1
|
Malarz K, Borzęcka W, Ziola P, Domiński A, Rawicka P, Bialik-Wąs K, Kurcok P, Torres T, Mrozek-Wilczkiewicz A. pH-sensitive phthalocyanine-loaded polymeric nanoparticles as a novel treatment strategy for breast cancer. Bioorg Chem 2025; 155:108127. [PMID: 39798455 DOI: 10.1016/j.bioorg.2025.108127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/15/2024] [Accepted: 01/01/2025] [Indexed: 01/15/2025]
Abstract
Novel pH-sensitive polymeric photosensitizer carriers from the phthalocyanine (Pc) group were investigated as potential photodynamic therapy drugs for the treatment of breast cancer. Their high antiproliferative activity was confirmed by photocytotoxicity studies, which indicated their high efficacy and specificity toward the SK-BR-3 cell line. Importantly, the Pcs encapsulated in the polymeric nanoparticle (NP) carrier exhibited a much better penetration into the acidic environment of tumor cells than their free form. The investigated Pc4-NPs and TT1-NPs exhibited a high selectivity to healthy fibroblasts as well as non-toxicity without irradiation. This paper describes the detailed mechanism of action of the evaluated compounds by measuring reactive oxygen species (ROS), including singlet oxygen; imaging cellular localization; and analyzing key signaling pathway proteins. An additional advantage of the evaluated compounds is their ability to inhibit the Akt protein expression, including its phosphorylation, which the Western blot test confirmed. This is particularly important because breast cancers often overexpress the HER-2 receptor-related signaling proteins. Moreover, an analysis of proteins such as GLUT-1, HO-1, phospho-p42/44, and BID revealed the significant involvement of ROS in disrupting cellular homeostasis, thereby leading to the induction of oxidative stress and resulting in apoptotic cell death.
Collapse
Affiliation(s)
- Katarzyna Malarz
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland; A. Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Wioleta Borzęcka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Marii Skłodowskiej-Curie 34, 41-819 Zabrze, Poland.
| | - Patryk Ziola
- A. Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Adrian Domiński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Marii Skłodowskiej-Curie 34, 41-819 Zabrze, Poland
| | - Patrycja Rawicka
- A. Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Katarzyna Bialik-Wąs
- Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Piotr Kurcok
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Marii Skłodowskiej-Curie 34, 41-819 Zabrze, Poland
| | - Tomas Torres
- Department of Organic Chemistry, Autonoma University of Madrid, 28049 Madrid, Spain; IMDEA-Nanociencia, Campus de Cantoblanco, c/Faraday 9, 28049 Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Anna Mrozek-Wilczkiewicz
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland; A. Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland.
| |
Collapse
|
2
|
Wen C, Li RS, Guan Y, Chang X, Li N. A Two-Photon-Active Zr-Based Metal-Organic Framework-Based Orthogonal Nanoprobe for Recognition of Cellular Senescence. Anal Chem 2024; 96:16170-16178. [PMID: 39358945 DOI: 10.1021/acs.analchem.4c02758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
A luminescent nanoprobe capable of orthogonal sensing of two independent events is highly significant for unbiased disease-related detection such as the detection of senescent cells. Moreover, it is invaluable that the nanoprobe possesses a two-photon excitable characteristic that is highly suitable for imaging living cells and tissues. Herein, we present a two-photon-excitable multiluminescent orthogonal-sensing nanoprobe (OS nanoprobe) capable of detecting both pH elevation and β-galactosidase (β-gal) overexpression in senescent cells. In the design, Zr-based dual-emissive metal-organic frameworks prepared from two mixed amino linkers, referred to as NH2-MU, were used as the component for the ratiometric sensing of pH; additionally, fluorogenic resorufin-β-d-galactopyranoside, linked to the NH2-MU framework, enables β-gal detection. In the OS nanoprobe, the signals for pH and β-gal sensing remain independent while maintaining high colocalization. The two-photon excitable organic linkers of NH2-MU impart the OS nanoprobe with a bioimaging capability, allowing for the differentiation of senescent human foreskin fibroblast (HFF) cells from younger HFF cells or LacZ positive cells with the 800 nm laser excitation. This study marks the first instance of achieving the multiplexed orthogonal fluorescent sensing of cellular senescence using a two-photon excitation strategy, suggesting the potential of using versatile metal-organic framework (MOFs)-based fluorophores to realize the orthogonal multiplexing of disease-related biomarkers through multiphoton excitation.
Collapse
Affiliation(s)
- Cong Wen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Rong Sheng Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yan Guan
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
3
|
Saddam Hussain M, Khetan R, Albrecht H, Krasowska M, Blencowe A. Oligoelectrolyte-mediated, pH-triggered release of hydrophobic drugs from non-responsive micelles: Influence of oligo(2-vinyl pyridine)-loading on drug-loading, release and cytotoxicity. Int J Pharm 2024; 661:124368. [PMID: 38925236 DOI: 10.1016/j.ijpharm.2024.124368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
pH-responsive polymeric micelles have been extensively studied for nanomedicine and take advantage of pH differentials in tissues for the delivery of large doses of cytotoxic drugs at specific target sites. Despite significant advances in this area, there is a lack of versatile and adaptable strategies to render micelles pH-responsive that could be widely applied to different payloads and applications. To address this deficiency, we introduce the concept of oligoelectrolyte-mediated, pH-triggered release of hydrophobic drugs from non-responsive polymeric micelles as a highly effective approach with broad scope. Herein, we investigate the influence of the oligoelectrolyte, oligo(2-vinyl pyridine) (OVP), loading and polymer molecular weight on the pH-sensitivity, drug loading/release and cytotoxicity of poly(ethylene glycol-b-ε-caprolactone) (PEG-b-PCL) micelles using copolymers with either short or long hydrophobic blocks (PEG4PCL4 and PEG10PCL10, respectively). The micelles were characterized as a function of pH (7.4 to 3.5). Dynamic light scattering (DLS) revealed narrow particle size distributions (PSDs) for both the blank and OVP-loaded micelles at pH 7.4. While OVP encapsulation resulted in an increase in the hydrodynamic diameter (Dh) (cf. blank micelles), a decrease in the pH below 6.5 led to a decrease in the Dh consistent with the ionization and release of OVP and core collapse, which were further supported by proton nuclear magnetic resonance (1H NMR) spectroscopy and UV-visible (UV-vis) spectrophotometry. The change in zeta potential (ζ) with pH for the OVP-loaded PEG4PCL4 and PEG10PCL10 micelles was different, suggesting that the location/distribution of OVP in the micelles is influenced by the polymer molecular weight. In general, co-encapsulation of drugs (doxorubicin (DOX), gossypol (GP), paclitaxel (PX) or 7-ethyl-10-hydroxycamptothecin (SN38)) and OVP in the micelles proceeded efficiently with high encapsulation efficiency percentages (EE%). In vitro release studies revealed the rapid, pH-triggered release of drugs from OVP-loaded PEG10PCL10 micelles within hours, with higher OVP loadings providing faster and more complete release. In comparison, no triggered release was observed for the OVP-loaded PEG4PCL4 micelles, implying a strong molecular weight dependency. In metabolic assays the drug- and OVP-loaded PEG10PCL10 micelles were found to result in significant enhancement of the cytotoxicity compared to drug-loaded micelles (no OVP) or other controls. Importantly, micelles with low OVP loadings were found to be nearly as effective as those with high OVP loadings. These results provide key insights into the tunability of the oligoelectrolyte-mediated approach for the effective formulation of pH-responsive micelles and pH-triggered drug release.
Collapse
Affiliation(s)
- Md Saddam Hussain
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Centre for Pharmaceutical Innovation (CPI), UniSA CHS, University of South Australia, Adelaide, SA 5000, Australia; Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Riya Khetan
- Centre for Pharmaceutical Innovation (CPI), UniSA CHS, University of South Australia, Adelaide, SA, 5000, Australia
| | - Hugo Albrecht
- Centre for Pharmaceutical Innovation (CPI), UniSA CHS, University of South Australia, Adelaide, SA, 5000, Australia
| | - Marta Krasowska
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Centre for Pharmaceutical Innovation (CPI), UniSA CHS, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
4
|
Agarwal H, Bynum RC, Saleh N, Harris D, MacCuaig WM, Kim V, Sanderson EJ, Dennahy IS, Singh R, Behkam B, Gomez-Gutierrez JG, Jain A, Edil BH, McNally LR. Theranostic nanoparticles for detection and treatment of pancreatic cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1983. [PMID: 39140128 PMCID: PMC11328968 DOI: 10.1002/wnan.1983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most recalcitrant cancers due to its late diagnosis, poor therapeutic response, and highly heterogeneous microenvironment. Nanotechnology has the potential to overcome some of the challenges to improve diagnostics and tumor-specific drug delivery but they have not been plausibly viable in clinical settings. The review focuses on active targeting strategies to enhance pancreatic tumor-specific uptake for nanoparticles. Additionally, this review highlights using actively targeted liposomes, micelles, gold nanoparticles, silica nanoparticles, and iron oxide nanoparticles to improve pancreatic tumor targeting. Active targeting of nanoparticles toward either differentially expressed receptors or PDAC tumor microenvironment (TME) using peptides, antibodies, small molecules, polysaccharides, and hormones has been presented. We focus on microenvironment-based hallmarks of PDAC and the potential for actively targeted nanoparticles to overcome the challenges presented in PDAC. It describes the use of nanoparticles as contrast agents for improved diagnosis and the delivery of chemotherapeutic agents that target various aspects within the TME of PDAC. Additionally, we review emerging nano-contrast agents detected using imaging-based technologies and the role of nanoparticles in energy-based treatments of PDAC. This article is categorized under: Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Happy Agarwal
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Ryan C Bynum
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Nada Saleh
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Danielle Harris
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - William M MacCuaig
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Vung Kim
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Emma J Sanderson
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Isabel S Dennahy
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Rohit Singh
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Virginia, USA
| | | | - Ajay Jain
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Barish H Edil
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Lacey R McNally
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| |
Collapse
|
5
|
Ren J, Hu J, Dong F, Xu Y, Peng Y, Qian Y, Zhang G, Wang M, Wang Y. A stepwise-responsive editor integrated with three copper ions for the treatment of oral squamous cell carcinoma. NANO RESEARCH 2024; 17:5424-5434. [DOI: 10.1007/s12274-024-6438-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2025]
|
6
|
Zhang W, Li X, Zeng J, Wen X, Zhang C, Zhang Y, He J, Yang L. Enhancing the sensitization of neuroblastoma to radiotherapy by the construction of a dual-channel parallel free radicals nanoamplifier. Mater Today Bio 2023; 23:100828. [PMID: 37822451 PMCID: PMC10562674 DOI: 10.1016/j.mtbio.2023.100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/13/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023] Open
Abstract
Radiation therapy (RT) has emerged as one of the most promising anti-tumor strategies for neuroblastoma. Nevertheless, the special tumor microenvironment (TME), including hypoxic and GSH-overexpressed TME, often greatly restricts the RT outcome. In this study, we demonstrated a dual-channel parallel radicals nanoamplifier (ATO@PAE-PEG-AS1411/Fe3+). The nanoamplifier was shaped into a bilayer shell-core structure, in which atovaquone-loaded poly (β-amino esters)-poly (ethylene glycol) (ATO@PAE-PEG) served as the core while Fe3+-absorbed AS1411 aptamer (AS1411/Fe3+) served as the shell. Taking advantage of the targeting ability of AS1411, ATO@PAE-PEG-AS1411/Fe3+ specifically accumulated in tumor cells, and then released ATO as well as Fe3+ in response to the acidic TME. The released ATO dramatically inhibited the mitochondrial respiration of tumor cells, thus sparing vast amounts of oxygen for the generation of free radicals during RT process, which was the first free radicals-amplifying pathway Meanwhile, the released Fe3+ could consume the tumor-overexpressed GSH through the redox reaction, thus effectively preserving the generated free radicals in RT process, which was the second free radicals-amplifying pathway. Taken together, our study demonstrates a dual-channel parallel free radicals-amplifying RT strategy, and it is expected this work will promote the clinical application prospects of RT treatment against neuroblastoma.
Collapse
Affiliation(s)
- Wenxin Zhang
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Xiaodie Li
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Jialin Zeng
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Xin Wen
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Chao Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Yinan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Lihua Yang
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| |
Collapse
|
7
|
Sui F, Fang Z, Li L, Wan X, Zhang Y, Cai X. pH-triggered "PEG" sheddable and folic acid-targeted nanoparticles for docetaxel delivery in breast cancer treatment. Int J Pharm 2023; 644:123293. [PMID: 37541534 DOI: 10.1016/j.ijpharm.2023.123293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/13/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
Multifunctional nanoparticles have attracted significant attentions for oncology and cancer treatment. In fact, they could address critical point for tumour treatment by creating a stimuli-responsive targeted drug delivery system that can exist stably in the systemic circulation, efficiently penetrate the tumour tissue, and then accumulate in tumour cells in large quantities. A novel stepwise pH-responsive multifunctional nanoparticles (FPDPCNPs/DTX) for targeted delivery of the antitumour drug docetaxel (DTX) is prepared by coating a tumour acidity-sensitive "sheddable" FA modified β-carboxylic amide functionalized PEG layer (folic acid-polyethylene glycol-2,3-dimethylmaleic anhydride, FA-PEG-DA) on the cationic drug-loaded core (poly(β-amino ester-cholesterol, PAE-Chol) through electrostatic interaction in this study. The charge shielding behaviour of the FPDPCNPs/DTX was confirmed by zeta potential assay. The surface charges of the nanoparticles can change from positive to negative after PEG coating. The IC50 values of FPDPCNPs/DTX was 3.04 times higher than that of PEG "unsheddable" nanoparticles in cytotoxicity experiments. The results of in vivo experiment further showed that FPDPCNPs/DTX had enhanced tumour targeting effect, the tumour inhibition rate of FPDPCNPs/DTX was as high as 81.99%, which was 1.51 times that of free DTX. Under a micro acidic environment and folate receptor (FR)-mediated targeting, FPDPCNPs/DTX contributed to more uptake of DTX by MCF-7 cells. In summary, FPDPCNPs/DTX as a multifunctional nano-drug delivery system provides a promising strategy for efficiently delivering antitumour drugs.
Collapse
Affiliation(s)
- Fangqian Sui
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Zengjun Fang
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lingjun Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Xinhuan Wan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Yongqing Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Xiaoqing Cai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China.
| |
Collapse
|
8
|
Evaluation of pH-Sensitive Polymeric Micelles Using Citraconic Amide Bonds for the Co-Delivery of Paclitaxel, Etoposide, and Rapamycin. Pharmaceutics 2023; 15:pharmaceutics15010154. [PMID: 36678783 PMCID: PMC9866473 DOI: 10.3390/pharmaceutics15010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/03/2023] Open
Abstract
Paclitaxel (PTX), etoposide (ETP), and rapamycin (RAPA) have different mechanisms, allowing multiple pathways to be targeted simultaneously, effectively treating various cancers. However, these drugs have a low hydrosolubility, limiting clinical applications. Therefore, we used pH-sensitive polymeric micelles to effectively control the drug release in cancer cells and to improve the water solubility of PTX, ETP, and RAPA. The synergistic effect of PTX, ETP, and RAPA was evaluated in gastric cancer, and the combination index values were evaluated. Thin-film hydration was used to prepare PTX/ETP/RAPA-loaded mPEG-pH-PCL micelles, and various physicochemical properties of these micelles were evaluated. In vitro cytotoxicity, pH-sensitivity, drug release profiles, in vivo pharmacokinetics, and biodistribution studies of PTX/ETP/RAPA-loaded mPEG-pH-PCL micelles were evaluated. In the pH-sensitivity evaluation, the size of the micelles increased more rapidly at a pH of 5.5 than at a pH of 7.4. The release rate of each drug increased with decreasing pH values in PTX/ETP/RAPA-loaded mPEG-pH-PCL micelles. In vitro and in vivo studies demonstrated that PTX/ETP/RAPA-loaded mPEG-pH-PCL micelles exhibit different drug release behaviors depending on the pH of the tumor and normal tissues and increased bioavailability and circulation time in the blood than solutions. Therefore, we propose that PTX/ETP/RAPA- loaded mPEG-pH-PCL micelles are advantageous for gastric cancer treatment in drug delivery systems.
Collapse
|
9
|
Gao F, Chen Z, Zhou L, Xiao X, Wang L, Liu X, Wang C, Guo Q. Preparation, characterization and in vitro study of bellidifolin nano-micelles. RSC Adv 2022; 12:21982-21989. [PMID: 36043071 PMCID: PMC9364364 DOI: 10.1039/d2ra02779h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/09/2022] [Indexed: 11/21/2022] Open
Abstract
Bellidifolin (BEL), a xanthone compound, has significant therapeutic effectiveness in cardiac diseases such as arrhythmias. However, BEL is limited in clinical applications by its hydrophobicity. In this work, we used BEL as the active pharmaceutical ingredient (API), and polyethylene glycol 15-hydroxy stearate (Kolliphor HS15) as the carrier to prepare BEL nano-micelles by a solvent-volatilization method. According to an analysis by differential scanning calorimetry (DSC), BEL was successfully encapsulated in HS15 as BEL nano-micelles with a 90% encapsulation rate, and particle size was 12.60 ± 0.074 nm in the shape of a sphere and electric potential was −4.76 ± 4.47 mV with good stability and sustained release characteristics. In addition, compared with free drugs, these nano-micelles can increase cellular uptake capacity, inhibit the proliferation of human cardiac fibroblasts, and down-regulate the expression of Smad-2, α-SMA, Collagen I, and Collagen III proteins in myocardial cells to improve myocardial fibrosis. In conclusion, the BEL nano-micelles can provide a new way for the theoretical basis for the clinical application of anti-cardiac fibrosis. Bellidifolin (BEL), a xanthone compound, has significant therapeutic effectiveness in cardiac diseases such as arrhythmias.![]()
Collapse
Affiliation(s)
- Fan Gao
- Hebei TCM Formula Preparation Technology Innovation Center, Hebei University of Chinese Medicine Shijiazhuang 050091 People's Republic of China
| | - Ziyue Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine Tianjin 301617 People's Republic of China
| | - Li Zhou
- Hebei TCM Formula Preparation Technology Innovation Center, Hebei University of Chinese Medicine Shijiazhuang 050091 People's Republic of China
| | - Xuefeng Xiao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine Tianjin 301617 People's Republic of China
| | - Lin Wang
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research Tianjin 300301 People's Republic of China
| | - Xingchao Liu
- Hebei TCM Formula Preparation Technology Innovation Center, Hebei University of Chinese Medicine Shijiazhuang 050091 People's Republic of China
| | - Chenggang Wang
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research Tianjin 300301 People's Republic of China
| | - Qiuhong Guo
- Hebei TCM Formula Preparation Technology Innovation Center, Hebei University of Chinese Medicine Shijiazhuang 050091 People's Republic of China
| |
Collapse
|
10
|
Açarı İK, Sel E, Özcan İ, Ateş B, Köytepe S, Thakur VK. Chemistry and engineering of brush type polymers: Perspective towards tissue engineering. Adv Colloid Interface Sci 2022; 305:102694. [PMID: 35597039 DOI: 10.1016/j.cis.2022.102694] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/21/2022] [Accepted: 05/06/2022] [Indexed: 11/01/2022]
Abstract
In tissue engineering, it is imperative to control the behaviour of cells/stem cells, such as adhesion, proliferation, propagation, motility, and differentiation for tissue regeneration. Surfaces that allow cells to behave in this way are critical as support materials in tissue engineering. Among these surfaces, brush-type polymers have an important potential for tissue engineering and biomedical applications. Brush structure and length, end groups, bonding densities, hydrophilicity, surface energy, structural flexibility, thermal stability, surface chemical reactivity, rheological and tribological properties, electron and energy transfer ability, cell binding and absorption abilities for various biological molecules of brush-type polymers were increased its importance in tissue engineering applications. In addition, thanks to these functional properties and adjustable surface properties, brush type polymers are used in different high-tech applications such as electronics, sensors, anti-fouling, catalysis, purification and energy etc. This review comprehensively highlights the use of brush-type polymers in tissue engineering applications. Considering the superior properties of brush-type polymer structures, it is believed that in the future, it will be an effective tool in structure designs containing many different biomolecules (enzymes, proteins, etc.) in the field of tissue engineering.
Collapse
|
11
|
Sohail M, Yu B, Sun Z, Liu J, Li Y, Zhao F, Chen D, Yang X, Xu H. Complex polymeric nanomicelles co-delivering doxorubicin and dimethoxycurcumin for cancer chemotherapy. Drug Deliv 2022; 29:1523-1535. [PMID: 35611890 PMCID: PMC9135434 DOI: 10.1080/10717544.2022.2073403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Combinational therapy is a new trend in medical sciences to achieve a maximum therapeutic response of the drugs with a comparatively low incidence of severe adverse effects. To overcome the challenges of conventional formulations for cancer chemotherapy, a polymer-based complex nanomicellar system, namely CPM-DD, was developed co-delivering the anti-cancer agent doxorubicin (DOX) and potent antioxidant dimethoxycurcumin (DiMC). The optimal mass ratio of DOX/DiMC in CPM-DD was determined as 1:6 due to the synergistic antiproliferative effect from in vitro cytotoxicity assay, while the biocompatible diblock copolymer of mPEG2000-PLA5000 was selected for drug entrapment at an optimal feeding ratio of 9:1 to both drugs together. The uniform particles of CPM-DD with suitable particle size (∼30 nm) and stable drug loading content (>9%) could be reliably obtained by self-assembly with the encapsulation yield up to 95%. Molecular dynamics simulation revealed the interaction mechanism responsible for forming these complex nanomicelles. The acid-base interaction between two drugs would significantly improve their binding with the copolymer, thus leading to good colloidal stability and controlled drug release characteristics of CPM-DD. Systematic evaluation based on the MCF-7 breast tumor-bearing nude mice model further demonstrated the characteristics of tissue biodistribution of both drugs delivered by CPM-DD, which were closely related to the drug loading pattern and greatly responsible for the improved anti-cancer potency and attenuated toxicity of this complex formulation. Therefore, all the findings indicated that CPM-DD would be a good alternative to the conventional formulations of DOX and worthy of clinical application for cancer chemotherapy.
Collapse
Affiliation(s)
- Muhammad Sohail
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Bin Yu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Zheng Sun
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Jiali Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Yanli Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Feng Zhao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Daquan Chen
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, China
| | - Hui Xu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| |
Collapse
|
12
|
Kwon K, Lee J, Lee S, Ree M, Kim H. Pneumolysin/Plasma Protein Adsorption, Bacterial Adherence, and Cell Adhesion Characteristics of a Cell-Membrane-Mimicking Polymer System. ACS APPLIED BIO MATERIALS 2022; 5:2240-2252. [PMID: 35436086 DOI: 10.1021/acsabm.2c00111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study delivers the first report on a cell-membrane-mimicking polymer system, poly[oxy(4-(13-cholenoatenonyl)-1,2,3-triazoyl-1-methyl)ethylene-random-oxy(4-(13-phosphorylcholinenonyl)-1,2,3-triazoyl-1-methyl)ethylene] (PGA-CholmPCn) films in various compositions in terms of physicochemical properties, protein adsorptions, bacterial adherences, and human cell adhesions. Higher Chol-containing PGA-CholmPCn in a self-assembled multi-bilayer membrane structure is confirmed to show excellently high affinity to pneumolysin (a cytolysin) and its C-terminal fragment (domain 4) but substantially suppressed affinity to the N-terminal fragment (domains 1-3) and further to plasma proteins. Furthermore, the adherences of pathogenic bacteria are increased favorably; however, the adhesion and proliferation of a human HEp-2 cell line are hindered severely. In contrast, higher-PC-containing PGA-CholmPCn membranes promote HEp-2 cell adhesion and proliferation but significantly suppress the adsorptions of pneumolysin and its fragments and plasma proteins as well as bacterial adherence. The results collectively confirm that PGA-CholmPCn can yield a membrane platform enriched with hydrophobic Chol and hydrophilic and zwitterionic PC moieties in any desired compositions, providing highly selective and sensitive physicochemical characters and biocompatibilities which are demanded for applications in various fields including biomedicine, cosmetics, and environmentally friendly consumer products.
Collapse
Affiliation(s)
- Kyungho Kwon
- Hanwha Solution/Chemical Research & Development Institute, 76 Gajeong-ro, Yuseong-gu, Daejeon 34128, Republic of Korea
| | - Jongchan Lee
- Analytical Sciences, LG Chem R&D Center, 188 Munji-ro, Yuseong-gu, Daejeon 34122, Republic of Korea
| | - Soomin Lee
- Department of Microbiology and Dongguk Medical Institute, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
| | - Moonhor Ree
- Surface Technology Institute, Ceko Corporation, 519 Dunchon-daero, Jungwon-gu, Seongnam 13216, Republic of Korea
| | - Heesoo Kim
- Department of Microbiology and Dongguk Medical Institute, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
| |
Collapse
|
13
|
Hu Y, Gao S, Khan AR, Yang X, Ji J, Xi Y, Zhai G. Tumor microenvironment-responsive size-switchable drug delivery nanosystems. Expert Opin Drug Deliv 2022; 19:221-234. [PMID: 35164610 DOI: 10.1080/17425247.2022.2042512] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Compared with ordinary chemotherapeutic drugs, the variable-size nanoparticles (NPs) have better therapeutic effects and fewer side effects. AREAS COVERED This review mainly summarizes the strategies used to construct smart, size-tunable nanocarriers based on characteristic factors of tumor microenvironment (TME) to dramatically increase the penetration and retention of drugs within tumors. EXPERT OPINION Nanosystems with changeable sizes based on the TME have been extensively studied in the past decade, and their permeability and retention have been greatly improved, making them a very promising treatment for tumors.
Collapse
Affiliation(s)
- Yue Hu
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Shan Gao
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Abdur Rauf Khan
- Government of Punjab, Specialized HealthCare and Medical Education Department, Lahore, Pakistan
| | - Xiaoye Yang
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Jianbo Ji
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Yanwei Xi
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Guangxi Zhai
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| |
Collapse
|
14
|
Khaksar E, Golshan M, Salami-Kalajahi M, Roghani-Mamaqani H. Core–shell to Janus morphologies from co-assembly of polyaniline and hydrophobic polymers in aqueous media. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Journey to the Market: The Evolution of Biodegradable Drug Delivery Systems. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020935] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biodegradable polymers have been used as carriers in drug delivery systems for more than four decades. Early work used crude natural materials for particle fabrication, whereas more recent work has utilized synthetic polymers. Applications include the macroscale, the microscale, and the nanoscale. Since pioneering work in the 1960’s, an array of products that use biodegradable polymers to encapsulate the desired drug payload have been approved for human use by international regulatory agencies. The commercial success of these products has led to further research in the field aimed at bringing forward new formulation types for improved delivery of various small molecule and biologic drugs. Here, we review recent advances in the development of these materials and we provide insight on their drug delivery application. We also address payload encapsulation and drug release mechanisms from biodegradable formulations and their application in approved therapeutic products.
Collapse
|
16
|
Sahel DK, Salman M, Azhar M, Goswami S, Singh V, Dalela M, Mohanty S, Mittal A, Ramalingam S, Chitkara D. Cationic Lipopolymeric Nanoplexes Containing CRISPR/Cas9 Ribonucleoprotein for Genome Surgery. J Mater Chem B 2022; 10:7634-7649. [DOI: 10.1039/d2tb00645f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
sgRNA/Cas9 ribonucleoproteins (RNPs) provide a site-specific robust gene-editing approach avoiding the mutagenesis and unwanted off-target effects. However, the high molecular weight (~165 kDa), hydrophilicity and net supranegative charge (~ -20...
Collapse
|
17
|
Bahman F, Butt AM, Ashi L, Mohd Amin MCI, Greish K. Polymeric micelles for oral drug delivery. POLYMERIC MICELLES FOR DRUG DELIVERY 2022:89-113. [DOI: 10.1016/b978-0-323-89868-3.00015-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
18
|
Luo J, Li X, Dong S, Zhu P, Liu W, Zhang S, Du J. Layer-by-layer coated hybrid nanoparticles with pH-sensitivity for drug delivery to treat acute lung infection. Drug Deliv 2021; 28:2460-2468. [PMID: 34766544 PMCID: PMC8592614 DOI: 10.1080/10717544.2021.2000676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Bacteria-induced acute lung infection (ALI) is a severe burden to human health, which could cause acute respiratory distress syndrome (ARDS) and kill the patient rapidly. Therefore, it is of great significance to develop effective nanomedicine and therapeutic approach to eliminate the invading bacteria in the lung and manage ALI. In this study, we design a layer-by-layer (LbL) liposome-polymer hybrid nanoparticle (HNP) with a pH-triggered drug release profile to deliver antibiotics for the eradication of bacteria to treat ALI. The liposome is prepared by the lipid film hydration method with a homogenous hydrodynamic diameter and low polydispersity index (PDI). The antibiotic spectinomycin is efficiently loaded into the liposomal core through the pH-gradient method. The pH-sensitive polycationic polymer poly(β-amino ester) (PBAE) and polyanionic sodium alginate (NaAIg) layers are decorated on the surface of liposome in sequence via electrostatic interaction, resulting in spectinomycin-loaded layer-by-layer hybrid nanoparticles (denoted as Spe@HNPs) which have reasonable particle size, high stability, prolonged circulation time, and pH-triggered drug release profile. The in vitro results demonstrate that Spe@HNPs can efficiently induce the death of bacteria with low minimum inhibitory concentration (MIC) against Staphylococcus aureus (S. aureus) and drug-resistant MRSA BAA40 strains. The in vivo results reveal that Spe@HNPs can eradicate the invading MRSA BAA40 with improved antimicrobial efficacy and low side-effect for ALI treatment. This study not only reports a promising nanomedicine but also provides an effective method to prepare nanoplatforms for drug delivery and controlled release.
Collapse
Affiliation(s)
- Ji Luo
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaobo Li
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Siyuan Dong
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Peiyao Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenke Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuguang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiang Du
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Kaur J, Mishra V, Singh SK, Gulati M, Kapoor B, Chellappan DK, Gupta G, Dureja H, Anand K, Dua K, Khatik GL, Gowthamarajan K. Harnessing amphiphilic polymeric micelles for diagnostic and therapeutic applications: Breakthroughs and bottlenecks. J Control Release 2021; 334:64-95. [PMID: 33887283 DOI: 10.1016/j.jconrel.2021.04.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022]
Abstract
Amphiphilic block copolymers are widely utilized in the design of formulations owing to their unique physicochemical properties, flexible structures and functional chemistry. Amphiphilic polymeric micelles (APMs) formed from such copolymers have gained attention of the drug delivery scientists in past few decades for enhancing the bioavailability of lipophilic drugs, molecular targeting, sustained release, stimuli-responsive properties, enhanced therapeutic efficacy and reducing drug associated toxicity. Their properties including ease of surface modification, high surface area, small size, and enhanced permeation as well as retention (EPR) effect are mainly responsible for their utilization in the diagnosis and therapy of various diseases. However, some of the challenges associated with their use are premature drug release, low drug loading capacity, scale-up issues and their poor stability that need to be addressed for their wider clinical utility and commercialization. This review describes comprehensively their physicochemical properties, various methods of preparation, limitations followed by approaches employed for the development of optimized APMs, the impact of each preparation technique on the physicochemical properties of the resulting APMs as well as various biomedical applications of APMs. Based on the current scenario of their use in treatment and diagnosis of diseases, the directions in which future studies need to be carried out to explore their full potential are also discussed.
Collapse
Affiliation(s)
- Jaskiran Kaur
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Vijay Mishra
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India.
| | - Monica Gulati
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Bhupinder Kapoor
- School of Pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | | | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura Mahal Road, Jaipur, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gopal L Khatik
- National Institute of Pharmaceutical Education and Research, Bijnor-Sisendi road, Sarojini Nagar, Lucknow, Uttar Pradesh 226301, India
| | - Kuppusamy Gowthamarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India; Centre of Excellence in Nanoscience & Technology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
20
|
Shi J, Li J, Wang Y, Cheng J, Zhang CY. Recent advances in MoS 2-based photothermal therapy for cancer and infectious disease treatment. J Mater Chem B 2021; 8:5793-5807. [PMID: 32597915 DOI: 10.1039/d0tb01018a] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Photothermal therapy (PTT) is a treatment combining laser irradiation and a photothermal transduction agent (PTA) to generate hyperthermia, which is used to efficiently and effectively treat cancer and prevent bacteria-induced infectious diseases. MoS2, an increasingly used two-dimensional transition metal dichalcogenide, which shows high absorbance in the near infrared (NIR) laser region, has been extensively utilized as a novel PTA in biomedical applications. The use of MoS2 as an advanced photoabsorbing agent has introduced a more efficient cancer therapy and improved antibacterial efficacy. In this review, we firstly summarize the recent advances in the MoS2-based platform for PTT in cancer and bacteria-induced infectious diseases treatments. We then discuss that the combination of MoS2-based PTT and other biomedical methods along with multimodality imaging, such as chemotherapy, photodynamic therapy (PDT) and immunotherapy, might be a promising strategy for cancer treatment. Furthermore, a new concept is proposed wherein MoS2-based PTT and combined therapies based on this could be more effective for the treatment of various bacteria-induced infectious diseases. Finally, research progress, challenges, and perspectives for the future development of this MoS2-based platform in cancer and bacteria-induced infectious disease treatments are discussed and concluded. Collectively, we think that MoS2-based PTT with high therapeutic efficacy and minimal side-effects could be potentially applied in clinical settings to improve cancer and infectious disease treatments.
Collapse
Affiliation(s)
- Jinping Shi
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China.
| | | | | | | | | |
Collapse
|
21
|
Lee TJ, Wu T, Kim YJ, Park JH, Lee DS, Bhang SH. Alternative method for trypsin-based cell dissociation using poly (amino ester) coating and pH 6.0 PBS. J BIOACT COMPAT POL 2021. [DOI: 10.1177/0883911520981710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To maintain the cellular functions of a stem cells for therapeutic tissue engineering, an advanced cell culture method for safe cell dissociation is necessary. We developed a novel cell dissociation method by applying pH-responsive bioreducible polymer on the surface of tissue culture plates (TCPs). We applied acid-responsive bioreducible poly (amino ester) (PAE) as a new candidate for surface coating method to develop alternative cell dissociation method against conventional enzyme (trypsin-ethylene diamine tetra acetic acid (EDTA)) treatment. Human adipose derived stem cells (hADSCs) were cultured on and dissociated from PAE-coated TCPs to compare cell adhesion, cell proliferation, cell viability, and functionality to those of the cells cultured on and dissociated with trypsin-EDTA from normal TCPs without PAE coating. To confirm the in vivo therapeutic efficacy of the hADSCs retrieved from PAE-coated TCPs compared to that of the cells retrieved from normal TCPs with trypsin-EDTA, we induced skin defects at the dorsal area of mice and injected the cells collected from both conditions. With the PAE coating method, cell adhesion, cell proliferation, cell viability, and functionality, especially the angiogenic efficacy, were well preserved when compared to those of the cells treated with trypsin-EDTA. In addition to in vitro results, injecting hADSCs retrieved from PAE-coated TCPs showed similar in vivo angiogenesis and wound closing efficiency compared to those of injecting hADSCs retrieved from normal TCPs with trypsin-EDTA treatment at 2 weeks after the transplantation into mouse skin wound models. We proposed the alternative method for the cell dissociation with pH-responsive bioreducible polymer, PAE. This PAE coating method may lead to the development of alternative cell dissociation method without using enzyme for future regenerative medicine and stem cell therapy.
Collapse
Affiliation(s)
- Tae-Jin Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Division of Medical Biotechnology, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Tepeng Wu
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yu-Jin Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung-Hwan Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Doo Sung Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
22
|
Men W, Zhu P, Dong S, Liu W, Zhou K, Bai Y, Liu X, Gong S, Zhang S. Layer-by-layer pH-sensitive nanoparticles for drug delivery and controlled release with improved therapeutic efficacy in vivo. Drug Deliv 2020; 27:180-190. [PMID: 31924103 PMCID: PMC7008239 DOI: 10.1080/10717544.2019.1709922] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In this work, a pH-sensitive liposome-polymer nanoparticle (NP) composed of lipid, hyaluronic acid (HA) and poly(β-amino ester) (PBAE) was prepared using layer-by-layer (LbL) method for doxorubicin (DOX) targeted delivery and controlled release to enhance the cancer treatment efficacy. The NP with pH-sensitivity and targeting effect was successfully prepared by validation of charge reversal and increase of hydrodynamic diameter after each deposition of functional layer. We further showed the DOX-loaded NP had higher drug loading capacity, suitable particle size, spherical morphology, good uniformity, and high serum stability for drug delivery. We confirmed that the drug release profile was triggered by low pH with sustained release manner in vitro. Confocal microscopy research demonstrated that the NP was able to effectively target and deliver DOX into human non-small cell lung carcinoma (A549) cells in comparison to free DOX. Moreover, the blank NP showed negligible cytotoxicity, and the DOX-loaded NP could efficiently induce the apoptosis of A549 cells as well as free DOX. Notably, in vivo experiment results showed that the DOX-loaded NPs effectively inhibited the growth of tumor, enhanced the survival of tumor-bearing mice and improved the therapeutic efficacy with reduced side-effect comparing with free drug. Therefore, the NP could be a potential intelligent anticancer drug delivery carrier for cancer chemotherapy, and the LbL method might be a useful strategy to prepare multi-functional platform for drug delivery.
Collapse
Affiliation(s)
- Wanfu Men
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Peiyao Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Siyuan Dong
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Wenke Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Kun Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yu Bai
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xiangli Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Shulei Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Shuguang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
23
|
Misiak P, Markiewicz KH, Szymczuk D, Wilczewska AZ. Polymeric Drug Delivery Systems Bearing Cholesterol Moieties: A Review. Polymers (Basel) 2020; 12:E2620. [PMID: 33172152 PMCID: PMC7694753 DOI: 10.3390/polym12112620] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
This review aims to provide an overview of polymers comprising cholesterol moiety/ies designed to be used in drug delivery. Over the last two decades, there have been many papers published in this field, which are summarized in this review. The primary focus of this article is on the methods of synthesis of polymers bearing cholesterol in the main chain or as side chains. The data related to the composition, molecular weight, and molecular weight distribution of polymers are presented. Moreover, other aspects, such as forms of carriers, types of encapsulated drugs, encapsulation efficiency and capacity, are also included.
Collapse
Affiliation(s)
- Paweł Misiak
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1k, 15-245 Bialystok, Poland; (K.H.M.); (D.S.)
| | | | | | - Agnieszka Z. Wilczewska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1k, 15-245 Bialystok, Poland; (K.H.M.); (D.S.)
| |
Collapse
|
24
|
Zhang S, Zhu P, He J, Dong S, Li P, Zhang CY, Ma T. TME-Responsive Polyprodrug Micelles for Multistage Delivery of Doxorubicin with Improved Cancer Therapeutic Efficacy in Rodents. Adv Healthc Mater 2020; 9:e2000387. [PMID: 32815646 DOI: 10.1002/adhm.202000387] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/28/2020] [Indexed: 01/05/2023]
Abstract
It is of great significance to develop multifunctional biomaterials to effectively deliver anticancer drug to tumor cells for cancer therapy. Here, inspired by the specific tumor microenvironment (TME) cues, a unique multistage pH/redox-responsive polyprodrug composed of amphiphilic pH-sensitive diblock copolymer poly(ethylene glycol) methyl ether-b-poly(β-amino esters) conjugated with doxorubicin (DOX) via redox-sensitive disulfide bonds (mPEG-b-PAE-ss-DOX) is designed and developed. This polyprodrug can self-assemble into micelles (DOX-ss@PMs) at low concentration with high serum stability, indicating that DOX-ss@PMs have prolonged circulation time. The dual pH/redox-responsiveness of the multistage platform is thoroughly evaluated. In vitro results demonstrate that DOX-ss@PMs can highly accumulate at tumor site, followed by responding to the acidity for disassembly and effectively penetrating into the tumor cells. DOX is released from the platform due to the cleavage of disulfide bonds induced by high glutathione (GSH) concentration, thereby inducing the apoptosis of tumor cells. In vivo studies further reveal that multistage DOX-ss@PMs can more efficiently inhibit the growth of tumors and improve the survival of tumor-bearing mice in comparison to the free drug and control. These results imply that multistage delivery system might be a potential and effective strategy for drug delivery and DOX-ss@PMs could be a promising nanomedicine for cancer chemotherapy.
Collapse
Affiliation(s)
- Shuguang Zhang
- Department of Thoracic Surgery The First Affiliated Hospital of China Medical University Shenyang 110001 P. R. China
| | - Peiyao Zhu
- Department of Thoracic Surgery The First Affiliated Hospital of China Medical University Shenyang 110001 P. R. China
| | - Jiayuan He
- Department of Neurobiology School of Life Sciences China Medical University Shenyang 110001 P. R. China
| | - Siyuan Dong
- Department of Thoracic Surgery The First Affiliated Hospital of China Medical University Shenyang 110001 P. R. China
| | - Peiwen Li
- Department of Thoracic Surgery The First Affiliated Hospital of China Medical University Shenyang 110001 P. R. China
| | - Can Yang Zhang
- Singapore‐MIT Alliance for Research and Technology 1 CREATE Way, 03‐12/13/14 Enterprise Wing Singapore 138602 Singapore
| | - Teng Ma
- Department of Neurobiology School of Life Sciences China Medical University Shenyang 110001 P. R. China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology Ministry of Education of China China Medical University Shenyang 110122 China
| |
Collapse
|
25
|
Kazemi M, Emami J, Hasanzadeh F, Minaiyan M, Mirian M, Lavasanifar A. Pegylated multifunctional pH-responsive targeted polymeric micelles for ovarian cancer therapy: synthesis, characterization and pharmacokinetic study. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1776282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Moloud Kazemi
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaber Emami
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farshid Hasanzadeh
- Department of Medical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Minaiyan
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
26
|
Jiang Y, Zhou Y, Zhang CY, Fang T. Co-Delivery of Paclitaxel and Doxorubicin by pH-Responsive Prodrug Micelles for Cancer Therapy. Int J Nanomedicine 2020; 15:3319-3331. [PMID: 32494132 PMCID: PMC7227817 DOI: 10.2147/ijn.s249144] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/18/2020] [Indexed: 12/18/2022] Open
Abstract
Background It is of great significance to develop intelligent co-delivery systems for cancer chemotherapy with improved therapeutic efficacy and few side-effects. Materials and Methods Here, we reported a co-delivery system based on pH-sensitive polyprodrug micelles for simultaneous delivery of doxorubicin (DOX) and paclitaxel (PTX) as a combination chemotherapy with pH-triggered drug release profiles. The physicochemical properties, drug release profiles and mechanism, and cytotoxicity of PTX/DOX-PMs have been thoroughly investigated. Results and Discussion The pH-sensitive polyprodrug was used as nanocarrier, and PTX was encapsulated into the micelles with high drug-loading content (25.6%). The critical micelle concentration (CMC) was about 3.16 mg/L, indicating the system could form the micelles at low concentration. The particle size of PTX/DOX-PMs was 110.5 nm, and increased to approximately 140 nm after incubation for 5 days which showed that the PTX/DOX-PMs had high serum stability. With decrease in pH value, the particle size first increased, and thenwas no longer detectable. Similar change trend was observed for CMC values. The zetapotential increased sharply with decrease in pH. These results demonstrated the pHsensitivity of PTX/DOX-PMs. In vitro drug release experiments and study on release mechanism showed that the drug release rate and accumulative release for PTX and DOX were dependent on the pH, showing the pH-triggered drug release profiles. Cytotoxicity assay displayed that the block copolymer showed negligible cytotoxicity, while the PTX/DOX-PMs possessed high cytotoxic effect against several tumor cell lines compared with free drugs and control. Conclusion All the results demonstrated that the co-delivery system based on pH-sensitive polyprodrug could be a potent nanomedicine for combination cancer chemotherapy. In addition, construction based on polyprodrug and chemical drug could be a useful method to prepare multifunctional nanomedicine.
Collapse
Affiliation(s)
- Yanhua Jiang
- Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Yongjian Zhou
- Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Can Yang Zhang
- Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Te Fang
- Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| |
Collapse
|
27
|
Chivere VT, Kondiah PPD, Choonara YE, Pillay V. Nanotechnology-Based Biopolymeric Oral Delivery Platforms for Advanced Cancer Treatment. Cancers (Basel) 2020; 12:E522. [PMID: 32102429 PMCID: PMC7073194 DOI: 10.3390/cancers12020522] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/01/2023] Open
Abstract
Routes of drug administration and their corresponding physiochemical characteristics play major roles in drug therapeutic efficiency and biological effects. Each route of delivery has favourable aspects and limitations. The oral route of delivery is the most convenient, widely accepted and safe route. However, the oral route of chemotherapeutics to date have displayed high gastric degradation, low aqueous solubility, poor formulation stability and minimum intestinal absorption. Thus, mainstream anti-cancer drugs in current formulations are not suitable as oral chemotherapeutic formulations. The use of biopolymers such as chitosan, gelatin, hyaluronic acid and polyglutamic acid, for the synthesis of oral delivery platforms, have potential to help overcome problems associated with oral delivery of chemotherapeutics. Biopolymers have favourable stimuli-responsive properties, and thus can be used to improve oral bioavailability of anti-cancer drugs. These biopolymeric formulations can protect gastric-sensitive drugs from pH degradation, target specific binding sites for targeted absorption and consequently control drug release. In this review, the use of various biopolymers as oral drug delivery systems for chemotherapeutics will be discussed.
Collapse
Affiliation(s)
| | | | | | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (V.T.C.); (P.P.D.K.); (Y.E.C.)
| |
Collapse
|
28
|
Cai W, Chen Q, Shen T, Yang Q, Hu W, Zhao P, Yu J. Intravenous anti-VEGF agents with RGD peptide-targeted core cross-linked star (CCS) polymers modified with indocyanine green for imaging and treatment of laser-induced choroidal neovascularization. Biomater Sci 2020; 8:4481-4491. [DOI: 10.1039/c9bm02086a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
S-PEG-ICG-RGD-RBZ NPs were synthesized to intravenously deliver anti-VEGF agents to choroidal neovascularization (CNV) areas for the treatment of CNV.
Collapse
Affiliation(s)
- Wenting Cai
- Department of Ophthalmology
- Shanghai Tenth People's Hospital
- Tongji University
- School of Medicine
- Shanghai
| | - Qijing Chen
- Institute for Translational Medicine
- Institute for Biomedical Engineering and Nanoscience
- Shanghai East Hospital
- Tongji University School of Medicine
- Shanghai
| | - Tianyi Shen
- Department of Ophthalmology
- Shanghai Tenth People's Hospital
- Tongji University
- School of Medicine
- Shanghai
| | - Qian Yang
- Department of Ophthalmology
- Shanghai Tenth People's Hospital
- Tongji University
- School of Medicine
- Shanghai
| | - Weinan Hu
- Department of Ophthalmology
- Anhui University of Science and Technology
- Huainan
- China
| | - Peng Zhao
- Institute for Translational Medicine
- Institute for Biomedical Engineering and Nanoscience
- Shanghai East Hospital
- Tongji University School of Medicine
- Shanghai
| | - Jing Yu
- Department of Ophthalmology
- Shanghai Tenth People's Hospital
- Tongji University
- School of Medicine
- Shanghai
| |
Collapse
|
29
|
Ivanov IV, Meleshko TK, Kashina AV, Yakimansky AV. Amphiphilic multicomponent molecular brushes. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4870] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multicomponent molecular brushes containing amphiphilic polymer moieties are promising objects of research of macromolecular chemistry. The development of stimulus-responsive systems sensitive to changes in environmental parameters, based on the molecular brushes, opens up new possibilities for their applications in medicine, biochemistry and microelectronics. The review presents the current understanding of the structures of main types of amphiphilic multicomponent brushes, depending on the chemical nature and type of coupling of the backbone and side chains. The approaches to the controlled synthesis of multicomponent molecular brushes of different architecture are analyzed. Self-assembly processes of multicomponent molecular brushes in selective solvents are considered.
The bibliography includes 259 references.
Collapse
|
30
|
Smart pH-responsive polymeric micelles for programmed oral delivery of insulin. Colloids Surf B Biointerfaces 2019; 183:110443. [DOI: 10.1016/j.colsurfb.2019.110443] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/24/2019] [Accepted: 08/15/2019] [Indexed: 11/17/2022]
|
31
|
Darge HF, Andrgie AT, Hanurry EY, Birhan YS, Mekonnen TW, Chou HY, Hsu WH, Lai JY, Lin SY, Tsai HC. Localized controlled release of bevacizumab and doxorubicin by thermo-sensitive hydrogel for normalization of tumor vasculature and to enhance the efficacy of chemotherapy. Int J Pharm 2019; 572:118799. [PMID: 31678386 DOI: 10.1016/j.ijpharm.2019.118799] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/05/2019] [Accepted: 10/13/2019] [Indexed: 02/01/2023]
Abstract
In a malignant tumor, overexpression of pro-angiogenic factors like vascular endothelial growth factor (VEGF) provokes the production of pathologic vascular networks characterized by leaky, chaotically organized, immature, thin-walled, and ill-perfused. As a result, hostile tumor environment would be developed and profoundly hinders anti-cancer drug activities and fuels tumor progression. In this study, we develop a strategy of sequential sustain release of anti-angiogenic drug, Bevacizumab (BVZ), and anti-cancer drug, Doxorubicin (DOX), using poly (d, l-Lactide)- Poly (ethylene glycol) -Poly (d, l-Lactide) (PDLLA-PEG-PDLLA) hydrogel as a local delivery system. The release profiles of the drugs from the hydrogel were investigated in vitro which confirmed that relatively rapid release of BVZ (73.56 ± 1.39%) followed by Dox (61.21 ± 0.62%) at pH 6.5 for prolonged period. The in vitro cytotoxicity test revealed that the copolymer exhibited negligible cytotoxicity up to 2.5 mg ml-1 concentration on HaCaT and HeLa cells. Likeways, the in vitro degradation of the copolymer showed 41.63 ± 2.62% and 73.25 ± 4.36% weight loss within 6 weeks at pH 7.4 and 6.5, respectively. After a single intratumoral injection of the drug-encapsulated hydrogel on Hela xenograft nude, hydrogel co-loaded with BVZ and Dox displayed the highest tumor suppression efficacy for up to 36 days with no noticeable damage on vital organs. Therefore, localized co-delivery of anti-angiogenic drug and anti-cancer drug by hydrogel system may be a promising approach for enhanced chemotherapeutic efficacy in cancer treatment.
Collapse
Affiliation(s)
- Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Abegaz Tizazu Andrgie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Endiries Yibru Hanurry
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Tefera Worku Mekonnen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Hsiao-Ying Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Wei-Hsin Hsu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Tao-Yuan 320, Taiwan
| | - Shuian-Yin Lin
- Biomedical Technology and Device Research Center, Industrial Technology Research Institute, Hsinchu 310, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| |
Collapse
|
32
|
Zhang CY, Lin W, Gao J, Shi X, Davaritouchaee M, Nielsen AE, Mancini RJ, Wang Z. pH-Responsive Nanoparticles Targeted to Lungs for Improved Therapy of Acute Lung Inflammation/Injury. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16380-16390. [PMID: 30973702 PMCID: PMC6542597 DOI: 10.1021/acsami.9b04051] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Dysregulated vascular inflammation is the underlying cause of acute lung inflammation/injury (ALI). Bacterial infections and trauma cause ALI that may rapidly lead to acute respiratory distress syndrome (ARDS). There are no pharmacological therapies available to patients with ALI/ARDS, partially as drugs cannot specifically target the lungs. Herein, we developed a stimuli-responsive nanoparticle (NP) to target inflammatory lungs for ALI therapies. The NP is composed of a sharp acid-sensitive segment poly(β-amino esters) as a core for drug loading and controlled release and a polyethylene glycol-biotin on the particle surface available for bioconjugation, enabling lung targeting and extended circulation. The studies on dissipative particle dynamics simulation and characteristics of NPs suggest that anti-ICAM-1 antibodies can be coated to the particle surface and this coating is required to enhance lung targeting of NPs. A model drug of anti-inflammatory agent TPCA-1 is encapsulated in NPs with a high drug-loading content at 24% (w/w). In the mouse ALI model, our TPCA-1-loaded NPs coated with anti-ICAM-1 can target inflamed lungs after intravenous injection, followed by drug release triggered by the acid environment, thus mitigating lung inflammation and injury. Our studies reveal the rational design of nanotherapeutics for improved therapy of ALI, which may be applied to treating a wide range of vascular inflammation.
Collapse
Affiliation(s)
- Can Yang Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210, United States
| | - Wenjing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jin Gao
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210, United States
| | - Xutong Shi
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210, United States
| | - Maryam Davaritouchaee
- Department of Chemistry, Washington State University, Pullman, WA 99164, United States
| | - Amy E. Nielsen
- Department of Chemistry, Washington State University, Pullman, WA 99164, United States
| | - Rock J. Mancini
- Department of Chemistry, Washington State University, Pullman, WA 99164, United States
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210, United States
- Corresponding author: Zhenjia Wang:
| |
Collapse
|
33
|
Luo Y, Yin X, Yin X, Chen A, Zhao L, Zhang G, Liao W, Huang X, Li J, Zhang CY. Dual pH/Redox-Responsive Mixed Polymeric Micelles for Anticancer Drug Delivery and Controlled Release. Pharmaceutics 2019; 11:E176. [PMID: 30978912 PMCID: PMC6523239 DOI: 10.3390/pharmaceutics11040176] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
Stimuli-responsive polymeric micelles (PMs) have shown great potential in drug delivery and controlled release in cancer chemotherapy. Herein, inspired by the features of the tumor microenvironment, we developed dual pH/redox-responsive mixed PMs which are self-assembled from two kinds of amphiphilic diblock copolymers (poly(ethylene glycol) methyl ether-b-poly(β-amino esters) (mPEG-b-PAE) and poly(ethylene glycol) methyl ether-grafted disulfide-poly(β-amino esters) (PAE-ss-mPEG)) for anticancer drug delivery and controlled release. The co-micellization of two copolymers is evaluated by measurement of critical micelle concentration (CMC) values at different ratios of the two copolymers. The pH/redox-responsiveness of PMs is thoroughly investigated by measurement of base dissociation constant (pKb) value, particle size, and zeta-potential in different conditions. The PMs can encapsulate doxorubicin (DOX) efficiently, with high drug-loading efficacy. The DOX was released due to the swelling and disassembly of nanoparticles triggered by low pH and high glutathione (GSH) concentrations in tumor cells. The in vitro results demonstrated that drug release rate and cumulative release are obviously dependent on pH values and reducing agents. Furthermore, the cytotoxicity test showed that the mixed PMs have negligible toxicity, whereas the DOX-loaded mixed PMs exhibit high cytotoxicity for HepG2 cells. Therefore, the results demonstrate that the dual pH/redox-responsive PMs self-assembled from PAE-based diblock copolymers could be potential anticancer drug delivery carriers with pH/redox-triggered drug release, and the fabrication of stimuli-responsive mixed PMs could be an efficient strategy for preparation of intelligent drug delivery platform for disease therapy.
Collapse
Affiliation(s)
- Yongle Luo
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
- Safety Evaluation Department, Guangdong safety production technology center Co. Ltd., Guangzhou 510075, China.
| | - Xujun Yin
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Xi Yin
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Anqi Chen
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Lili Zhao
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Gang Zhang
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Wenbo Liao
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Xiangxuan Huang
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Juan Li
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Can Yang Zhang
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
34
|
Qiao Y, Liu B, Peng Y, Ji E, Wu H. Preparation and biological evaluation of a novel pH-sensitive poly (β-malic acid) conjugate for antitumor drug delivery. Int J Mol Med 2018; 42:3495-3502. [PMID: 30272259 DOI: 10.3892/ijmm.2018.3893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/17/2018] [Indexed: 11/05/2022] Open
Abstract
Poly (β‑malic acid), referred to as PMLA, has been synthesized and introduced as a polymeric drug carrier due to its desirable biological properties. In the present study, a novel pH‑sensitive polymer‑drug conjugate based on PMLA, PMLA‑Hz‑doxorubicin (DOX), was prepared, and another conjugate, PMLA‑ami‑DOX, was synthesized as a comparison. The structures, conjugation efficiency, and drug release properties of the prodrugs were determined. The cytotoxicity and cell uptake were assessed using the HT1080 human fibrosarcoma cell line as an in vitro cell model. The release of DOX in the two conjugates were pH‑dependent in PBS buffer at a pH of 5.6, 6.0, 6.8 and 7.4. The quantity of drug released increased with the decrease in pH, and PMLA‑ami‑DOX released twice as much as PMLA‑Hz‑DOX (12 h). The cytotoxicity of PMLA‑Hz‑DOX at pH 7.4 was lower than that of free DOX and increased with the decrease in pH, indicating that the cytotoxicity of PMLA‑Hz‑DOX was pH‑sensitive. Flow cytometry and confocal experiments confirmed the efficiency of the PMLA‑Hz‑DOX conjugate. Therefore, bonding DOX to PMLA via an acid‑sensitive hydrazone bond may be used to reduce its toxic side effects on normal tissues while responding to tumor pH and releasing the drug.
Collapse
Affiliation(s)
- Youbei Qiao
- Department of Pharmaceutical Analysis, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Bao Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yifan Peng
- Department of Pharmaceutical Analysis, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Erlong Ji
- Shiquanhe Medical Station, A'li, Tibet 859000, P.R. China
| | - Hong Wu
- Department of Pharmaceutical Analysis, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
35
|
Sharma S, Mazumdar S, Italiya KS, Date T, Mahato RI, Mittal A, Chitkara D. Cholesterol and Morpholine Grafted Cationic Amphiphilic Copolymers for miRNA-34a Delivery. Mol Pharm 2018; 15:2391-2402. [PMID: 29747513 DOI: 10.1021/acs.molpharmaceut.8b00228] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
miR-34a is a master tumor suppressor playing a key role in the several signaling mechanisms involved in cancer. However, its delivery to the cancer cells is the bottleneck in its clinical translation. Herein we report cationic amphiphilic copolymers grafted with cholesterol (chol), N, N-dimethyldipropylenetriamine (cation chain) and 4-(2-aminoethyl)morpholine (morph) for miR-34a delivery. The copolymer interacts with miR-34a at low N/P ratios (∼2/1) to form nanoplexes of size ∼108 nm and a zeta potential ∼ +39 mV. In vitro studies in 4T1 and MCF-7 cells indicated efficient transfection efficiency. The intracellular colocalization suggested that the copolymer effectively transported the FAM labeled siRNA into the cytoplasm within 2 h and escaped from the endo-/lysosomal environment. The developed miR-34a nanoplexes inhibited the breast cancer cell growth as confirmed by MTT assay wherein 28% and 34% cancer cell viability was observed in 4T1 and MCF-7 cells, respectively. Further, miR-34a nanoplexes possess immense potential to induce apoptosis in both cell lines.
Collapse
Affiliation(s)
- Saurabh Sharma
- Department of Pharmacy , Birla Institute of Technology and Science-Pilani (BITS) , Pilani Campus, Vidya Vihar , Pilani - 333031 , Rajasthan , India
| | - Samrat Mazumdar
- Department of Pharmacy , Birla Institute of Technology and Science-Pilani (BITS) , Pilani Campus, Vidya Vihar , Pilani - 333031 , Rajasthan , India
| | - Kishan S Italiya
- Department of Pharmacy , Birla Institute of Technology and Science-Pilani (BITS) , Pilani Campus, Vidya Vihar , Pilani - 333031 , Rajasthan , India
| | - Tushar Date
- Department of Pharmacy , Birla Institute of Technology and Science-Pilani (BITS) , Pilani Campus, Vidya Vihar , Pilani - 333031 , Rajasthan , India
| | - Ram I Mahato
- Department of Pharmaceutical Sciences , College of Pharmacy, University of Nebraska Medical Center , 986125 Nebraska Medical Center , Omaha , Nebraska 68198-6125 , United States
| | - Anupama Mittal
- Department of Pharmacy , Birla Institute of Technology and Science-Pilani (BITS) , Pilani Campus, Vidya Vihar , Pilani - 333031 , Rajasthan , India
| | - Deepak Chitkara
- Department of Pharmacy , Birla Institute of Technology and Science-Pilani (BITS) , Pilani Campus, Vidya Vihar , Pilani - 333031 , Rajasthan , India
| |
Collapse
|
36
|
Dai J, Han S, Ju F, Han M, Xu L, Zhang R, Sun Y. Preparation and evaluation of tumour microenvironment response multistage nanoparticles for epirubicin delivery and deep tumour penetration. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:860-873. [DOI: 10.1080/21691401.2018.1470528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jialing Dai
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Shangcong Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Fang Ju
- Department of Oncology, No. 2 Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mei Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Lisa Xu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Ruoyu Zhang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|
37
|
Zhang Y, Wu X, Hou C, Shang K, Yang K, Tian Z, Pei Z, Qu Y, Pei Y. Dual-responsive dithio-polydopamine coated porous CeO 2 nanorods for targeted and synergistic drug delivery. Int J Nanomedicine 2018; 13:2161-2173. [PMID: 29695903 PMCID: PMC5905827 DOI: 10.2147/ijn.s152002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective The aim was to produce the first report of assembling degradable stimuli-responsive dithio-polydopamine coating with a cancer target unit for synergistic and targeted drug delivery. Methods A multifunctional drug delivery system was constructed by coating a dual-responsive dithio-polydopamine (PDS) on porous CeO2 nanorods and subsequent conjugation of lactose derivative, where the PDS was formed by self-polymerization of dithio-dopamine (DOPASS). Results The multifunctional drug delivery system displayed excellent cancer targeted ability resulting from the conjugation of lactose derivative, which could specifically recognize the overexpressed asialoglycoprotein receptors on the surface of HepG2 cells. It also showed a dual-responsive property of glutathione and pH, achieving controllable drug release from the cleavage of disulfide bond and subsequent degradation of PDS in cancer cells. Moreover, the degradation of PDS led to the exposure of CeO2 nanorods, which has a synergistic anticancer effect due to its cytotoxicity to cancer cells. Conclusion This work presents a good example of a rational design towards synergistic and targeted DDS for cancer chemotherapies.
Collapse
Affiliation(s)
- Ying Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xiaowen Wu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Chenxi Hou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Kun Shang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Kui Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zhimin Tian
- Center for Applied Chemical Research, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yongquan Qu
- Center for Applied Chemical Research, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
38
|
Zhou XX, Jin L, Qi RQ, Ma T. pH-responsive polymeric micelles self-assembled from amphiphilic copolymer modified with lipid used as doxorubicin delivery carriers. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171654. [PMID: 29657772 PMCID: PMC5882696 DOI: 10.1098/rsos.171654] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/09/2018] [Indexed: 06/08/2023]
Abstract
In the present study, a novel pH-responsive amphiphilic copolymer, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)] conjugated poly(β-amino esters) (DSPE-b-PEG-b-PAE-b-PEG-b-DSPE), was designed and successfully synthesized via Michael-type step polymerization. The chemical structure of the pentablock copolymer was confirmed with proton nuclear magnetic resonance (1H-NMR) and Fourier transform infrared (FT-IR) spectroscopy. The copolymer was able to self-assemble into core/shell polymeric micelles in aqueous solution at low concentrations, and its critical micelle concentration (CMC) value was 4.5 mg l-1 determined by fluorescence spectrophotometry. The pKb value of the copolymer was about 6.5, confirmed by acid-base titration, indicating the pH-sensitivity of the polymeric micelle. The hydrodynamic diameter, distribution and zeta potential of the polymeric micelles at different pH conditions were monitored by dynamic light scattering (DLS). Doxorubicin (DOX) was encapsulated into the core of the micelles with a high drug loading content (15.9%) and entrapment efficacy (60.4%). In vitro experiments demonstrated that the release behaviour of DOX from the DOX-loaded polymeric micelles (DOX-PMs) was pH-triggered. When the pH decreased from 7.4 to 5.0, the drug release rate was markedly accelerated. MTT assay showed that the copolymer had negligible cytotoxicity whereas the DOX-PMs displayed high toxicity for tumour cells such as B16F10, HepG2 and HeLa cell lines. The results demonstrated that these pH-sensitive polymeric micelles could be used as potential anti-cancer drug carriers for cancer chemotherapy with controlled release.
Collapse
Affiliation(s)
- Xin Xin Zhou
- Department of Dermatology, Liaoning University of Traditional Chinese Medicine, Shenyang, People's Republic of China
- Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, People's Republic of China
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, People's Republic of China
| | - Long Jin
- The General Hospital of Shenyang Military, Shenyang, People's Republic of China
| | - Rui Qun Qi
- Department of Dermatology, No.1 Hospital of China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Immunology, Ministry of Public Health of China, Key Laboratory of Immunology, Ministry of Education of China, China Medical University, Shenyang, People's Republic of China
| | - Teng Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
39
|
Chen Q, Li S, Feng Z, Wang M, Cai C, Wang J, Zhang L. Poly(2-(diethylamino)ethyl methacrylate)-based, pH-responsive, copolymeric mixed micelles for targeting anticancer drug control release. Int J Nanomedicine 2017; 12:6857-6870. [PMID: 29066882 PMCID: PMC5604559 DOI: 10.2147/ijn.s143927] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We have demonstrated a novel drug delivery system to improve the selectivity of the current chemotherapy by pH-responsive, polymeric micelle carriers. The micelle carriers were prepared by the self-assembly of copolymers containing the polybasic poly(2-(diethylamino) ethyl methacrylate) (PDEAEMA) block. The mixed copolymers exhibited a comparatively low critical micelle concentration (CMC; 1.95-5.25 mg/L). The resultant mixed micelles were found to be <100 nm and were used to encapsulate the anticancer drug doxorubicin (DOX) with pretty good drug-loading content (24%) and entrapment efficiency (55%). Most importantly, the micelle carrier exhibited a pH-dependent conformational conversion and promoted the DOX release at the tumorous pH. Our in vitro studies demonstrated the comparable level of DOX-loaded mixed micelle delivery into tumor cells with the free DOX (80% of the tumor cells were killed after 48 h incubation). The DOX-loaded mixed micelles were effective to inhibit the proliferation of tumor cells after prolonged incubation. Overall, the pH-responsive mixed micelle system provided desirable potential in the controlled release of anticancer therapeutics.
Collapse
Affiliation(s)
- Quan Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People’s Republic of China
| | - Siheng Li
- Department of Chemistry, University of Houston, Houston, TX, USA
| | - Zixiong Feng
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People’s Republic of China
| | - Meng Wang
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, People’s Republic of China
| | - Chengzhi Cai
- Department of Chemistry, University of Houston, Houston, TX, USA
| | - Jufang Wang
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, People’s Republic of China
| | - Lijuan Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People’s Republic of China
| |
Collapse
|