs), eight chromosomal point mutations, and twenty-four unique virulence genes. Comparative genome analysis indicated close genetic relationships between these MRSA isolates and previously reported MRSA isolates from clinical infections, highlighting the potential transmission of MRSA through the food chain and its implications for public health. Significantly, the identification of three plasmids harboring ARGs, insertion sequences (ISs), the origin of transfer site (oriT), and the relaxase gene suggested the potential for horizontal transfer of ARGs via conjugative plasmids in S. aureus. In conclusion, this study revealed significant contamination of retail frozen flour and rice products with S. aureus, and provided essential data for ensuring food safety and protecting public health.
Collapse
Affiliation(s)
- Jiang Chang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yi Zhang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Zengfeng Zhang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Bo Chen
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shoukui He
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Zeqiang Zhan
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Nan Zhong
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xiaorong Tian
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shimo Kang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Kannappan Arunachalam
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Chunlei Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
7
|
Shoaib M, Xu J, Meng X, Wu Z, Hou X, He Z, Shang R, Zhang H, Pu W. Molecular epidemiology and characterization of antimicrobial-resistant Staphylococcus haemolyticus strains isolated from dairy cattle milk in Northwest, China. Front Cell Infect Microbiol 2023; 13:1183390. [PMID: 37265496 PMCID: PMC10230075 DOI: 10.3389/fcimb.2023.1183390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/27/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction Non-aureus Staphylococcus (NAS) species are currently the most commonly identified microbial agents causing sub-clinical infections of the udder and are also deemed as opportunistic pathogens of clinical mastitis in dairy cattle. More than 10 NAS species have been identified and studied but little is known about S. haemolyticus in accordance with dairy mastitis. The present study focused on the molecular epidemiology and genotypic characterization of S. haemolyticus isolated from dairy cattle milk in Northwest, China. Methods In this study, a total of 356 milk samples were collected from large dairy farms in three provinces in Northwest, China. The bacterial isolation and presumptive identification were done by microbiological and biochemical methods following the molecular confirmation by 16S rRNA gene sequencing. The antimicrobial susceptibility testing (AST) was done by Kirby-Bauer disk diffusion assay and antibiotic-resistance genes (ARGs) were identified by PCR. The phylogenetic grouping and sequence typing was done by Pulsed Field Gel Electrophoresis (PFGE) and Multi-Locus Sequence Typing (MLST) respectively. Results In total, 39/356 (11.0%) were identified as positive for S. haemolyticus. The overall prevalence of other Staphylococcus species was noted to be 39.6% (141/356), while the species distribution was as follows: S. aureus 14.9%, S. sciuri 10.4%, S. saprophyticus 7.6%, S. chromogenes 4.2%, S. simulans 1.4%, and S. epidermidis 1.1%. The antimicrobial susceptibility of 39 S. haemolyticus strains exhibited higher resistance to erythromycin (92.3%) followed by trimethoprim-sulfamethoxazole (51.3%), ciprofloxacin (43.6%), florfenicol (30.8%), cefoxitin (28.2%), and gentamicin (23.1%). All of the S. haemolyticus strains were susceptible to tetracycline, vancomycin, and linezolid. The overall percentage of multi-drug resistant (MDR) S. haemolyticus strains was noted to be 46.15% (18/39). Among ARGs, mphC was identified as predominant (82.05%), followed by ermB (33.33%), floR (30.77%), gyrA (30.77%), sul1 (28.21%), ermA (23.08%), aadD (12.82%), grlA (12.82%), aacA-aphD (10.26%), sul2 (10.26%), dfrA (7.69%), and dfrG (5.13%). The PFGE categorized 39 S. haemolyticus strains into A-H phylogenetic groups while the MLST categorized strains into eight STs with ST8 being the most predominant while other STs identified were ST3, ST11, ST22, ST32, ST19, ST16, and ST7. Conclusion These findings provided new insights into our understanding of the epidemiology and genetic characteristics of S. haemolyticus in dairy farms to inform interventions limiting the spread of AMR in dairy production.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Jie Xu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Xiaoqin Meng
- Lanzhou Center for Animal Disease Control and Prevention, Lanzhou, China
| | - Zhongyong Wu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Xiao Hou
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Zhuolin He
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| |
Collapse
|