1
|
Zhang L, Li J, Zhang Q, Gao J, Zhao K, Asai Y, Hu Z, Gao H. An Integrative analysis of single-cell RNA-seq, transcriptome and Mendelian randomization for the Identification and validation of NAD + Metabolism-Related biomarkers in ulcerative colitis. Int Immunopharmacol 2025; 145:113765. [PMID: 39647286 DOI: 10.1016/j.intimp.2024.113765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/25/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
Ulcerative colitis (UC) is a chronic and refractory inflammatory disease of the colon and rectum. This study utilized bioinformatics methods to explore the potential of Nicotinamide adenine dinucleotide (NAD+) metabolism-related genes (NMRGs) as key genes in UC. Using the GSE87466 dataset, differentially expressed NMRGs were identified through differential expression analysis, weighted gene co-expression network analysis (WGCNA), and NMRG scoring. These NMRGs were used as exposure factors, with UC as the outcome, to identify causal candidate genes through Mendelian randomization (MR) analysis. Key genes were further validated as biomarkers using machine learning and expression validation in external datasets (GSE75214, GSE224758). A nomogram based on the expression levels of these biomarkers was constructed to predict UC risk, and the biomarkers' expression was validated through real-time quantitative polymerase chain reaction (RT-qPCR). Subsequently, signaling pathway analysis, enrichment analysis, immune infiltration analysis, and drug prediction were conducted to comprehensively understand the biological roles of the key genes in the human body. Single-cell (GSE116222) and spatial transcriptomic analyses (GSE189184) revealed the expression patterns of these key genes in specific cell types. NCF2, IL1B, S100A8, and SLC26A2 were identified as biomarkers, with NCF2 and IL1B serving as protective factors and S100A8 and SLC26A2 as risk factors for UC. The nomogram based on these biomarkers demonstrated strong predictive value. Functional analysis revealed significant IL1B, NCF2, and S100A8 enrichment in pathways such as IL-4 and IL-13 signaling, while SLC26A2 was strongly associated with respiratory electron transport. Significant differences in immune cells, such as macrophages and neutrophils, were also observed. Single-cell analysis showed high expression of NCF2, IL1B, and S100A8 in monocytes, while SLC26A2 was primarily expressed in epithelial cells, intestinal epithelial cells, and mast cells. Overall, these findings reveal the roles of NMRGs, providing valuable insights into the diagnosis and treatment of UC patients.
Collapse
Affiliation(s)
- Longxiang Zhang
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang, China
| | - Jian Li
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang, China
| | - Qiqi Zhang
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang, China
| | - Jianshu Gao
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang, China
| | - Keke Zhao
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang, China
| | - Yersen Asai
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang, China
| | - Ziying Hu
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang, China
| | - Hongliang Gao
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang, China.
| |
Collapse
|
2
|
Wu J, Chen Y, Yang X, Kuang H, Feng T, Deng C, Li X, Ye M, Tan X, Gong L, Wang Y, Shen Y, Qu J, Wu K. Differential gene expression in PBMCs: Insights into the mechanism how pulmonary tuberculosis increases lung cancer risk. Gene 2024:149199. [PMID: 39732349 DOI: 10.1016/j.gene.2024.149199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Pre-existing of pulmonary tuberculosis (PTB) poses increased lung cancer risk, yet the molecular mechanisms remain inadequately understood. This study sought to elucidate the potential mechanisms by performing comprehensive analyses of differentially expressed genes (DEGs) in peripheral blood mononuclear cells (PBMCs) from patients with PTB, lung adenocarcinoma (LUAD), and lung squamous cell carcinoma (LUSC). Microarray assays were employed to analyze the DEGs in PBMCs of these patients. The analyses revealed that, compared to healthy controls, the number of differentially expressed LncRNA in PBMCs from patients with PTB, LUAD, and LUSC were 801, 8,541, and 7,796, respectively. Similarly, the differentially expressed mRNA in PBMCs from patients with PTB, LUAD, and LUSC were 629, 4,865, and 4,438, respectively. These differentially expressed transcripts represent significant resources for the identifying diagnostic and differential diagnostic biomarkers for lung cancer and PTB. Pathways enriched by dysregulated mRNAs in patients with PTB, LUAD, and LUSC were identified through GO and KEGG pathway analyses. The results indicated that the NOD-like receptor signaling pathway, pathways in cancer, and the MAPK signaling pathway were co-enriched across the PTB, LUAD, and LUSC groups, providing insights into the mechanisms by which PTB may increase the risk of cancer development and progression.
Collapse
Affiliation(s)
- Jie Wu
- Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China.
| | - Yang Chen
- Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaoqi Yang
- Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Huabing Kuang
- Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ting Feng
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Chengmin Deng
- Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Xiaoqian Li
- Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Meng Ye
- Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Xin Tan
- Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Ling Gong
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Ya Wang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Yuguang Shen
- Department of Thoracic Surgery, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Jingqiu Qu
- Office of Drug Clinical Trial Institution, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China.
| | - Kaifeng Wu
- Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Department of Clinical Laboratory, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China.
| |
Collapse
|
3
|
Kado A, Moriya K, Inoue Y, Yanagimoto S, Tsutsumi T, Koike K, Fujishiro M. Decreased antioxidant-related superoxide dismutase 1 expression in peripheral immune cells indicates early ethanol exposure. Sci Rep 2024; 14:25091. [PMID: 39443615 PMCID: PMC11499712 DOI: 10.1038/s41598-024-76084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Alcohol consumption increases oxidative stress and imbalances in the antioxidant system, even with ethanol (EtOH) exposure at a young age. This study assessed changes in the antioxidant system following young EtOH exposure in peripheral immunity and measured sensitive indicators of heavy alcohol consumption. We used peripheral blood mononuclear cells (PBMCs) from 197 male university students without smoking habits to examine changes in antioxidant-related gene expression in vitro and in PBMCs. In vitro, the antioxidant system was impaired by EtOH. Next, we examined the expression of 84 antioxidant-related genes in the PBMCs of 162 young adults, among which the superoxide dismutase (SOD) 1 expression was most negatively correlated with alcohol consumption degree. The plasma SOD1 level had the highest area under the curve value (0.806) for heavy alcohol consumption. Our data demonstrated that a decreased SOD1 level is a sensitive indicator of an impaired antioxidant system and heavy alcohol consumption with early EtOH exposure.
Collapse
Affiliation(s)
- Akira Kado
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Division for Health Service Promotion, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kyoji Moriya
- Division of Infection Control and Prevention, Education Research Center, Tokyo Health Care University, 4-1-17 Higashigotanda, Shinagawa-ku, Tokyo, 141-8648, Japan.
- Department of Infection Control and Prevention, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Yukiko Inoue
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Division for Health Service Promotion, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shintaro Yanagimoto
- Division for Health Service Promotion, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takeya Tsutsumi
- Department of Infection Control and Prevention, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Gastroenterology, Kanto Central Hospital, 6-25-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8531, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
4
|
Yuan H, Wei W, Zhang Y, Li C, Zhao S, Chao Z, Xia C, Quan J, Gao C. Unveiling the Influence of Copy Number Variations on Genetic Diversity and Adaptive Evolution in China's Native Pig Breeds via Whole-Genome Resequencing. Int J Mol Sci 2024; 25:5843. [PMID: 38892031 PMCID: PMC11172908 DOI: 10.3390/ijms25115843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Copy number variations (CNVs) critically influence individual genetic diversity and phenotypic traits. In this study, we employed whole-genome resequencing technology to conduct an in-depth analysis of 50 pigs from five local swine populations [Rongchang pig (RC), Wuzhishan pig (WZS), Tibetan pig (T), Yorkshire (YL) and Landrace (LR)], aiming to assess their genetic potential and explore their prospects in the field of animal model applications. We identified a total of 96,466 CNVs, which were subsequently integrated into 7112 non-redundant CNVRs, encompassing 1.3% of the swine genome. Functional enrichment analysis of the genes within these CNVRs revealed significant associations with sensory perception, energy metabolism, and neural-related pathways. Further selective scan analyses of the local pig breeds RC, T, WZS, along with YL and LR, uncovered that for the RC variety, the genes PLA2G10 and ABCA8 were found to be closely related to fat metabolism and cardiovascular health. In the T breed, the genes NCF2 and CSGALNACT1 were associated with immune response and connective tissue characteristics. As for the WZS breed, the genes PLIN4 and CPB2 were primarily linked to fat storage and anti-inflammatory responses. In summary, this research underscores the pivotal role of CNVs in fostering the diversity and adaptive evolution of pig breeds while also offering valuable insights for further exploration of the advantageous genetic traits inherent to China's local pig breeds. This facilitates the creation of experimental animal models tailored to the specific characteristics of these breeds, contributing to the advancement of livestock and biomedical research.
Collapse
Affiliation(s)
- Haonan Yuan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China; (H.Y.); (W.W.); (Y.Z.); (S.Z.)
| | - Wenjing Wei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China; (H.Y.); (W.W.); (Y.Z.); (S.Z.)
| | - Yue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China; (H.Y.); (W.W.); (Y.Z.); (S.Z.)
| | - Changwen Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin 150069, China; (C.L.); (C.X.)
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China; (H.Y.); (W.W.); (Y.Z.); (S.Z.)
| | - Zhe Chao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Key Laboratory of Tropical Animal Breeding and Disease Research, Haikou 571100, China;
| | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin 150069, China; (C.L.); (C.X.)
| | - Jinqiang Quan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China; (H.Y.); (W.W.); (Y.Z.); (S.Z.)
| | - Caixia Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin 150069, China; (C.L.); (C.X.)
| |
Collapse
|
5
|
Cen Y, Feng D, Kowsar R, Cheng Z, Luo Y, Xiao Q. Sex-Specific Variations in the mRNA Levels of Candidate Genes in Peripheral Blood Mononuclear Cells from Patients with Diabetes: A Multistep Study. Endocr Res 2024; 49:59-74. [PMID: 37947760 DOI: 10.1080/07435800.2023.2280571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Type 2 diabetes (T2D) is one of the most prevalent diseases that also show sexual dimorphism in many different aspects. OBJECTIVES This study aimed to distinguish the mRNA expression of genes in peripheral blood mononuclear cells (PBMCs) in men or women with T2D using a multistep analysis. METHODS A total of 95 patients with T2D were compared based on their sex in terms of clinical variables and mRNA expression in their PBMCs. RESULTS Men with T2D had lower LDLC, HDLC, and HbA1c values in their blood, but greater creatinine levels. In men with T2D, TLR4, CCR2, NOX2, and p67phox mRNA expression was greater, but IL6 and NF-κB mRNA expression was lesser in PBMCs. There was a link between fasting plasma glucose (FPG), triglycerides, and hs-CRP, as well as COX1 mRNA in men with T2D. In women with T2D, FPG was associated with the mRNA expression of THBS1 and p67phox, as well as triglycerides and HDLC levels. We found the exclusive effect of FPG on HDLC, HbA1c, as well as p67phox mRNA in PBMCs of women with T2D. Analysis revealed the exclusive effect of FPG on hs-CRP and PAFR mRNA in PBMCs of men with T2D. FPG was shown to be associated with body mass index, hs-CRP, triglycerides, and COX1 mRNA in men with T2D, and with serum triglycerides, THSB1, and p67phox mRNA in women with T2D, according to network analysis. HbA1c was linked with NF-κB mRNA in women with T2D. CONCLUSIONS Using a multistep analysis, it was shown that network analysis outperformed traditional analytic techniques in identifying sex-specific alterations in mRNA gene expression in PBMCs of T2D patients. The development of sex-specific therapeutic approaches may result from an understanding of these disparities.
Collapse
Affiliation(s)
- Yuzhen Cen
- Department of Blood Transfusion, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dana Feng
- Department of Blood Transfusion, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rasoul Kowsar
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Zhen Cheng
- Guantian Community Healthcare Center, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, China
| | - Yu Luo
- Guantian Community Healthcare Center, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, China
| | - Qingyu Xiao
- Department of Blood Transfusion, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, China
| |
Collapse
|
6
|
Gatti DM, Tyler AL, Mahoney JM, Churchill GA, Yener B, Koyuncu D, Gurcan MN, Niazi M, Tavolara T, Gower AC, Dayao D, McGlone E, Ginese ML, Specht A, Alsharaydeh A, Tessier PA, Kurtz SL, Elkins K, Kramnik I, Beamer G. Systems genetics uncover new loci containing functional gene candidates in Mycobacterium tuberculosis-infected Diversity Outbred mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572738. [PMID: 38187647 PMCID: PMC10769337 DOI: 10.1101/2023.12.21.572738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mycobacterium tuberculosis, the bacillus that causes tuberculosis (TB), infects 2 billion people across the globe, and results in 8-9 million new TB cases and 1-1.5 million deaths each year. Most patients have no known genetic basis that predisposes them to disease. We investigated the complex genetic basis of pulmonary TB by modelling human genetic diversity with the Diversity Outbred mouse population. When infected with M. tuberculosis, one-third develop early onset, rapidly progressive, necrotizing granulomas and succumb within 60 days. The remaining develop non-necrotizing granulomas and survive longer than 60 days. Genetic mapping using clinical indicators of disease, granuloma histopathological features, and immune response traits identified five new loci on mouse chromosomes 1, 2, 4, 16 and three previously identified loci on chromosomes 3 and 17. Quantitative trait loci (QTLs) on chromosomes 1, 16, and 17, associated with multiple correlated traits and had similar patterns of allele effects, suggesting these QTLs contain important genetic regulators of responses to M. tuberculosis. To narrow the list of candidate genes in QTLs, we used a machine learning strategy that integrated gene expression signatures from lungs of M. tuberculosis-infected Diversity Outbred mice with gene interaction networks, generating functional scores. The scores were then used to rank candidates for each mapped trait in each locus, resulting in 11 candidates: Ncf2, Fam20b, S100a8, S100a9, Itgb5, Fstl1, Zbtb20, Ddr1, Ier3, Vegfa, and Zfp318. Importantly, all 11 candidates have roles in infection, inflammation, cell migration, extracellular matrix remodeling, or intracellular signaling. Further, all candidates contain single nucleotide polymorphisms (SNPs), and some but not all SNPs were predicted to have deleterious consequences on protein functions. Multiple methods were used for validation including (i) a statistical method that showed Diversity Outbred mice carrying PWH/PhJ alleles on chromosome 17 QTL have shorter survival; (ii) quantification of S100A8 protein levels, confirming predicted allele effects; and (iii) infection of C57BL/6 mice deficient for the S100a8 gene. Overall, this work demonstrates that systems genetics using Diversity Outbred mice can identify new (and known) QTLs and new functionally relevant gene candidates that may be major regulators of granuloma necrosis and acute inflammation in pulmonary TB.
Collapse
Affiliation(s)
- D M Gatti
- The Jackson Laboratory, Bar Harbor, ME
| | - A L Tyler
- The Jackson Laboratory, Bar Harbor, ME
| | | | | | - B Yener
- Rensselaer Polytechnic Institute, Troy, NY
| | - D Koyuncu
- Rensselaer Polytechnic Institute, Troy, NY
| | - M N Gurcan
- Wake Forest University School of Medicine, Winston Salem, NC
| | - Mkk Niazi
- Wake Forest University School of Medicine, Winston Salem, NC
| | - T Tavolara
- Wake Forest University School of Medicine, Winston Salem, NC
| | - A C Gower
- Clinical and Translational Science Institute, Boston University, Boston, MA
| | - D Dayao
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - E McGlone
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - M L Ginese
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - A Specht
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - A Alsharaydeh
- Texas Biomedical Research Institute, San Antonio, TX
| | - P A Tessier
- Department of Microbiology and Immunology, Laval University School of Medicine, Quebec, Canada
| | - S L Kurtz
- Center for Biologics, Food and Drug Administration, Bethesda, MD
| | - K Elkins
- Center for Biologics, Food and Drug Administration, Bethesda, MD
| | - I Kramnik
- NIEDL, Boston University, Boston, MA
| | - G Beamer
- Texas Biomedical Research Institute, San Antonio, TX
| |
Collapse
|
7
|
Zheng PF, Zhou SY, Zhong CQ, Zheng ZF, Liu ZY, Pan HW, Peng JQ. Identification of m6A regulator-mediated RNA methylation modification patterns and key immune-related genes involved in atrial fibrillation. Aging (Albany NY) 2023; 15:1371-1393. [PMID: 36863715 PMCID: PMC10042702 DOI: 10.18632/aging.204537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/11/2023] [Indexed: 03/04/2023]
Abstract
The role of m6A in the regulation of the immune microenvironment in atrial fibrillation (AF) remains unclear. This study systematically evaluated the RNA modification patterns mediated by differential m6A regulators in 62 AF samples, identified the pattern of immune cell infiltration in AF and identified several immune-related genes associated with AF. A total of six key differential m6A regulators between healthy subjects and AF patients were identified by the random forest classifier. Three distinct RNA modification patterns (m6A cluster-A, -B and -C) among AF samples were identified based on the expression of 6 key m6A regulators. Differential infiltrating immune cells and HALLMARKS signaling pathways between normal and AF samples as well as among samples with three distinct m6A modification patterns were identified. A total of 16 overlapping key genes were identified by weighted gene coexpression network analysis (WGCNA) combined with two machine learning methods. The expression levels of the NCF2 and HCST genes were different between controls and AF patient samples as well as among samples with the distinct m6A modification patterns. RT-qPCR also proved that the expression of NCF2 and HCST was significantly increased in AF patients compared with control participants. These results suggested that m6A modification plays a key role in the complexity and diversity of the immune microenvironment of AF. Immunotyping of patients with AF will help to develop more accurate immunotherapy strategies for those with a significant immune response. The NCF2 and HCST genes may be novel biomarkers for the accurate diagnosis and immunotherapy of AF.
Collapse
Affiliation(s)
- Peng-Fei Zheng
- Cardiology Department, Hunan Provincial People’s Hospital, Furong, Changsha 410000, Hunan, China
- Clinical Research Center for Heart Failure in Hunan Province, Furong, Changsha 410000, Hunan, China
- Institute of Cardiovascular Epidemiology, Hunan Provincial People’s Hospital, Furong, Changsha 410000, Hunan, China
| | - Sen-Yu Zhou
- Institute of Cardiovascular Epidemiology, Hunan Provincial People’s Hospital, Furong, Changsha 410000, Hunan, China
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Furong, Changsha 410000, Hunan, China
| | - Chang-Qing Zhong
- Cardiology Department, Hunan Provincial People’s Hospital, Furong, Changsha 410000, Hunan, China
- Clinical Research Center for Heart Failure in Hunan Province, Furong, Changsha 410000, Hunan, China
- Institute of Cardiovascular Epidemiology, Hunan Provincial People’s Hospital, Furong, Changsha 410000, Hunan, China
| | - Zhao-Fen Zheng
- Cardiology Department, Hunan Provincial People’s Hospital, Furong, Changsha 410000, Hunan, China
- Clinical Research Center for Heart Failure in Hunan Province, Furong, Changsha 410000, Hunan, China
- Institute of Cardiovascular Epidemiology, Hunan Provincial People’s Hospital, Furong, Changsha 410000, Hunan, China
| | - Zheng-Yu Liu
- Cardiology Department, Hunan Provincial People’s Hospital, Furong, Changsha 410000, Hunan, China
- Clinical Research Center for Heart Failure in Hunan Province, Furong, Changsha 410000, Hunan, China
- Institute of Cardiovascular Epidemiology, Hunan Provincial People’s Hospital, Furong, Changsha 410000, Hunan, China
| | - Hong-Wei Pan
- Cardiology Department, Hunan Provincial People’s Hospital, Furong, Changsha 410000, Hunan, China
- Clinical Research Center for Heart Failure in Hunan Province, Furong, Changsha 410000, Hunan, China
- Institute of Cardiovascular Epidemiology, Hunan Provincial People’s Hospital, Furong, Changsha 410000, Hunan, China
| | - Jian-Qiang Peng
- Cardiology Department, Hunan Provincial People’s Hospital, Furong, Changsha 410000, Hunan, China
- Clinical Research Center for Heart Failure in Hunan Province, Furong, Changsha 410000, Hunan, China
- Institute of Cardiovascular Epidemiology, Hunan Provincial People’s Hospital, Furong, Changsha 410000, Hunan, China
| |
Collapse
|
8
|
Identification and Verification of Biomarkers and Immune Infiltration in Obesity-Related Atrial Fibrillation. BIOLOGY 2023; 12:biology12010121. [PMID: 36671813 PMCID: PMC9855995 DOI: 10.3390/biology12010121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
Obesity is an independent risk factor for atrial fibrillation (AF). However, the mechanisms underlying this crosstalk are still being uncovered. Co-differentially expressed genes (co-DEGs) of AF and obesity microarrays were identified by bioinformatics analysis. Subsequently, functional enrichment, cell-type enrichment, and protein-protein interaction network analyses of co-DEGs were carried out. Then, we validated the hub genes by qRT-PCR of patients' blood samples. Finally, CIBERSORT was utilized to evaluate the AF microarray to determine immune infiltration and the correlation between validated hub genes and immune cells. A total of 23 co-up-regulated DEGs in AF and obesity microarrays were identified, and these genes were enriched in inflammation- and immune-related function. The enriched cells were whole blood, CD33+ myeloid, and CD14+ monocytes. The hub genes were identified as MNDA, CYBB, CD86, FCGR2C, NCF2, LCP2, TLR8, HLA-DRA, LCP1, and PTPN22. All hub genes were only elevated in blood samples of obese-AF patients. The CIBERSORT analysis revealed that the AF patients' left atrial appendage had increased infiltration of naïve B cells and decreased infiltration of memory B cells. The hub genes were related positively to naïve B cells and negatively to memory B cells. Ten hub genes may serve as biomarkers for obesity-related AF. These findings may also aid in comprehending pathophysiological mechanisms for obesity-related AF.
Collapse
|