1
|
Theissen L, Schroeter CB, Huntemann N, Räuber S, Dobelmann V, Cengiz D, Herrmann A, Koch-Hölsken K, Gerdes N, Hu H, Mourikis P, Polzin A, Kelm M, Hartung HP, Meuth SG, Nelke C, Ruck T. Recombinant Acetylcholine Receptor Immunization Induces a Robust Model of Experimental Autoimmune Myasthenia Gravis in Mice. Cells 2024; 13:508. [PMID: 38534352 DOI: 10.3390/cells13060508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/25/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Myasthenia gravis (MG) is a prototypical autoimmune disease of the neuromuscular junction (NMJ). The study of the underlying pathophysiology has provided novel insights into the interplay of autoantibodies and complement-mediated tissue damage. Experimental autoimmune myasthenia gravis (EAMG) emerged as a valuable animal model, designed to gain further insight and to test novel therapeutic approaches for MG. However, the availability of native acetylcholine receptor (AChR) protein is limited favouring the use of recombinant proteins. To provide a simplified platform for the study of MG, we established a model of EAMG using a recombinant protein containing the immunogenic sequence of AChR in mice. This model recapitulates key features of EAMG, including fatigable muscle weakness, the presence of anti-AChR-antibodies, and engagement of the NMJ by complement and a reduced NMJ density. Further characterization of this model demonstrated a prominent B cell immunopathology supported by T follicular helper cells. Taken together, the herein-presented EAMG model may be a valuable tool for the study of MG pathophysiology and the pre-clinical testing of therapeutic applications.
Collapse
Affiliation(s)
- Lukas Theissen
- Department of Neurology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Christina B Schroeter
- Department of Neurology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Niklas Huntemann
- Department of Neurology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Saskia Räuber
- Department of Neurology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Vera Dobelmann
- Department of Neurology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Derya Cengiz
- Department of Neurology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Alexander Herrmann
- Department of Neurology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Kathrin Koch-Hölsken
- Department of Neurology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Norbert Gerdes
- Department of Cardiology, Pulmonolgy and Vascular Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Hao Hu
- Department of Cardiology, Pulmonolgy and Vascular Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Philipp Mourikis
- Department of Cardiology, Pulmonolgy and Vascular Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Amin Polzin
- Department of Cardiology, Pulmonolgy and Vascular Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonolgy and Vascular Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
- Brain and Mind Center, University of Sidney, Sidney NSW 2050, Australia
- Department of Neurology, Palacky University Olomouc, 77146 Olomouc, Czech Republic
| | - Sven G Meuth
- Department of Neurology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Christopher Nelke
- Department of Neurology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| |
Collapse
|
2
|
Yu L, Ran H, Lu Y, Ma Q, Huang H, Liu W. Targeting HIF-1α alleviates the inflammatory responses and rebuilds the CD4 + T cell subsets balance in the experimental autoimmune myasthenia gravis inflammation model via regulating cellular and humoral immunity. Life Sci 2024; 336:122287. [PMID: 37995933 DOI: 10.1016/j.lfs.2023.122287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Cells and tissues in an inflammatory state are usually hypoxic. The hypoxic environment can affect the differentiation of immune cells and produce Hypoxia-inducible Factor-1α (HIF-1α). Inflammation is also a major contributor to the development and deterioration of Myasthenia Gravis (MG). There are limited studies on the immunopathological mechanism and targeted therapy associated with MG exacerbated with inflammation. This research aimed to explore whether BAY 87-2243 (HIF-1α inhibitor) ameliorates the symptoms of the Experimental Autoimmune Myasthenia Gravis (EAMG) inflammation model and study its regulatory mechanism on cellular immunity and humoral immunity. METHODS We first establish the EAMG inflammation model using Lipopolysaccharide (LPS), BAY 87-2243 was applied to the EAMG inflammation model and its therapeutic effects were evaluated in vivo and in vitro experiments. RESULTS The proportion of Treg cells was increased whereas Th1, Th17, and Th1/17 cells were decreased in BAY 87-2243-treated EAMG inflammation model. BAY 87-2243 ameliorated the acetylcholine receptors (AChRs) loss and the complement deposited at the neuromuscular junction of the EAMG inflammation model, declined the levels of IFN-γ, IL-17, and IL-6 in serum, and further attenuated responses in the germinal center and reduced the antibody levels by inhibiting the IL-6-dependent STAT3 axis. CONCLUSION BAY 87-2243 restored the balance of CD4+T cell subsets and reduced the production of the pro-inflammatory cytokines, thus acting as both an immune imbalance regulator and anti-inflammatory. The current study suggests that HIF-1α might be a potential target for the treatment of MG exacerbated with inflammation.
Collapse
Affiliation(s)
- Lu Yu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China; Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Hao Ran
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Yaru Lu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Qian Ma
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Huan Huang
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Weibin Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China.
| |
Collapse
|
3
|
Lim JL, Augustinus R, Plomp JJ, Roya-Kouchaki K, Vergoossen DLE, Fillié-Grijpma Y, Struijk J, Thomas R, Salvatori D, Steyaert C, Blanchetot C, Vanhauwaert R, Silence K, van der Maarel SM, Verschuuren JJ, Huijbers MG. Development and characterization of agonistic antibodies targeting the Ig-like 1 domain of MuSK. Sci Rep 2023; 13:7478. [PMID: 37156800 PMCID: PMC10167245 DOI: 10.1038/s41598-023-32641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
Muscle-specific kinase (MuSK) is crucial for acetylcholine receptor (AChR) clustering and thereby neuromuscular junction (NMJ) function. NMJ dysfunction is a hallmark of several neuromuscular diseases, including MuSK myasthenia gravis. Aiming to restore NMJ function, we generated several agonist monoclonal antibodies targeting the MuSK Ig-like 1 domain. These activated MuSK and induced AChR clustering in cultured myotubes. The most potent agonists partially rescued myasthenic effects of MuSK myasthenia gravis patient IgG autoantibodies in vitro. In an IgG4 passive transfer MuSK myasthenia model in NOD/SCID mice, MuSK agonists caused accelerated weight loss and no rescue of myasthenic features. The MuSK Ig-like 1 domain agonists unexpectedly caused sudden death in a large proportion of male C57BL/6 mice (but not female or NOD/SCID mice), likely caused by a urologic syndrome. In conclusion, these agonists rescued pathogenic effects in myasthenia models in vitro, but not in vivo. The sudden death in male mice of one of the tested mouse strains revealed an unexpected and unexplained role for MuSK outside skeletal muscle, thereby hampering further (pre-) clinical development of these clones. Future research should investigate whether other Ig-like 1 domain MuSK antibodies, binding different epitopes, do hold a safe therapeutic promise.
Collapse
Affiliation(s)
- Jamie L Lim
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Roy Augustinus
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Jaap J Plomp
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kasra Roya-Kouchaki
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Dana L E Vergoossen
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Yvonne Fillié-Grijpma
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Josephine Struijk
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Rachel Thomas
- Department PDC-Pathologie, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniela Salvatori
- Veterinary Faculty, Department Clinical Sciences, Universiteit Utrecht, Utrecht, The Netherlands
| | | | | | | | | | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Jan J Verschuuren
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maartje G Huijbers
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands.
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
4
|
Yamakawa M, Nakane S, Ihara E, Tawara N, Ikeda H, Igarashi Y, Komohara Y, Takamatsu K, Ikeda T, Tomita Y, Murai S, Ando Y, Mukaino A, Ogawa Y, Ueda M. A novel murine model of autoimmune dysautonomia by α3 nicotinic acetylcholine receptor immunization. Front Neurosci 2022; 16:1006923. [PMID: 36507326 PMCID: PMC9727251 DOI: 10.3389/fnins.2022.1006923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
We aimed to establish a novel murine model of autoimmune autonomic ganglionopathy (AAG), which represents autoimmune dysautonomia, associated with MHC class II to understand its pathomechanism and the pathogenicity of nicotinic acetylcholine receptor (nAChR) antibodies. The amino acid sequence of the mouse nAChRα3 protein was analyzed using an epitope prediction tool to predict the possible MHC class II binding mouse nAChRα3 peptides. We focused on two nAChRα3 peptides in the extracellular region, and experimental AAG (EAAG) was induced by immunization of C57BL/6 mice with these two different peptides. EAAG mice were examined both physiologically and histologically. Mice with EAAG generated nAChRα3 antibodies and exhibited autonomic dysfunction, including reduced heart rate, excessive fluctuations in systolic blood pressure, and intestinal transit slowing. Additionally, we observed skin lesions, such as alopecia and skin ulcers, in immunized mice. Neuronal cell density in the sympathetic cervical ganglia in immunized mice was significantly lower than that in control mice at the light microscopic level. We interpreted that active immunization of mice with nAChRα3 peptides causes autonomic dysfunction similar to human AAG induced by an antibody-mediated mechanism. We suggested a mechanism by which different HLA class II molecules might preferentially affect the nAChR-specific immune response, thus controlling diversification of the autoantibody response. Our novel murine model mimics AAG in humans and provides a useful tool to investigate its pathomechanism.
Collapse
Affiliation(s)
- Makoto Yamakawa
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shunya Nakane
- Department of Molecular Neurology and Therapeutics, Kumamoto University Hospital, Kumamoto, Japan,*Correspondence: Shunya Nakane,
| | - Eikichi Ihara
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nozomu Tawara
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroko Ikeda
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoko Igarashi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Koutaro Takamatsu
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tokunori Ikeda
- Department of Medical Information Sciences and Administration Planning (Biostatistics), Kumamoto University Hospital, Kumamoto, Japan,Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Yusuke Tomita
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shoichi Murai
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akihiro Mukaino
- Department of Molecular Neurology and Therapeutics, Kumamoto University Hospital, Kumamoto, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
5
|
Koseoglu E, Sungur N, Muhtaroglu S, Zararsiz G, Eken A. The Beneficial Clinical Effects of Teriflunomide in Experimental Autoimmune Myasthenia Gravis and the Investigation of the Possible Immunological Mechanisms. Cell Mol Neurobiol 2022:10.1007/s10571-022-01286-5. [PMID: 36219379 DOI: 10.1007/s10571-022-01286-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022]
Abstract
Myasthenia gravis (MG) is an autoantibody-mediated autoimmune disease characterized by skeletal muscle weakness exacerbated with exercise. There is a need for novel drugs effective in refractory MG. We aimed to test the potential of teriflunomide, an immunomodulatory drug currently used in rheumatoid arthritis and multiple sclerosis treatment, in a murine experimental autoimmune myasthenia gravis (EAMG) model. EAMG was induced by immunizations with recombinant acetylcholine receptor (AChR). Teriflunomide treatment (10 mg/kg/day, intraperitoneal) was initiated to one group of mice (n = 21) following the third immunization and continued for 5 weeks. The disease control group (n = 19) did not receive medication. Naïve mice (n = 10) received only mock immunization. In addition to the clinical scorings, the numbers of B cells and T cells, and cytokine profiles of T cells were examined by flow cytometry. Anti-AChR-specific antibodies in the peripheral blood serum were quantified by ELISA. Teriflunomide significantly reduced clinical disease scores and the absolute numbers of CD4+ T cells and some of their cytokine-producing subgroups (IFN-γ, IL 2, IL22, IL-17A, GM-CSF) in the spleen and the lymph nodes. The thymic CD4+ T cells were also significantly reduced. Teriflunomide mostly spared CD8+ T cells' numbers and cytokine production, while reducing CD138+CD19+lambda+ plasma B cells' absolute numbers and CD138 mean fluorescent intensities, probably decreasing the number of IgG secreting more mature plasma cells. It also led to some selective changes in the measurements of anti-AChR-specific antibodies in the serum. Our results showed that teriflunomide may be beneficial in the treatment of MG in humans.
Collapse
Affiliation(s)
- Emel Koseoglu
- Department of Biochemistry, Erciyes University School of Medicine, Kayseri, Turkey.
- Department of Neurology, Erciyes University School of Medicine, Kayseri, Turkey.
| | - Neslihan Sungur
- Department of Biochemistry, Erciyes University School of Medicine, Kayseri, Turkey
| | | | - Gokmen Zararsiz
- Department of Biostatistics, Erciyes University School of Medicine, Kayseri, Turkey
- Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
| | - Ahmet Eken
- Department of Medical Biology, Erciyes University School of Medicine, Kayseri, Turkey
- Betul Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| |
Collapse
|
6
|
Vanoli F, Mantegazza R. Antibody Therapies in Autoimmune Neuromuscular Junction Disorders: Approach to Myasthenic Crisis and Chronic Management. Neurotherapeutics 2022; 19:897-910. [PMID: 35165857 PMCID: PMC9294078 DOI: 10.1007/s13311-022-01181-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2022] [Indexed: 02/06/2023] Open
Abstract
Myasthenia gravis (MG) is a neurological autoimmune disorder characterized by muscle weakness and fatigue. It is a B cell-mediated disease caused by pathogenic antibodies directed against various components of the neuromuscular junction (NMJ). Despite the wide range of adverse effects, current treatment is still based on non-specific immunosuppression, particularly on long-term steroid usage. The increasing knowledge regarding the pathogenic mechanisms of MG has however allowed to create more target-specific therapies. A very attractive therapeutic approach is currently offered by monoclonal antibodies (mAbs), given their ability to specifically and effectively target different immunopathological pathways, such as the complement cascade, B cell-related cluster of differentiation (CD) proteins, and the human neonatal Fc receptor (FcRn). Up to now, eculizumab, a C5-directed mAb, has been approved for the treatment of generalized MG (gMG) and efgartigimod, a FcRn inhibitor, has just been approved by the U.S. Food and Drug Administration for the treatment of anti-acetylcholine receptor (AChR) antibody positive gMG. Other mAbs are currently under investigation with encouraging preliminary results, further enriching the new range of therapeutic possibilities for MG. This review article provides an overview of the present status of mAb-based therapies for MG, which offer an exciting promise for better outcomes by setting the basis of a precision medicine approach.
Collapse
Affiliation(s)
- Fiammetta Vanoli
- Neuroimmunology and Neuromuscular Disease Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Renato Mantegazza
- Neuroimmunology and Neuromuscular Disease Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| |
Collapse
|
7
|
Gomathy SB, Agarwal A, Vishnu VY. Molecular Therapy in Myasthenia Gravis. Neurology 2022. [DOI: 10.17925/usn.2022.18.1.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disorder caused by antibodies that act against the myoneural junction. Conventional immunosuppressants such as corticosteroids, azathioprine and mycophenolate are associated with long-term side effects and many patients do not achieve remission and may become refractory. Thus, there is an unmet need for target-specific therapies that act faster, have fewer side effects and lead to stable disease remission. However, many of the novel therapeutic agents being described are not meeting their primary endpoints. We reviewed the current status of novel immunotherapies for MG, their mechanisms of action, along with the side effect profiles. Fast onset of action, sustained disease remission and relatively low frequency of side effects of the new agents are attractive. However, the unknown long-term safety and high cost are precluding factors. Better preclinical studies and more randomized trials are needed before novel agents are routinely employed.
Collapse
|
8
|
Smith VM, Nguyen H, Rumsey JW, Long CJ, Shuler ML, Hickman JJ. A Functional Human-on-a-Chip Autoimmune Disease Model of Myasthenia Gravis for Development of Therapeutics. Front Cell Dev Biol 2021; 9:745897. [PMID: 34881241 PMCID: PMC8645836 DOI: 10.3389/fcell.2021.745897] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Myasthenia gravis (MG) is a chronic and progressive neuromuscular disease where autoantibodies target essential proteins such as the nicotinic acetylcholine receptor (nAChR) at the neuromuscular junction (NMJ) causing muscle fatigue and weakness. Autoantibodies directed against nAChRs are proposed to work by three main pathological mechanisms of receptor disruption: blocking, receptor internalization, and downregulation. Current in vivo models using experimental autoimmune animal models fail to recapitulate the disease pathology and are limited in clinical translatability due to disproportionate disease severity and high animal death rates. The development of a highly sensitive antibody assay that mimics human disease pathology is desirable for clinical advancement and therapeutic development. To address this lack of relevant models, an NMJ platform derived from human iPSC differentiated motoneurons and primary skeletal muscle was used to investigate the ability of an anti-nAChR antibody to induce clinically relevant MG pathology in the serum-free, spatially organized, functionally mature NMJ platform. Treatment of the NMJ model with the anti-nAChR antibody revealed decreasing NMJ stability as measured by the number of NMJs before and after the synchrony stimulation protocol. This decrease in NMJ stability was dose-dependent over a concentration range of 0.01-20 μg/mL. Immunocytochemical (ICC) analysis was used to distinguish between pathological mechanisms of antibody-mediated receptor disruption including blocking, receptor internalization and downregulation. Antibody treatment also activated the complement cascade as indicated by complement protein 3 deposition near the nAChRs. Additionally, complement cascade activation significantly altered other readouts of NMJ function including the NMJ fidelity parameter as measured by the number of muscle contractions missed in response to increasing motoneuron stimulation frequencies. This synchrony readout mimics the clinical phenotype of neurological blocking that results in failure of muscle contractions despite motoneuron stimulations. Taken together, these data indicate the establishment of a relevant disease model of MG that mimics reduction of functional nAChRs at the NMJ, decreased NMJ stability, complement activation and blocking of neuromuscular transmission. This system is the first functional human in vitro model of MG to be used to simulate three potential disease mechanisms as well as to establish a preclinical platform for evaluation of disease modifying treatments (etiology).
Collapse
Affiliation(s)
- Virginia M. Smith
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, Orlando, FL, United States
- Hesperos, Inc., Orlando, FL, United States
| | - Huan Nguyen
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, Orlando, FL, United States
| | | | | | | | - James J. Hickman
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, Orlando, FL, United States
- Hesperos, Inc., Orlando, FL, United States
| |
Collapse
|
9
|
Fralish Z, Lotz EM, Chavez T, Khodabukus A, Bursac N. Neuromuscular Development and Disease: Learning From in vitro and in vivo Models. Front Cell Dev Biol 2021; 9:764732. [PMID: 34778273 PMCID: PMC8579029 DOI: 10.3389/fcell.2021.764732] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023] Open
Abstract
The neuromuscular junction (NMJ) is a specialized cholinergic synaptic interface between a motor neuron and a skeletal muscle fiber that translates presynaptic electrical impulses into motor function. NMJ formation and maintenance require tightly regulated signaling and cellular communication among motor neurons, myogenic cells, and Schwann cells. Neuromuscular diseases (NMDs) can result in loss of NMJ function and motor input leading to paralysis or even death. Although small animal models have been instrumental in advancing our understanding of the NMJ structure and function, the complexities of studying this multi-tissue system in vivo and poor clinical outcomes of candidate therapies developed in small animal models has driven the need for in vitro models of functional human NMJ to complement animal studies. In this review, we discuss prevailing models of NMDs and highlight the current progress and ongoing challenges in developing human iPSC-derived (hiPSC) 3D cell culture models of functional NMJs. We first review in vivo development of motor neurons, skeletal muscle, Schwann cells, and the NMJ alongside current methods for directing the differentiation of relevant cell types from hiPSCs. We further compare the efficacy of modeling NMDs in animals and human cell culture systems in the context of five NMDs: amyotrophic lateral sclerosis, myasthenia gravis, Duchenne muscular dystrophy, myotonic dystrophy, and Pompe disease. Finally, we discuss further work necessary for hiPSC-derived NMJ models to function as effective personalized NMD platforms.
Collapse
Affiliation(s)
| | | | | | | | - Nenad Bursac
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
10
|
The Neuromuscular Junction: Roles in Aging and Neuromuscular Disease. Int J Mol Sci 2021; 22:ijms22158058. [PMID: 34360831 PMCID: PMC8347593 DOI: 10.3390/ijms22158058] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
The neuromuscular junction (NMJ) is a specialized synapse that bridges the motor neuron and the skeletal muscle fiber and is crucial for conversion of electrical impulses originating in the motor neuron to action potentials in the muscle fiber. The consideration of contributing factors to skeletal muscle injury, muscular dystrophy and sarcopenia cannot be restricted only to processes intrinsic to the muscle, as data show that these conditions incur denervation-like findings, such as fragmented NMJ morphology and corresponding functional changes in neuromuscular transmission. Primary defects in the NMJ also influence functional loss in motor neuron disease, congenital myasthenic syndromes and myasthenia gravis, resulting in skeletal muscle weakness and heightened fatigue. Such findings underscore the role that the NMJ plays in neuromuscular performance. Regardless of cause or effect, functional denervation is now an accepted consequence of sarcopenia and muscle disease. In this short review, we provide an overview of the pathologic etiology, symptoms, and therapeutic strategies related to the NMJ. In particular, we examine the role of the NMJ as a disease modifier and a potential therapeutic target in neuromuscular injury and disease.
Collapse
|
11
|
Datta S, Singh S, Govindarajan R. Retrospective Analysis of Eculizumab in Patients with Acetylcholine Receptor Antibody-Negative Myasthenia Gravis: A Case Series. J Neuromuscul Dis 2020; 7:269-277. [PMID: 32444555 PMCID: PMC7369065 DOI: 10.3233/jnd-190464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background: The role of the complement cascade in acetylcholine receptor antibody-negative (AChR–) myasthenia gravis (MG) is unclear. Objective: To assess the efficacy and tolerability of eculizumab (terminal complement inhibitor) in patients with AChR–MG. Methods: Retrospective chart review of data from six patients treated for 12 months with eculizumab for treatment-refractory, AChR–(by radioimmunoassay) generalized MG (gMG). The eculizumab dose was 900 mg/week for 4 weeks then 1200 mg every 2 weeks. Outcome measures were Myasthenia Gravis–Activities of Daily Living (MG-ADL) scores, number of exacerbations, and qualitative physical assessments based on selected items of the Quantitative Myasthenia Gravis evaluation (ptosis, double vision, eye closure, duration of ability to stretch out limbs). Results: All patients were female (mean age, 50.8 years). In the 12 months before eculizumab initiation, all measures were relatively stable. After its initiation, clinically meaningful reductions (≥2 points) in total MG-ADL scores were observed before or at 5 months and were maintained to Month 12 in all patients; mean (standard deviation [SD]) scores were 11.3 (0.9) and 5.0 (0.9), respectively. There was also a reduction in the mean (SD) number of exacerbations per patient, from 2.8 (1.2) to 0.3 (0.5) in the 12 months before and after eculizumab initiation, respectively. Physical assessment ratings were improved in all patients. Adverse events were reported in four patients, but all were mild and none were treatment-related. Conclusions: This small retrospective analysis provides preliminary evidence for the efficacy of eculizumab in treatment-refractory gMG that was AChR–according to radioimmunoassay. Larger, more robust studies are warranted to evaluate this further.
Collapse
Affiliation(s)
- Sorabh Datta
- University of Missouri Health Care, Columbia, MO, USA
| | | | | |
Collapse
|
12
|
Huda R. New Approaches to Targeting B Cells for Myasthenia Gravis Therapy. Front Immunol 2020; 11:240. [PMID: 32153573 PMCID: PMC7047318 DOI: 10.3389/fimmu.2020.00240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/29/2020] [Indexed: 01/06/2023] Open
Abstract
Current therapies for myasthenia gravis (MG) are limited, and many investigations have recently focused on target-specific therapies. B cell-targeting monoclonal antibody (mAb) therapies for MG are increasingly attractive due to their specificity and efficacy. The targeted B cell biomarkers are mainly the cluster of differentiation (CD) proteins that mediate maturation, differentiation, or survival of pathogenic B cells. Additional B cell-directed therapies include non-specific peptide inhibitors that preferentially target specific B cell subsets. The primary goals of such therapies are to intercept autoantibodies and prevent the generation of an inflammatory response that contributes to the pathogenesis of MG. Treatment of patients with MG using B cell-directed mAbs, antibody fragments, or selective inhibitors have exhibited moderate to high efficacy in early studies, and some of these therapies appear to be highly promising for further drug development. Numerous other biologics targeting various B cell surface molecules have been approved for the treatment of other conditions or are either in clinical trials or preclinical development stages. These approaches remain to be tested in patients with MG or animal models of the disease. This review article provides an overview of B cell-targeted treatments for MG, including those already available and those still in preclinical and clinical development. We also discuss the potential benefits as well as the shortcomings of these approaches to development of new therapies for MG and future directions in the field.
Collapse
Affiliation(s)
- Ruksana Huda
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
13
|
Merrheim J, Villegas J, Van Wassenhove J, Khansa R, Berrih-Aknin S, le Panse R, Dragin N. Estrogen, estrogen-like molecules and autoimmune diseases. Autoimmun Rev 2020; 19:102468. [PMID: 31927086 DOI: 10.1016/j.autrev.2020.102468] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
In western countries, the slope of autoimmune disease (AD) incidence is increasing and affects 5-8% of the population. Mainly prevalent in women, these pathologies are due to thymic tolerance processes breakdown. The female sex hormone, estrogen, is involved in this AD female susceptibility. However, predisposition factors have to act in concert with unknown triggering environmental factors (virus, microbiota, pollution) to initiate AD. Individuals are exposed to various environmental compounds that display endocrine disruption abilities. The cellular effects of some of these molecules may be mediated through the aryl hydrocarbon receptor (AhR). Here, we review the effects of these molecules on the homeostasis of the thymic cells, the immune tolerance intrinsic factors (transcription factors, epigenetic marks) and on the immune tolerance extrinsic factors (microbiota, virus sensibility). This review highlights the contribution of estrogen and endocrine disruptors on the dysregulation of mechanisms sustaining AD development.
Collapse
Affiliation(s)
- Judith Merrheim
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - José Villegas
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Jérôme Van Wassenhove
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Rémi Khansa
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Sonia Berrih-Aknin
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Rozen le Panse
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Nadine Dragin
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; Inovarion, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France.
| |
Collapse
|
14
|
Chaperones may cause the focus of diabetes autoimmunity on distinct (pro)insulin peptides. J Autoimmun 2019; 105:102304. [PMID: 31327552 DOI: 10.1016/j.jaut.2019.102304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 12/25/2022]
Abstract
It is still an enigma why T cell autoreactivity in type 1 diabetes targets few beta cell antigens only. Among these, one primary autoantigen is pro(insulin). Autoimmune T cells preferentially recognise three epitopes on the proinsulin molecule, of which the peptide region B:11-23 is the dominant one. Interestingly, the three regions superimpose with binding sites of the chaperone hsp70, the region B:11-23 being the strongest binding one. Absence of an intact core region B:15-17 prevents autoimmune diabetes in NOD as well as binding of hsp70. A role of hsp70 in selecting autoimmune epitopes is supported by the ability of this and other chaperones to deliver bound peptides to MHC class I and II molecules for efficient antigen presentation. Binding of hsp70 to receptors on antigen presenting cells such as TLR4 results in costimulatory signals for T cell activation. Strongest effects are seen for the mixture of hsp70 with the peptide B:11-23. Thus, hsp70 may assist in proinsulin epitope selection and efficient presentation to autoreactive T cells. The concept of chaperone guided immune reactivity may also apply to other autoimmune diseases.
Collapse
|
15
|
Cui YZ, Qu SY, Chang LL, Zhao JR, Mu L, Sun B, Li HL, Zhang TS, Wang GY, Kong QF. Enhancement of T Follicular Helper Cell-Mediated Humoral Immunity Reponses During Development of Experimental Autoimmune Myasthenia Gravis. Neurosci Bull 2019; 35:507-518. [PMID: 30796753 DOI: 10.1007/s12264-019-00344-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022] Open
Abstract
Myasthenia gravis (MG) is a prototypical antibody-mediated neurological autoimmune disease with the involvement of humoral immune responses in its pathogenesis. T follicular helper (Tfh) cells have been implicated in many autoimmune diseases. However, whether and how Tfh cells are involved in MG remain unclear. Here, we established and studied a widely-used and approved animal model of human MG, the rat model with acetylcholine receptor alpha (AChRα) subunit (R-AChR97-116)-induced experimental autoimmune myasthenia gravis (EAMG). This model presented mild body-weight loss 10 days after the first immunization (representing the early stage of disease) and more obvious clinical manifestations and body-weight loss 7 days after the second immunization (representing the late stage of disease). AChR-specific pre-Tfh cells and mature Tfh cells were detected in these two stages, respectively. In co-cultures of Tfh cells and B cells, the number of IgG2b-secreting B cells and the level of anti-AChR antibodies in the supernatant were higher in the cultures containing EAMG-derived Tfh cells. In immunohistochemistry and immunofluorescence assays, a substantial number of CD4+/Bcl-6+ T cells and a greater number of larger germinal centers were observed in lymph node tissues resected from EAMG rats. Based on these results, we hypothesize that an AChR-specific Tfh cell-mediated humoral immune response contributes to the development of EAMG.
Collapse
Affiliation(s)
- Ying-Zhe Cui
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Si-Ying Qu
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Lu-Lu Chang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Jia-Rui Zhao
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Lili Mu
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Bo Sun
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Hu-Lun Li
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Tong-Shuai Zhang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Guang-You Wang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, 150081, China.
| | - Qing-Fei Kong
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
16
|
Bednar KJ, Hardy L, Smeekens J, Raghuwanshi D, Duan S, Kulis MD, Macauley MS. Antigenic Liposomes for Generation of Disease-specific Antibodies. J Vis Exp 2018. [PMID: 30417864 PMCID: PMC6235598 DOI: 10.3791/58285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Antibody responses provide critical protective immunity to a wide array of pathogens. There remains a high interest in generating robust antibodies for vaccination as well as understand how pathogenic antibody responses develop in allergies and autoimmune disease. Generating robust antigen-specific antibody responses is not always trivial. In mouse models, it often requires multiple rounds of immunizations with adjuvant that leads to a great deal of variability in the levels of induced antibodies. One example is in mouse models of peanut allergies where more robust and reproducible models that minimize mouse numbers and the use of adjuvant would be beneficial. Presented here is a highly reproducible mouse model of peanut allergy anaphylaxis. This new model relies on two key factors: (1) antigen-specific splenocytes are adoptively transferred from a peanut-sensitized mouse into a naïve recipient mouse, normalizing the number of antigen-specific memory B- and T-cells across a large number of mice; and (2) recipient mice are subsequently boosted with a strong multivalent immunogen in the form of liposomal nanoparticles displaying the major peanut allergen (Ara h 2). The major advantage of this model is its reproducibility, which ultimately lowers the number of animals used in each study, while minimizing the number of animals receiving multiple injections of adjuvant. The modular assembly of these immunogenic liposomes provides relatively facile adaptability to other allergic or autoimmune models that involve pathogenic antibodies.
Collapse
Affiliation(s)
| | - Lakeya Hardy
- Department of Microbiology and Immunology, University of North Carolina; UNC Food Allergy Initiative, University of North Carolina
| | - Johanna Smeekens
- UNC Food Allergy Initiative, University of North Carolina; Department of Pediatrics, University of North Carolina
| | | | - Shiteng Duan
- Department of Molecular Medicine, Scripps Research Institute
| | - Mike D Kulis
- UNC Food Allergy Initiative, University of North Carolina; Department of Pediatrics, University of North Carolina
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta; Department of Medical Microbiology and Immunology, University of Alberta;
| |
Collapse
|
17
|
Lyon MS, Wosiski-Kuhn M, Gillespie R, Caress J, Milligan C. Inflammation, Immunity, and amyotrophic lateral sclerosis: I. Etiology and pathology. Muscle Nerve 2018; 59:10-22. [DOI: 10.1002/mus.26289] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Miles S. Lyon
- Department of Neurobiology and Anatomy; Wake Forest School of Medicine, Medical Center Boulevard; Winston-Salem North Carolina 27157 USA
| | - Marlena Wosiski-Kuhn
- Department of Neurobiology and Anatomy; Wake Forest School of Medicine, Medical Center Boulevard; Winston-Salem North Carolina 27157 USA
| | - Rachel Gillespie
- Department of Neurobiology and Anatomy; Wake Forest School of Medicine, Medical Center Boulevard; Winston-Salem North Carolina 27157 USA
| | - James Caress
- Department of Neurology, Wake Forest School of Medicine; Winston-Salem North Carolina USA
| | - Carol Milligan
- Department of Neurobiology and Anatomy; Wake Forest School of Medicine, Medical Center Boulevard; Winston-Salem North Carolina 27157 USA
| |
Collapse
|
18
|
Smoak MM, Pearce HA, Mikos AG. Microfluidic devices for disease modeling in muscle tissue. Biomaterials 2018; 198:250-258. [PMID: 30193908 DOI: 10.1016/j.biomaterials.2018.08.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/30/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022]
Abstract
Microfluidic devices have advanced significantly in recent years and are a promising technology for the field of tissue engineering. Highly sophisticated microfabrication techniques have paved the way for the development of complex ex vivo models capable of incorporating and measuring the real-time response of multiple cell types interacting together in a single system. Muscle-on-a-chip technology has drastically improved and serves as a drug screening platform for many muscular diseases such as muscular dystrophy, tendinosis, fibromyalgia, mitochondrial myopathy, and myasthenia gravis. This review seeks to communicate the gaps in knowledge of current muscular disease models and highlight the power of microfluidic devices in enabling researchers to better understand disease pathology and provide high throughput screening of therapeutics for muscular myopathies.
Collapse
Affiliation(s)
- Mollie M Smoak
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Hannah A Pearce
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Animal Models of the Neuromuscular Junction, Vitally Informative for Understanding Function and the Molecular Mechanisms of Congenital Myasthenic Syndromes. Int J Mol Sci 2018; 19:ijms19051326. [PMID: 29710836 PMCID: PMC5983836 DOI: 10.3390/ijms19051326] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 01/16/2023] Open
Abstract
The neuromuscular junction is the point of contact between motor nerve and skeletal muscle, its vital role in muscle function is reliant on the precise location and function of many proteins. Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders of neuromuscular transmission with 30 or more implicated proteins. The use of animal models has been instrumental in determining the specific role of many CMS-related proteins. The mouse neuromuscular junction (NMJ) has been extensively studied in animal models of CMS due to its amenability for detailed electrophysiological and histological investigations and relative similarity to human NMJ. As well as their use to determine the precise molecular mechanisms of CMS variants, where an animal model accurately reflects the human phenotype they become useful tools for study of therapeutic interventions. Many of the animal models that have been important in deconvolving the complexities of neuromuscular transmission and revealing the molecular mechanisms of disease are highlighted.
Collapse
|
20
|
Consonni A, Cordiglieri C, Rinaldi E, Marolda R, Ravanelli I, Guidesi E, Elli M, Mantegazza R, Baggi F. Administration of bifidobacterium and lactobacillus strains modulates experimental myasthenia gravis and experimental encephalomyelitis in Lewis rats. Oncotarget 2018; 9:22269-22287. [PMID: 29854277 PMCID: PMC5976463 DOI: 10.18632/oncotarget.25170] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 04/03/2018] [Indexed: 12/15/2022] Open
Abstract
Probiotics beneficial effects on the host are associated with regulation of the intestinal microbial homeostasis and with modulation of inflammatory immune responses in the gut and in periphery. In this study, we investigated the clinical efficacy of two lactobacillus and two bifidobacterium probiotic strains in experimental autoimmune myasthenia gravis (EAMG) and experimental autoimmune encephalomyelitis (EAE) models, induced in Lewis rats. Treatment with probiotics led to less severe disease manifestation in both models; ex vivo analyses showed preservation of neuromuscular junction in EAMG and myelin content in EAE spinal cord. Immunoregulatory transcripts were found differentially expressed in gut associated lymphoid tissue and in peripheral immunocompetent organs. Feeding EAMG animals with probiotics resulted in increased levels of Transforming Growth Factor-β (TGFβ) in serum, and increased percentages of regulatory T cells (Treg) in peripheral blood leukocyte. Exposure of immature dendritic cells to probiotics induced their maturation toward an immunomodulatory phenotype, and secretion of TGFβ. Our data showed that bifidobacteria and lactobacilli treatment effectively modulates disease symptoms in EAMG and EAE models, and support further investigations to evaluate their use in autoimmune diseases.
Collapse
Affiliation(s)
- Alessandra Consonni
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Chiara Cordiglieri
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Elena Rinaldi
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Roberta Marolda
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Ilaria Ravanelli
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Elena Guidesi
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, Piacenza, Italy
| | - Marina Elli
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, Piacenza, Italy
| | - Renato Mantegazza
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| | - Fulvio Baggi
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute 'Carlo Besta', Milan, Italy
| |
Collapse
|
21
|
Nonclinical data supporting orphan medicinal product designations: lessons from rare neurological conditions. Drug Discov Today 2018; 23:26-48. [DOI: 10.1016/j.drudis.2017.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/01/2017] [Accepted: 09/27/2017] [Indexed: 12/14/2022]
|
22
|
Howard JF. Myasthenia gravis: the role of complement at the neuromuscular junction. Ann N Y Acad Sci 2017; 1412:113-128. [PMID: 29266249 DOI: 10.1111/nyas.13522] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022]
Abstract
Generalized myasthenia gravis (gMG) is a rare autoimmune disorder characterized by skeletal muscle weakness caused by disrupted neurotransmission at the neuromuscular junction (NMJ). Approximately 74-88% of patients with gMG have acetylcholine receptor (AChR) autoantibodies. Complement plays an important role in innate and antibody-mediated immunity, and activation and amplification of complement results in the formation of membrane attack complexes (MACs), lipophilic proteins that damage cell membranes. The role of complement in gMG has been demonstrated in animal models and patients. Studies in animals lacking specific complement proteins have confirmed that MAC formation is required to induce experimental autoimmune MG (EAMG) and NMJ damage. Complement inhibition in EAMG models can prevent disease induction and reverse its progression. Patients with anti-AChR+ MG have autoantibodies and MACs present at NMJs. Damaged NMJs are associated with more severe disease, fewer AChRs, and MACs in synaptic debris. Current MG therapies do not target complement directly. Eculizumab is a humanized monoclonal antibody that inhibits cleavage of complement protein C5, preventing MAC formation. Eculizumab treatment improved symptoms compared with placebo in a phase II study in patients with refractory gMG. Direct complement inhibition could preserve NMJ physiology and muscle function in patients with anti-AChR+ gMG.
Collapse
Affiliation(s)
- James F Howard
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
23
|
Lazaridis K, Dalianoudis I, Baltatzidi V, Tzartos SJ. Specific removal of autoantibodies by extracorporeal immunoadsorption ameliorates experimental autoimmune myasthenia gravis. J Neuroimmunol 2017; 312:24-30. [DOI: 10.1016/j.jneuroim.2017.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/03/2017] [Accepted: 09/05/2017] [Indexed: 11/29/2022]
|
24
|
Consonni A, Sharma S, Schön K, Lebrero-Fernández C, Rinaldi E, Lycke NY, Baggi F. A Novel Approach to Reinstating Tolerance in Experimental Autoimmune Myasthenia Gravis Using a Targeted Fusion Protein, mCTA1-T146. Front Immunol 2017; 8:1133. [PMID: 28959261 PMCID: PMC5604076 DOI: 10.3389/fimmu.2017.01133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/28/2017] [Indexed: 12/22/2022] Open
Abstract
Reinstating tissue-specific tolerance has attracted much attention as a means to treat autoimmune diseases. However, despite promising results in rodent models of autoimmune diseases, no established tolerogenic therapy is clinically available yet. In the experimental autoimmune myasthenia gravis (EAMG) model several protocols have been reported that induce tolerance against the prime disease-associated antigen, the acetylcholine receptor (AChR) at the neuromuscular junction. Using the whole AChR, the extracellular part or peptides derived from the receptor, investigators have reported variable success with their treatments, though, usually relatively large amounts of antigen has been required. Hence, there is a need for better formulations and strategies to improve on the efficacy of the tolerance-inducing therapies. Here, we report on a novel targeted fusion protein carrying the immunodominant peptide from AChR, mCTA1–T146, which given intranasally in repeated microgram doses strongly suppressed induction as well as ongoing EAMG disease in mice. The results corroborate our previous findings, using the same fusion protein approach, in the collagen-induced arthritis model showing dramatic suppressive effects on Th1 and Th17 autoaggressive CD4 T cells and upregulated regulatory T cell activities with enhanced IL10 production. A suppressive gene signature with upregulated expression of mRNA for TGFβ, IL10, IL27, and Foxp3 was clearly detectable in lymph node and spleen following intranasal treatment with mCTA1–T146. Amelioration of EAMG disease was accompanied by reduced loss of muscle AChR and lower levels of anti-AChR serum antibodies. We believe this targeted highly effective fusion protein mCTA1–T146 is a promising candidate for clinical evaluation in myasthenia gravis patients.
Collapse
Affiliation(s)
- Alessandra Consonni
- Neurology IV, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sapna Sharma
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Schön
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Cristina Lebrero-Fernández
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Elena Rinaldi
- Neurology IV, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Nils Yngve Lycke
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Fulvio Baggi
- Neurology IV, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
25
|
Mazzoli M, Ariatti A, Valzania F, Kaleci S, Tondelli M, Nichelli PF, Galassi G. Factors affecting outcome in ocular myasthenia gravis. Int J Neurosci 2017. [PMID: 28625092 DOI: 10.1080/00207454.2017.1344237] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AIM OF THE STUDY 50%-60% of patients with ocular myasthenia gravis (OMG) progress to generalized myasthenia gravis (GMG) within two years. The aim of our study was to explore factors affecting prognosis of OMG and to test the predictive role of several independent clinical variables. MATERIALS AND METHODS We reviewed a cohort of 168 Caucasian patients followed from September 2000 to January 2016. Several independent variables were considered as prognostic factors: gender, age of onset, results on electrophysiological tests, presence and level of antibodies against acetylcholine receptors (AChR Abs), treatments, thymic abnormalities. The primary outcome was the progression to GMG and/or the presence of bulbar symptoms. Secondary outcomes were either achievement of sustained minimal manifestation status or worsening in ocular quantitative MG subscore (O-QMGS) or worsening in total QMG score (T-QMGS), assessed by Myasthenia Gravis Foundation of America (MGFA) quantitative scores. Changes in mental and physical subscores of health-related quality of life (HRQoL) were assessed with SF-36 questionnaire. Variance analysis was used to interpret the differences between AChR Ab titers at different times of follow up among the generalized and non-generalized patients. RESULTS Conversion to GMG occurred in 18.4% of patients; it was significantly associated with sex, later onset of disease and anti-AChR Ab positivity. Antibody titer above the mean value of 25.8 pmol/mL showed no significant effect on generalization. Sex and late onset of disease significantly affected T-QMGS worsening. None of the other independent variables significantly affected O-QMGS and HRQoL. CONCLUSIONS Sex, later onset and anti-AChR Ab positivity were significantly associated with clinical worsening.
Collapse
Affiliation(s)
- Marco Mazzoli
- a Department of Biomedical, Metabolic and Neural Sciences , University Hospital , Modena , Italy
| | - Alessandra Ariatti
- a Department of Biomedical, Metabolic and Neural Sciences , University Hospital , Modena , Italy
| | - Franco Valzania
- a Department of Biomedical, Metabolic and Neural Sciences , University Hospital , Modena , Italy
| | - Shaniko Kaleci
- b Department of Diagnostic Clinical Medicine and Public Health , University of Modena and Reggio Emilia , Modena , Italy
| | - Manuela Tondelli
- a Department of Biomedical, Metabolic and Neural Sciences , University Hospital , Modena , Italy
| | - Paolo F Nichelli
- a Department of Biomedical, Metabolic and Neural Sciences , University Hospital , Modena , Italy
| | - Giuliana Galassi
- a Department of Biomedical, Metabolic and Neural Sciences , University Hospital , Modena , Italy
| |
Collapse
|
26
|
Pissulin CNA, de Souza Castro PAT, Codina F, Pinto CG, Vechetti-Junior IJ, Matheus SMM. GaAs laser therapy reestablishes the morphology of the NMJ and nAChRs after injury due to bupivacaine. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 167:256-263. [DOI: 10.1016/j.jphotobiol.2016.12.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022]
|
27
|
Lazaridis K, Baltatzidi V, Trakas N, Koutroumpi E, Karandreas N, Tzartos SJ. Characterization of a reproducible rat EAMG model induced with various human acetylcholine receptor domains. J Neuroimmunol 2017; 303:13-21. [DOI: 10.1016/j.jneuroim.2016.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 01/08/2023]
|