1
|
Wu TW, Chu YC, Chang CH, Hsieh YH, Tang MH, Hsu PH, Wu HY, Chen JJ, Shih TL. Flavonol-Ruthenium Complexes as Antioxidant and Anticancer Agents. ChemMedChem 2024; 19:e202400313. [PMID: 39261284 DOI: 10.1002/cmdc.202400313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/27/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
Flavonol-metal complexes can enhance the biological activity of flavonols. Inspired by the potential of ruthenium-based drugs in pharmaceutical applications, seven flavonol-Ru (II) complexes were synthesized to evaluate their biological activities. Among these compounds, compounds 8, 11, and 12 showed potent antioxidant activities. Compound 12 exhibited superior anti-inflammatory activity to natural quercetin, which served as a positive control. This study is the first to report the free radical scavenging abilities and antioxidant activity of flavonol-Ru (II) complexes. Furthermore, compound 12 demonstrated comparable efficacy to 5-FU against human non-small-cell lung cancer cells (A549). These results strongly support the potential of flavonol-Ru (II) agents.
Collapse
Affiliation(s)
- Ting-Wei Wu
- Tamkang University, 251301 Tamsui Dist., New Taipei City, Taiwan
| | - Yi-Cheng Chu
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, 112304, Taipei, Taiwan
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, 300102, Hsinchu, Taiwan
| | - Chuan-Hsin Chang
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, 333324, Taoyuan, Taiwan
| | - Yu-Hui Hsieh
- Biomedical Industry Ph.D. Program School of Life Sciences, National Yang Ming Chiao Tung University, 112304, Taipei, Taiwan
| | - Mei-Hsin Tang
- Tamkang University, 251301 Tamsui Dist., New Taipei City, Taiwan
| | - Pei-Hsuan Hsu
- Tamkang University, 251301 Tamsui Dist., New Taipei City, Taiwan
| | - Hsin-Ying Wu
- Tamkang University, 251301 Tamsui Dist., New Taipei City, Taiwan
| | - Jih-Jung Chen
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, 112304, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, 404333, Taichung, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, 110301, Taipei, Taiwan
| | - Tzenge-Lien Shih
- Tamkang University, 251301 Tamsui Dist., New Taipei City, Taiwan
| |
Collapse
|
2
|
Wrobel EC, Guimarães IDL, Wohnrath K, Oliveira ON. Effects induced by η 6-p-cymene ruthenium(II) complexes on Langmuir monolayers mimicking cancer and healthy cell membranes do not correlate with their toxicity. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184332. [PMID: 38740123 DOI: 10.1016/j.bbamem.2024.184332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
The mechanism of chemotherapeutic action of Ru-based drugs involves plasma membrane disruption and valuable insights into this process may be gained using cell membrane models. The interactions of a series of cytotoxic η6-p-cymene ruthenium(II) complexes, [Ru(η6-p-cymene)P(3,5-C(CH3)3-C6H3)3Cl2] (1), [Ru(η6-p-cymene)P(3,5-CH3-C6H3)3Cl2] (2), [Ru(η6-p-cymene)P(4-CH3O-3,5-CH3-C6H2)3Cl2] (3), and [Ru(η6-p-cymene)P(4-CH3O-C6H4)3Cl2] (4), were examined using Langmuir monolayers as simplified healthy and cancerous outer leaflet plasma membrane models. The cancerous membrane (CM1 and CM2) models contained either 40 % 1,2- dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 30 % cholesterol (Chol), 20 % 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), and 10 % 1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine (DPPS). Meanwhile, the healthy membrane (HM1 and HM2) models were composed of 60 % DPPC or DOPC, 30 % Chol and 10 % DPPE. The complexes affected surface pressure isotherms and decreased compressional moduli of cancerous and healthy membrane models, interacting with the monolayers headgroup and tails according to data from polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). However, the effects did not correlate with the toxicity of the complexes to cancerous and healthy cells. Multidimensional projection technique showed that the complex (1) induced significant changes in the CM1 and HM1 monolayers, though it had the lowest cytotoxicity against cancer cells and is not toxic to healthy cells. Moreover, the most toxic complexes (2) and (4) were those that least affected CM2 and HM2 monolayers. The findings here support that the ruthenium complexes interact with lipids and cholesterol in cell membrane models, and their cytotoxic activities involve a multifaceted mode of action beyond membrane disruption.
Collapse
Affiliation(s)
- Ellen C Wrobel
- São Carlos Institute of Physics, University of São Paulo, CP 369, São Carlos, São Paulo, SP 13560-970, Brazil.
| | | | - Karen Wohnrath
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná 84030-900, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, CP 369, São Carlos, São Paulo, SP 13560-970, Brazil.
| |
Collapse
|
3
|
Becceneri AB, Fuzer AM, Lopes AC, da Silva PB, Plutin AM, Batista AA, Chorilli M, Cominetti MR. Nanoencapsulation of Ruthenium Complex Ru(ThySMet): A Strategy to Improve Selective Cytotoxicity against Breast Tumor Cells in 2D and 3D Culture Models. Curr Drug Discov Technol 2024; 21:e060623217687. [PMID: 37282638 DOI: 10.2174/1570163820666230606110457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/24/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Ruthenium complexes have shown promise in treating many cancers, including breast cancer. Previous studies of our group have demonstrated the potential of the trans- [Ru(PPh3)2(N,N-dimethylN'-thiophenylthioureato-k2O,S)(bipy)]PF6 complex, the Ru(ThySMet), in the treatment of breast tumor cancers, both in 2D and 3D culture systems. Additionally, this complex presented low toxicity when tested in vivo. AIMS Improve the Ru(ThySMet) activity by incorporating the complex into a microemulsion (ME) and testing its in vitro effects. METHODS The ME-incorporated Ru(ThySMet) complex, Ru(ThySMet)ME, was tested for its biological effects in two- (2D) and three-dimensional (3D) cultures using different types of breast cells, MDAMB- 231, MCF-10A, 4T1.13ch5T1, HMT-3522 and Balb/C 3T3 fibroblasts. RESULTS An increased selective cytotoxicity of the Ru(ThySMet)ME for tumor cells was found in 2D cell culture, compared with the original complex. This novel compound also changed the shape of tumor cells and inhibited cell migration with more specificity. Additional 3D cell culture tests using the non-neoplastic S1 and the triple-negative invasive T4-2 breast cells have shown that Ru(ThySMet)ME presented increased selective cytotoxicity for tumor cells compared with the 2D results. The morphology assay performed in 3D also revealed its ability to reduce the size of the 3D structures and increase the circularity in T4-2 cells. CONCLUSION These results demonstrate that the Ru(ThySMet)ME is a promising strategy to increase its solubility, delivery, and bioaccumulation in target breast tumors.
Collapse
Affiliation(s)
- Amanda Blanque Becceneri
- Department of Gerontology, Federal University of São Carlos. Rod. Washington Luís, Km 235, São Carlos, São Paulo, 13565-905, Brazil
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Angelina Maria Fuzer
- Department of Gerontology, Federal University of São Carlos. Rod. Washington Luís, Km 235, São Carlos, São Paulo, 13565-905, Brazil
| | - Ana Carolina Lopes
- School of Pharmaceutical Sciences, São Paulo State University, Rodovia Araraquara-Jau, km. 1, Araraquara, São Paulo, 14800-903, Brazil
| | - Patrícia Bento da Silva
- School of Pharmaceutical Sciences, São Paulo State University, Rodovia Araraquara-Jau, km. 1, Araraquara, São Paulo, 14800-903, Brazil
| | - Ana Maria Plutin
- Facultad de Química, Universidad de la Habana. Zapata s/n entre G y Carlitos Aguirre, Habana, 10400, Cuba
| | - Alzir Azevedo Batista
- Department of Chemistry, Federal University of São Carlos. Rod. Washington Luís, Km 235, São Carlos, São Paulo, 13565-905, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, Rodovia Araraquara-Jau, km. 1, Araraquara, São Paulo, 14800-903, Brazil
| | - Márcia Regina Cominetti
- Department of Gerontology, Federal University of São Carlos. Rod. Washington Luís, Km 235, São Carlos, São Paulo, 13565-905, Brazil
| |
Collapse
|
4
|
Rehman HU, Fornaciari B, Alves SR, Colquhoun A, de Oliveira Silva D. Diruthenium(II-III)-ibuprofen-loaded chitosan-based microparticles and nanoparticles systems: encapsulation, characterisation, anticancer activity of the nanoformulations against U87MG human glioma cells. J Microencapsul 2023; 40:549-565. [PMID: 37698449 DOI: 10.1080/02652048.2023.2258967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
The aim of this work was to investigate novel formulations containing diruthenium(II-III)-ibuprofen (RuIbp) metallodrug encapsulated into the chitosan (CT) biopolymer. Microparticles (RuIbp/CT MPs, ∼ 1 µm) were prepared by spray-drying, and RuIbp/CT-crosslinked nanoparticles (NPs) by ionic gelation (RuIbp/CT-TPP, TPP = tripolyphosphate (1), RuIbp/CT-TPP-PEG, PEG = poly(ethyleneglycol (2)) or pre-gel/polyelectrolyte complex method (RuIbp/CT-ALG, ALG = alginate (3)). Ru analysis was conducted by energy dispersive x-ray fluorescence or inductively coupled plasma atomic emission spectroscopy, and physicochemical characterisation by powder x-ray diffraction, electronic absorption and FTIR spectroscopies, electrospray ionisation mass spectrometry, thermal analysis, scanning electron, transition electron and atomic force microscopies, and dynamic light scattering. The RuIbp-loaded nanosystems exhibited encapsulation efficiency ∼ 20-37%, drug loading∼ 10-20% (w/w), hydrodynamic diameter (nm): 103.2 ± 7.9 (1), 91.7 ± 12.6 (2), 270.2 ± 58.4 (3), zeta potential (mV): +(47.7 ± 2.8) (1), +(49.2 ± 3.6) (2), -(28.2 ± 2.0) (3). Nanoformulation (1) showed the highest cytotoxicity with increased efficacy in relation to the RuIbp free metallodrug against U87MG human glioma cells.
Collapse
Affiliation(s)
- Hanif-Ur- Rehman
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Bárbara Fornaciari
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Samara R Alves
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Alison Colquhoun
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Denise de Oliveira Silva
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Zhang Y, Tian X, Wang Z, Wang H, Liu F, Long Q, Jiang S. Advanced applications of DNA nanostructures dominated by DNA origami in antitumor drug delivery. Front Mol Biosci 2023; 10:1239952. [PMID: 37609372 PMCID: PMC10440542 DOI: 10.3389/fmolb.2023.1239952] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023] Open
Abstract
DNA origami is a cutting-edge DNA self-assembly technique that neatly folds DNA strands and creates specific structures based on the complementary base pairing principle. These innovative DNA origami nanostructures provide numerous benefits, including lower biotoxicity, increased stability, and superior adaptability, making them an excellent choice for transporting anti-tumor agents. Furthermore, they can considerably reduce side effects and improve therapy success by offering precise, targeted, and multifunctional drug delivery system. This comprehensive review looks into the principles and design strategies of DNA origami, providing valuable insights into this technology's latest research achievements and development trends in the field of anti-tumor drug delivery. Additionally, we review the key function and major benefits of DNA origami in cancer treatment, some of these approaches also involve aspects related to DNA tetrahedra, aiming to provide novel ideas and effective solutions to address drug delivery challenges in cancer therapy.
Collapse
Affiliation(s)
- Yiming Zhang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Zijian Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Haochen Wang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Qipeng Long
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, China
| |
Collapse
|
6
|
The Novel 5-Fluorouracil Loaded Ruthenium-based Nanocarriers Enhanced Anticancer and Apoptotic Efficiency while Reducing Multidrug Resistance in Colorectal Cancer Cells. J Fluoresc 2023; 33:1227-1236. [PMID: 36811696 DOI: 10.1007/s10895-023-03180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/11/2023] [Indexed: 02/24/2023]
Abstract
Recently, nanocarriers have been made to eliminate the disadvantages of chemotherapeutic agents by nanocarriers. Nanocarriers show their efficacy through their targeted and controlled release. In this study, 5-fluorouracil (5FU) was loaded into ruthenium (Ru)-based nanocarrier (5FU-RuNPs) for the first time to eliminate the disadvantages of 5FU, and its cytotoxic and apoptotic effects on HCT116 colorectal cancer cells were compared with free 5FU. 5FU-RuNPs with a size of approximately 100 nm showed a 2.61-fold higher cytotoxic effect compared to free 5FU. Apoptotic cells were detected by Hoechst/propidium iodide double staining, and the expression levels of BAX/Bcl-2 and p53 proteins, in which apoptosis occurred intrinsically, were revealed. In addition, 5FU-RuNPs was also found to reduce multidrug resistance (MDR) according to BCRP/ABCG2 gene expression levels. When all the results were evaluated, the fact that Ru-based nanocarriers alone did not cause cytotoxicity proved that they were ideal nanocarriers. Moreover, 5FU-RuNPs did not show any significant effect on the cell viability of normal human epithelial cell lines BEAS-2B. Consequently, the 5FU-RuNPs synthesized for the first time may be ideal candidates for cancer treatment because they can minimize the potential drawbacks of free 5FU.
Collapse
|
7
|
Polymeric Nanosystems Applied for Metal-Based Drugs and Photosensitizers Delivery: The State of the Art and Recent Advancements. Pharmaceutics 2022; 14:pharmaceutics14071506. [PMID: 35890401 PMCID: PMC9320085 DOI: 10.3390/pharmaceutics14071506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Nanotechnology-based approaches for targeting the delivery and controlled release of metal-based therapeutic agents have revealed significant potential as tools for enhancing the therapeutic effect of metal-based agents and minimizing their systemic toxicities. In this context, a series of polymer-based nanosized systems designed to physically load or covalently conjugate metal-based therapeutic agents have been remarkably improving their bioavailability and anticancer efficacy. Initially, the polymeric nanocarriers were applied for platinum-based chemotherapeutic agents resulting in some nanoformulations currently in clinical tests and even in medical applications. At present, these nanoassemblies have been slowly expanding for nonplatinum-containing metal-based chemotherapeutic agents. Interestingly, for metal-based photosensitizers (PS) applied in photodynamic therapy (PDT), especially for cancer treatment, strategies employing polymeric nanocarriers have been investigated for almost 30 years. In this review, we address the polymeric nanocarrier-assisted metal-based therapeutics agent delivery systems with a specific focus on non-platinum systems; we explore some biological and physicochemical aspects of the polymer–metallodrug assembly. Finally, we summarize some recent advances in polymeric nanosystems coupled with metal-based compounds that present potential for successful clinical applications as chemotherapeutic or photosensitizing agents. We hope this review can provide a fertile ground for the innovative design of polymeric nanosystems for targeting the delivery and controlled release of metal-containing therapeutic agents.
Collapse
|
8
|
Xia F, Hu X, Zhang B, Wang X, Guan Y, Lin P, Ma Z, Sheng J, Ling D, Li F. Ultrasmall Ruthenium Nanoparticles with Boosted Antioxidant Activity Upregulate Regulatory T Cells for Highly Efficient Liver Injury Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201558. [PMID: 35748217 DOI: 10.1002/smll.202201558] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Nanozymes exhibiting antioxidant activity are beneficial for the treatment of oxidative stress-associated diseases. Ruthenium nanoparticles (RuNPs) with multiple enzyme-like activities have attracted growing attention, but the relatively low antioxidant enzyme-like activities hinder their practical biomedical applications. Here, a size regulation strategy is presented to significantly boost the antioxidant enzyme-like activities of RuNPs. It is found that as the size of RuNPs decreases to ≈2.0 nm (sRuNP), the surface-oxidized Ru atoms become dominant, thus possessing an unprecedentedly boosted antioxidant activity as compared to medium-sized (≈3.9 nm) or large-sized counterparts (≈5.9 nm) that are mainly composed of surface metallic Ru atoms. Notably, based on their antioxidant enzyme-like activities and ultrasmall size, sRuNP can not only sustainably ameliorate oxidative stress but also upregulate regulatory T cells in late-stage acetaminophen (APAP)-induced liver injury (ALI). Consequently, sRuNPs perform highly efficient therapeutic efficiency on ALI mice even when treated at 6 h after APAP intoxication. This strategy is insightful for tuning the catalytic performances of nanozymes for their extensive biomedical applications.
Collapse
Affiliation(s)
- Fan Xia
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xi Hu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- WLA Laboratories, Shanghai, 201203, P. R. China
| | - Xun Wang
- Cancer Center, Zhejiang University, Hangzhou, 310058, P. R. China
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, P. R. China
| | - Yunan Guan
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Peihua Lin
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhiyuan Ma
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jianpeng Sheng
- Cancer Center, Zhejiang University, Hangzhou, 310058, P. R. China
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, P. R. China
| | - Daishun Ling
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- WLA Laboratories, Shanghai, 201203, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- WLA Laboratories, Shanghai, 201203, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
9
|
Nie Y, Dai Z, Fozia, Zhao G, Jiang J, Xu X, Ying M, Wang Y, Hu Z, Xu H. Comparative Studies on DNA-Binding Mechanisms between Enantiomers of a Polypyridyl Ruthenium(II) Complex. J Phys Chem B 2022; 126:4787-4798. [PMID: 35731588 DOI: 10.1021/acs.jpcb.2c02104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A pair of ruthenium(II) complex enantiomers, Δ- and Λ-[Ru(bpy)2MBIP]2+ (bpy = 2,2'-bipyridine, MBIP = 2-(3-bromophenyl)imidazo[5,6-f]phenanthroline), were designed, synthesized, and characterized. Comparative studies between the enantiomers on their binding behaviors to calf thymus DNA (CT-DNA) were conducted using UV-visible, fluorescence, and circular dichroism spectroscopies, viscosity measurements, isothermal titration calorimetry, a photocleavage experiment, and molecular simulation. The experimental results indicated that both the enantiomers spontaneously bound to CT-DNA through intercalation stabilized by the van der Waals force or the hydrogen bond and driven by enthalpy and that Δ-[Ru(bpy)2MBIP]2+ intercalated into DNA more deeply than Λ-[Ru(bpy)2MBIP]2+ did and exhibited a better DNA photocleavage ability. Molecular simulation further indicated that Δ-[Ru(bpy)2MBIP]2+ more preferentially intercalated between the base pairs of CT-DNA to the major groove, and Λ-[Ru(bpy)2MBIP]2+ more favorably intercalated to the minor groove. These research findings should be very helpful to the understanding of the stereoselectivity mechanism of DNA-bindings of metal complexes, and be useful for the design of novel metal-complex-based antitumor drugs with higher efficacy and lower toxicity.
Collapse
Affiliation(s)
- Yanhong Nie
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zhongming Dai
- Shenzhen University General Hospital, Shenzhen 518060, P. R. China
| | - Fozia
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China.,China Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Guangyao Zhao
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jianrong Jiang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xu Xu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Ming Ying
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yu Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, P. R. China
| | - Hong Xu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen Key Laboratory of Microbial Genetic Engineering, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
10
|
Margaret McCutcheon M, Freindorf M, Kraka E. Bonding in Nitrile Photo-dissociating Ruthenium Drug Candidates --A Local Vibrational Mode Study. J Chem Phys 2022; 157:014301. [DOI: 10.1063/5.0094567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we investigated bonding features 15 ruthenium complexes of the type [Ru(tpy)(L)-(CH3CN)]n+, containing the tridentate tpy ligand (tpy = 2,2':6',2'--terpyridine) and various bidentate ancillary ligands, 12 compounds originally synthesized by Loftus et al. (J. Phys. Chem. C 123, 10291-10299 (2019)) complemented with three additional complexes. The main focus of our work was to relate these local features to the experimental data of Loftus et al. which assess the efficiency of nitrile release in an indirect way via observed quantum yields for ruthenium water association after nitrile release. As a tool to quantitatively assess Ru-NC and Ru-L bonding we utilized the local vibrational mode analysis complemented by the topological analysis of the electron density and the natural bond orbital analysis. Interestingly, the stronger Ru-NC bonds have the greater observed quantum yields, leading to the conclusion that the observed quantum yields are a result of a complex interplay of several processes excluding a direct relationship between QY and Ru-NC or Ru-L bond strengths. We identified the ST splitting as one of the key players and not the Ru-NC bond strength, as one may have thought. In summary, this work has presented a modern computational tool set for the investigation of bonding features applied to nitrile photo-dissociating ruthenium drug candidates forming a valuable basis for future design and fine tuning of nitrile releasing ruthenium compounds, as well as for the understanding of how local properties affect overall experimental outcomes.
Collapse
Affiliation(s)
| | | | - Elfi Kraka
- Chemistry, Southern Methodist University, United States of America
| |
Collapse
|
11
|
Ferraro MG, Piccolo M, Misso G, Santamaria R, Irace C. Bioactivity and Development of Small Non-Platinum Metal-Based Chemotherapeutics. Pharmaceutics 2022; 14:pharmaceutics14050954. [PMID: 35631543 PMCID: PMC9147010 DOI: 10.3390/pharmaceutics14050954] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Countless expectations converge in the multidisciplinary endeavour for the search and development of effective and safe drugs in fighting cancer. Although they still embody a minority of the pharmacological agents currently in clinical use, metal-based complexes have great yet unexplored potential, which probably hides forthcoming anticancer drugs. Following the historical success of cisplatin and congeners, but also taking advantage of conventional chemotherapy limitations that emerged with applications in the clinic, the design and development of non-platinum metal-based chemotherapeutics, either as drugs or prodrugs, represents a rapidly evolving field wherein candidate compounds can be fine-tuned to access interactions with druggable biological targets. Moving in this direction, over the last few decades platinum family metals, e.g., ruthenium and palladium, have been largely proposed. Indeed, transition metals and molecular platforms where they originate are endowed with unique chemical and biological features based on, but not limited to, redox activity and coordination geometries, as well as ligand selection (including their inherent reactivity and bioactivity). Herein, current applications and progress in metal-based chemoth are reviewed. Converging on the recent literature, new attractive chemotherapeutics based on transition metals other than platinum—and their bioactivity and mechanisms of action—are examined and discussed. A special focus is committed to anticancer agents based on ruthenium, palladium, rhodium, and iridium, but also to gold derivatives, for which more experimental data are nowadays available. Next to platinum-based agents, ruthenium-based candidate drugs were the first to reach the stage of clinical evaluation in humans, opening new scenarios for the development of alternative chemotherapeutic options to treat cancer.
Collapse
Affiliation(s)
- Maria Grazia Ferraro
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Marialuisa Piccolo
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Gabriella Misso
- Department of Precision Medicine, School of Medicine and Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: (G.M.); (C.I.)
| | - Rita Santamaria
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
| | - Carlo Irace
- BioChemLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (R.S.)
- Correspondence: (G.M.); (C.I.)
| |
Collapse
|
12
|
Britten NS, Butler JA. Ruthenium metallotherapeutics: novel approaches to combatting parasitic infections. Curr Med Chem 2022; 29:5159-5178. [PMID: 35366762 DOI: 10.2174/0929867329666220401105444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
Human parasitic infections cause a combined global mortality rate of over one million people per annum and represent some of the most challenging diseases for medical intervention. Current chemotherapeutic strategies often require prolonged treatment, coupled with subsequent drug-induced cytotoxic morbidity to the host, while resistance generation is also a major concern. Metals have been used extensively throughout the history of medicine, with more recent applications as anticancer and antimicrobial agents. Ruthenium metallotherapeutic antiparasitic agents are highly effective at targeting a range of key parasites, including the causative agents of malaria, trypanosomiasis, leishmaniasis, amoebiasis, toxoplasmosis and other orphan diseases, while demonstrating lower cytotoxicity profiles than current treatment strategies. Generally, such compounds also demonstrate activity against multiple cellular target sites within parasites, including inhibition of enzyme function, cell membrane perturbation, and alterations to metabolic pathways, therefore reducing the opportunity for resistance generation. This review provides a comprehensive and subjective analysis of the rapidly developing area of ruthenium metal-based antiparasitic chemotherapeutics, in the context of rational drug design and potential clinical approaches to combatting human parasitic infections.
Collapse
Affiliation(s)
- Nicole S. Britten
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Jonathan A. Butler
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
13
|
Lima M, Marchi RC, Cardoso C, Cook N, Pazin W, Kock F, Venancio T, Martí A, Carlos RM. Bidentate Coordination of 2Apy in cis‐[Ru(phen)2(2Apy)]2+ Aiming at Photobiological Studies. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marcia Lima
- IFPI: Instituto Federal de Educacao Ciencia e Tecnologia do Piaui Chemistry BRAZIL
| | | | - Carolina Cardoso
- Instituto Federal de Educacao Ciencia e Tecnologia de Sao Paulo chemistry BRAZIL
| | | | | | - Flavio Kock
- UFSCar: Universidade Federal de Sao Carlos Chemistry BRAZIL
| | - Tiago Venancio
- UFSCar: Universidade Federal de Sao Carlos Chemistry BRAZIL
| | | | - Rose Maria Carlos
- Universidade Federal de Sao Carlos Química Rod Washington Luis Km 235 13565-905 São Carlos-SP BRAZIL
| |
Collapse
|
14
|
Franco Machado J, Morais TS. Are smart delivery systems the solution to overcome the lack of selectivity of current metallodrugs in cancer therapy? Dalton Trans 2022; 51:2593-2609. [PMID: 35106525 DOI: 10.1039/d1dt04079k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Chemotherapeutic metallodrugs such as cisplatin and its derivatives are among the most widely applied anticancer treatments worldwide. Despite their clinical success, patients suffer from severe adverse effects while subjected to treatment due to platinum's low selectivity for tumour over healthy tissues. Additionally, intrinsic or acquired resistance to metallodrugs, as well as their inability to reach cancer metastases, often results in therapeutic failure. The evident need for highly efficient and specific treatments has driven the scientific community to research novel ways to surpass the stated limitations. Within this scenario, a rising number of smart drug delivery systems have been lately reported to target primary cancers or metastases, where the metallodrugs are released in a controlled and selective way triggered by specific tumour-related stimuli, thus suggesting a viable and attractive therapeutic approach. Herein, we discuss the main efforts undertaken in the past few years towards the smart delivery of metal-based drugs and drug candidates to tumour sites, particularly focusing on the pH- and/or redox-responsive targeted delivery of platinum and ruthenium anticancer complexes.
Collapse
Affiliation(s)
- João Franco Machado
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal.
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139, 7), 2695-066 Bobadela LRS, Portugal
| | - Tânia S Morais
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal.
| |
Collapse
|
15
|
Sonkar C, Sarkar S, Mukhopadhyay S. Ruthenium(ii)-arene complexes as anti-metastatic agents, and related techniques. RSC Med Chem 2022; 13:22-38. [PMID: 35224494 PMCID: PMC8792825 DOI: 10.1039/d1md00220a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/15/2021] [Indexed: 09/18/2023] Open
Abstract
With the discovery of cisplatin, a vast area of applications of metallodrugs in cancer treatment was opened but due to the side effects caused by the cisplatin complexes, researchers began to look for alternatives with similar anticancer properties but fewer side effects. Ruthenium was found to be a promising candidate, considering its significant anticancer properties and low side effects. Several ruthenium complexes, viz. NAMI-A, KP1019, KP1339, and TLD1433, have entered clinical trials. Some other arene ruthenium complexes such as RM175 and RAPTA-C have also entered clinical trials but very few of them have shown anti-metastatic properties. Herein, we provide information and probable mechanistic pathways for ruthenium(ii)-arene complexes that have been studied, so far, for their anti-metastatic activities. Also, we discuss the techniques and their significance for determining the anti-metastatic effects of the complexes.
Collapse
Affiliation(s)
- Chanchal Sonkar
- Department of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore Khandwa Road, Simrol Indore 453552 MP India
| | - Sayantan Sarkar
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore Khandwa Road, Simrol Indore 453552 MP India
| | - Suman Mukhopadhyay
- Department of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore Khandwa Road, Simrol Indore 453552 MP India
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore Khandwa Road, Simrol Indore 453552 MP India
| |
Collapse
|
16
|
Maciel D, Nunes N, Santos F, Fan Y, Li G, Shen M, Tomás H, Shi X, Rodrigues J. New insights into ruthenium( ii) metallodendrimers as anticancer drug nanocarriers: from synthesis to preclinic behaviour. J Mater Chem B 2022; 10:8945-8959. [PMID: 36278302 DOI: 10.1039/d2tb01280d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pre-clinical results highlight the potential of the low-generation poly(alkylidenamine)-based dendrimers as ruthenium metallodrug nanocarriers.
Collapse
Affiliation(s)
- Dina Maciel
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Nádia Nunes
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Francisco Santos
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Yu Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Gaoming Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Helena Tomás
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Xiangyang Shi
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - João Rodrigues
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
17
|
Pan NL, Liao JX, Huang MY, Zhang YQ, Chen JX, Zhang ZW, Yang ZX, Long XE, Wu XT, Sun J. Lysosome-targeted ruthenium(II) complexes induce both apoptosis and autophagy in HeLa cells. J Inorg Biochem 2022; 229:111729. [DOI: 10.1016/j.jinorgbio.2022.111729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/19/2022]
|
18
|
Safety and Efficacy Evaluation In Vivo of a Cationic Nucleolipid Nanosystem for the Nanodelivery of a Ruthenium(III) Complex with Superior Anticancer Bioactivity. Cancers (Basel) 2021; 13:cancers13205164. [PMID: 34680314 PMCID: PMC8534243 DOI: 10.3390/cancers13205164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary The availability of selective, effective, and safe anticancer agents is a major challenge in the field of cancer research. As part of a multidisciplinary research project, in recent years our group has proposed an original class of nanomaterials for the delivery of new anticancer drugs based on ruthenium(III) complexes. In cellular models, these nanosystems have been shown to be effective in counteracting growth and proliferation of human breast cancer cells. Compared to conventional metallochemotherapeutics such as platinum-based agents whose clinical practice is associated with serious undesirable effects, ruthenium complexes share improved biochemical profiles making them more selective towards cancer cells and less cytotoxic to healthy cells. Their combination with biocompatible nanocarriers further enhances these promising features, as here showcased by our research carried out in an animal model which underscores the efficacy and safety in vivo of one of our most promising ruthenium-based nanosystems. Abstract Selectivity and efficacy towards target cancer cells, as well as biocompatibility, are current challenges of advanced chemotherapy powering the discovery of unconventional metal-based drugs and the search for novel therapeutic approaches. Among second-generation metal-based chemotherapeutics, ruthenium complexes have demonstrated promising anticancer activity coupled to minimal toxicity profiles and peculiar biochemical features. In this context, our research group has recently focused on a bioactive Ru(III) complex—named AziRu—incorporated into a suite of ad hoc designed nucleolipid nanosystems to ensure its chemical stability and delivery. Indeed, we proved that the structure and properties of decorated nucleolipids can have a major impact on the anticancer activity of the ruthenium core. Moving in this direction, here we describe a preclinical study performed by a mouse xenograft model of human breast cancer to establish safety and efficacy in vivo of a cationic Ru(III)-based nucleolipid formulation, named HoThyRu/DOTAP, endowed with superior antiproliferative activity. The results show a remarkable reduction in tumour with no evidence of animal suffering. Blood diagnostics, as well as biochemical analysis in both acute and chronic treated animal groups, demonstrate a good tolerability profile at the therapeutic regimen, with 100% of mice survival and no indication of toxicity. In addition, ruthenium plasma concentration analysis and tissue bioaccumulation were determined via appropriate sampling and ICP-MS analysis. Overall, this study supports both the efficacy of our Ru-containing nanosystem versus a human breast cancer model and its safety in vivo through well-tolerated animal biological responses, envisaging a possible forthcoming use in clinical trials.
Collapse
|
19
|
Mahmud KM, Niloy MS, Shakil MS, Islam MA. Ruthenium Complexes: An Alternative to Platinum Drugs in Colorectal Cancer Treatment. Pharmaceutics 2021; 13:1295. [PMID: 34452256 PMCID: PMC8398452 DOI: 10.3390/pharmaceutics13081295] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the intimidating causes of death around the world. CRC originated from mutations of tumor suppressor genes, proto-oncogenes and DNA repair genes. Though platinum (Pt)-based anticancer drugs have been widely used in the treatment of cancer, their toxicity and CRC cells' resistance to Pt drugs has piqued interest in the search for alternative metal-based drugs. Ruthenium (Ru)-based compounds displayed promising anticancer activity due to their unique chemical properties. Ru-complexes are reported to exert their anticancer activities in CRC cells by regulating different cell signaling pathways that are either directly or indirectly associated with cell growth, division, proliferation, and migration. Additionally, some Ru-based drug candidates showed higher potency compared to commercially available Pt-based anticancer drugs in CRC cell line models. Meanwhile Ru nanoparticles coupled with photosensitizers or anticancer agents have also shown theranostic potential towards CRC. Ru-nanoformulations improve drug efficacy, targeted drug delivery, immune activation, and biocompatibility, and therefore may be capable of overcoming some of the existing chemotherapeutic limitations. Among the potential Ru-based compounds, only Ru (III)-based drug NKP-1339 has undergone phase-Ib clinical trials in CRC treatment.
Collapse
Affiliation(s)
- Kazi Mustafa Mahmud
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (K.M.M.); (M.S.N.)
| | - Mahruba Sultana Niloy
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (K.M.M.); (M.S.N.)
| | - Md Salman Shakil
- Department of Pharmacology & Toxicology, University of Otago, Dunedin 9016, New Zealand
- Department of Biochemistry, Primeasia University, Banani, Dhaka 1213, Bangladesh
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| |
Collapse
|
20
|
Hairat S, Zaki M. Half sandwiched RutheniumII complexes: En Route towards the targeted delivery by Human Serum Albumin (HSA). J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Liu ZY, Zhang J, Sun YM, Zhu CF, Lu YN, Wu JZ, Li J, Liu HY, Ye Y. Photodynamic antitumor activity of Ru(ii) complexes of imidazo-phenanthroline conjugated hydroxybenzoic acid as tumor targeting photosensitizers. J Mater Chem B 2021; 8:438-446. [PMID: 31833531 DOI: 10.1039/c9tb02103e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two novel Ru(ii) polypyridyl complexes bearing imidazo-phenanthroline conjugated hydroxybenzoic acid groups were designed to enhance the tumor targeting ability as photosensitizers for photodynamic therapy. [Ru(bpy)2(phcpip)] (ClO4)2 (Ru-1) and [Ru(bpy)2(ohcpip)] (ClO4)2 (Ru-2) (bpy = 2,2'-bipyridine; phcpip = 2-(3-carboxyl-4-hydroxyphenyl) imidazo [4,5-f]phenanthroline; ohcpip = 2-(2-hydroxyl-3-carboxyphenyl) imidazo [4,5-f] [1,10] phenanthroline) were synthesized and their photodynamic antitumor activities were investigated. Both complexes displayed high photocytotoxicity toward cancerous cell lines HepG2, A549, MCF-7, and MDA-MB-231, but low photocytotoxicity toward normal cell lines GES-1 and Huvec. They were mainly localized at the nucleus of HepG2 cells after 24 h incubation, arrested the cell cycle at the G2/M phase and induced cancer cell apoptosis through reactive oxygen species (ROS) mediated pathways. Tumor targeting of the complexes is attributed to stronger molecular binding to DNA.
Collapse
Affiliation(s)
- Ze-Yu Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ferraro MG, Piccolo M, Misso G, Maione F, Montesarchio D, Caraglia M, Paduano L, Santamaria R, Irace C. Breast Cancer Chemotherapeutic Options: A General Overview on the Preclinical Validation of a Multi-Target Ruthenium(III) Complex Lodged in Nucleolipid Nanosystems. Cells 2020; 9:E1412. [PMID: 32517101 PMCID: PMC7349411 DOI: 10.3390/cells9061412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
In this review we have showcased the preclinical development of original amphiphilic nanomaterials designed for ruthenium-based anticancer treatments, to be placed within the current metallodrugs approach leading over the past decade to advanced multitarget agents endowed with limited toxicity and resistance. This strategy could allow for new options for breast cancer (BC) interventions, including the triple-negative subtype (TNBC) with poor therapeutic alternatives. BC is currently the second most widespread cancer and the primary cause of cancer death in women. Hence, the availability of novel chemotherapeutic weapons is a basic requirement to fight BC subtypes. Anticancer drugs based on ruthenium are among the most explored and advanced next-generation metallotherapeutics, with NAMI-A and KP1019 as two iconic ruthenium complexes having undergone clinical trials. In addition, many nanomaterial Ru complexes have been recently conceived and developed into anticancer drugs demonstrating attractive properties. In this field, we focused on the evaluation of a Ru(III) complex-named AziRu-incorporated into a suite of both zwitterionic and cationic nucleolipid nanosystems, which proved to be very effective for the in vivo targeting of breast cancer cells (BBC). Mechanisms of action have been widely explored in the context of preclinical evaluations in vitro, highlighting a multitarget action on cell death pathways which are typically deregulated in neoplasms onset and progression. Moreover, being AziRu inspired by the well-known NAMI-A complex, information on non-nanostructured Ru-based anticancer agents have been included in a precise manner.
Collapse
Affiliation(s)
- Maria Grazia Ferraro
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| | - Marialuisa Piccolo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (G.M.); (M.C.)
| | - Francesco Maione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 421, 80126 Naples, Italy; (D.M.); (L.P.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (G.M.); (M.C.)
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 421, 80126 Naples, Italy; (D.M.); (L.P.)
| | - Rita Santamaria
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| | - Carlo Irace
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.G.F.); (M.P.); (F.M.)
| |
Collapse
|
23
|
Gupta PK, Mishra L. Ecofriendly ruthenium-containing nanomaterials: synthesis, characterization, electrochemistry, bioactivity and catalysis. NANOSCALE ADVANCES 2020; 2:1774-1791. [PMID: 36132502 PMCID: PMC9418862 DOI: 10.1039/d0na00051e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/27/2020] [Indexed: 05/07/2023]
Abstract
Among transition metals, ruthenium being an in-demand element along with its complexes with multidimensional applications in biology, catalysis (especially photocatalysis), and several other aspects of industrial materials, is lacking regards for the potential aspect of its nanoparticles. In the modern synthetic scenario, green synthesis of novel ruthenium nanoparticles for the development of novel materials with potential applications has become a focus. Ru-containing nanomaterials (Ru-cNMs) combined with metals like platinum and palladium or with non-metals like phosphorus and oxygen have shown applications as an anticancer, antimicrobial, and antioxidant agents along with wide-ranging catalytic applications. Reduction of Ru salts using biomaterials including plants etc. has emerged enabling the synthesis of Ru-cNMs. In this context, authors realize that poor availability of literature in this area of research seems to be one of the major handicaps that perhaps could be limiting its attractiveness to researchers. Therefore, it was thought worthwhile to present a review article to encourage, guide, and facilitate scientific researches in green ruthenium nanochemistry embodying synthesis, characterization and biological as well as catalytic applications.
Collapse
Affiliation(s)
- Pranshu K Gupta
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi-221005 India
| | - Lallan Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi-221005 India
| |
Collapse
|
24
|
Fandzloch M, Jaromin A, Zaremba-Czogalla M, Wojtczak A, Lewińska A, Sitkowski J, Wiśniewska J, Łakomska I, Gubernator J. Nanoencapsulation of a ruthenium(ii) complex with triazolopyrimidine in liposomes as a tool for improving its anticancer activity against melanoma cell lines. Dalton Trans 2020; 49:1207-1219. [PMID: 31903475 DOI: 10.1039/c9dt03464a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Two types of ruthenium(ii) complexes containing 1,2,4-triazolo[1,5-a]pyrimidines of the general formulas [RuCl2(dmso)3(L)] ((1)-(3)) and [RuCl2(dmso)2(L)2] ((4)-(6)), where L represents 1,2,4-triazolo[1,5-a]pyrimidine (tp for (1)), 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine (dmtp for (2)), 7-isobutyl-5-methyl-1,2,4-trizolo[1,5-a]pyrimidine (ibmtp for (3)), 5,7-diethyl-1,2,4-triazolo[1,5-a]pyrimidine (detp for (4)), 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine (dbtp for (5)) and 5,7-diphenyl-1,2,4-triazolo[1,5-a]pyrimidine (dptp for (6)), have been synthesized and characterized by elemental analysis, infrared, multinuclear magnetic resonance spectroscopic techniques (1H, 13C, and 15N), and X-ray (for (3), (4), and (5)). All these complexes have been thoroughly screened for their in vitro cytotoxicity against melanoma cell lines A375 and Hs294T, indicating cis,cis,cis-[RuCl2(dbtp)2(dmso)2] (5) as the most active representative, in addition to being non-toxic to normal human fibroblasts (NHDF) and not inducing hemolysis of human erythrocytes. In order to develop an intravenous formulation for (5), liposomes composed of soybean phosphatidylcholine (SPC), cholesterol (Chol) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG2000) were prepared and subsequently characterized. (5)-Loaded liposomes, with spherical morphology, assessed by transmission electron microscope (TEM), exhibited satisfactory encapsulation efficiency and stability. In in vitro experiments, PEG-modified (5)-loaded liposomes were more effective (10-fold) than free (5) for growth inhibition of both human melanoma cell lines. Furthermore, such an approach resulted in the reduction of cancer cell viability that was even 10-fold greater than that observed for free cisplatin.
Collapse
Affiliation(s)
- Marzena Fandzloch
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland and Institute of Low Temperature and Structure Research, PAS, Okólna 2, 50-422 Wrocław, Poland.
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Magdalena Zaremba-Czogalla
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Andrzej Wojtczak
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Agnieszka Lewińska
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Jerzy Sitkowski
- National Institutes of Medicines, Chełmska 30/34, 00-725 Warszawa, Poland and Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Joanna Wiśniewska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Iwona Łakomska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
25
|
Abeadi N, Zhiani R, Motavalizadehkakhky A, Omidwar M, Hosseiny MS. FeNi3 magnetic nanoparticles supported on ruthenium silicate-functionalized DFNS for photocatalytic CO2 reduction to formate. RSC Adv 2020; 10:20536-20542. [PMID: 35517733 PMCID: PMC9054344 DOI: 10.1039/d0ra03928d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
For aerobic oxidation, anchoring ruthenium(ii) in the nanospaces of magnetic dendritic fibrous nanosilica (DFNS) afforded a potential nanocatalyst (the complex FeNi3/DFNS/Ru(ii)), which showed enhanced activity. The FeNi3/DFNS/Ru(ii) complex exhibited excellent catalytic activity in the reduction of carbon dioxide to formate in the presence of visible-light irradiation. We have analyzed its characteristics by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), a vibrating sample magnetometer (VSM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). For aerobic oxidation, anchoring ruthenium(ii) in the nanospaces of magnetic dendritic fibrous nanosilica (DFNS) afforded a potential nanocatalyst (the complex FeNi3/DFNS/Ru(ii)), which showed enhanced activity.![]()
Collapse
Affiliation(s)
- Nader Abeadi
- Department of Chemical Engineering
- Faculty of Sciences
- Islamic Azad University
- Neyshabur Branch
- Neyshabur
| | - Rahele Zhiani
- Department of Chemistry
- Faculty of Sciences
- Islamic Azad University
- Neyshabur Branch
- Neyshabur
| | | | - Maryam Omidwar
- Department of Chemistry
- Faculty of Sciences
- Islamic Azad University
- Quchan Branch
- Quchan
| | - Malihe Sadat Hosseiny
- Department of Chemistry
- Faculty of Sciences
- Islamic Azad University
- Neyshabur Branch
- Neyshabur
| |
Collapse
|
26
|
Liu J, Lai H, Xiong Z, Chen B, Chen T. Functionalization and cancer-targeting design of ruthenium complexes for precise cancer therapy. Chem Commun (Camb) 2019; 55:9904-9914. [PMID: 31360938 DOI: 10.1039/c9cc04098f] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The successful clinical application of the three generation platinum anticancer drugs, cisplatin, carboplatin and oxaliplatin, has promoted research interest in metallodrugs; however, the problems of drug resistance and adverse effects have hindered their further application and effects. Thus, scientists are searching for new anticancer metallodrugs with lower toxicity and higher efficacy. The ruthenium complexes have emerged as the most promising alternatives to platinum-based anticancer agents because of their unique multifunctional biochemical properties. In this review, we first focus on the anticancer applications of various ruthenium complexes in different signaling pathways, including the mitochondria-mediated pathway, the DNA damage-mediated pathway, and the death receptor-mediated pathway. We then discuss the functionalization and cancer-targeting designs of different ruthenium complexes in conjunction with other therapies such as photodynamic therapy, photothermal therapy, radiosensitization, targeted therapy and nanotechnology for precise cancer therapy. This review will help in designing and accelerating the research progress regarding new anticancer ruthenium complexes.
Collapse
Affiliation(s)
- Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou 510120, China
| | | | | | | | | |
Collapse
|
27
|
Riccardi C, Musumeci D, Trifuoggi M, Irace C, Paduano L, Montesarchio D. Anticancer Ruthenium(III) Complexes and Ru(III)-Containing Nanoformulations: An Update on the Mechanism of Action and Biological Activity. Pharmaceuticals (Basel) 2019; 12:E146. [PMID: 31561546 PMCID: PMC6958509 DOI: 10.3390/ph12040146] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
The great advances in the studies on metal complexes for the treatment of different cancer forms, starting from the pioneering works on platinum derivatives, have fostered an increasingly growing interest in their properties and biomedical applications. Among the various metal-containing drugs investigated thus far, ruthenium(III) complexes have emerged for their selective cytotoxic activity in vitro and promising anticancer properties in vivo, also leading to a few candidates in advanced clinical trials. Aiming at addressing the solubility, stability and cellular uptake issues of low molecular weight Ru(III)-based compounds, some research groups have proposed the development of suitable drug delivery systems (e.g., taking advantage of nanoparticles, liposomes, etc.) able to enhance their activity compared to the naked drugs. This review highlights the unique role of Ru(III) complexes in the current panorama of anticancer agents, with particular emphasis on Ru-containing nanoformulations based on the incorporation of the Ru(III) complexes into suitable nanocarriers in order to enhance their bioavailability and pharmacokinetic properties. Preclinical evaluation of these nanoaggregates is discussed with a special focus on the investigation of their mechanism of action at a molecular level, highlighting their pharmacological potential in tumour disease models and value for biomedical applications.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| | - Carlo Irace
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy.
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy.
| |
Collapse
|
28
|
Ilmi R, Tseriotou E, Stylianou P, Christou YA, Ttofi I, Dietis N, Pitris C, Odysseos AD, Georgiades SN. A Novel Conjugate of Bis[((4-bromophenyl)amino)quinazoline], a EGFR-TK Ligand, with a Fluorescent Ru(II)-Bipyridine Complex Exhibits Specific Subcellular Localization in Mitochondria. Mol Pharm 2019; 16:4260-4273. [PMID: 31508966 DOI: 10.1021/acs.molpharmaceut.9b00608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a key target in anticancer research, whose aberrant function in malignancies has been linked to severe irregularities in critical cellular processes, including cell cycle progression, proliferation, differentiation, and survival. EGFR mutant variants, either transmembrane or translocated to the mitochondria and/or the nucleus, often exhibit resistance to EGFR inhibitors. The ability to noninvasively image and quantify EGFR provides novel approaches in the detection, monitoring, and treatment of EGFR-related malignancies. The current study aimed to deliver a new theranostic agent that combines fluorescence imaging properties with EGFR inhibition. This was achieved via conjugation of an in-house-developed ((4-bromophenyl)amino)quinazoline inhibitor of mutant EGFR-TK, selected from a focused aminoquinazoline library, with a [Ru(bipyridine)3]2+ fluorophore. A triethyleneglycol-derived diamino linker featuring (+)-ionizable sites was employed to link the two functional moieties, affording two unprecedented Ru conjugates with 1:1 and 2:1 stoichiometry of aminoquinazoline to the Ru complex (mono-quinazoline-Ru-conjugate and bis-quinazoline-Ru-conjugate, respectively). The bis-quinazoline-Ru-conjugate, which retains an essential inhibitory activity, was found by fluorescence imaging to be effectively uptaken by Uppsala 87 malignant glioma (grade IV malignant glioma) cells. The fluorescence imaging study and a time-resolved fluorescence resonance energy transfer study indicated a specific subcellular distribution of the conjugate that coincides with that of a mitochondria-targeted dye, suggesting mitochondrial localization of the conjugate and potential association with mitochondria-translocated forms of EGFR. Mitochondrial localization was further documented by the specific concentration of the bis-quinazoline-Ru-conjugate in a mitochondrial isolation assay.
Collapse
Affiliation(s)
- Rashid Ilmi
- EPOS-Iasis, R&D , 5 Karyatidon Street , Nicosia 2028 , Cyprus
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fedorenko S, Stepanov A, Sibgatullina G, Samigullin D, Mukhitov A, Petrov K, Mendes R, Rümmeli M, Giebeler L, Weise B, Gemming T, Nizameev I, Kholin K, Mustafina A. Fluorescent magnetic nanoparticles for modulating the level of intracellular Ca 2+ in motoneurons. NANOSCALE 2019; 11:16103-16113. [PMID: 31432850 DOI: 10.1039/c9nr05071j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This report introduces both synthesis and in vitro biological behaviour of dual magnetic-fluorescent silica nanoparticles. The amino group-decoration of 78 nm sized silica nanoparticles enables their efficient internalization into motoneurons, which is visualized by the red fluorescence arising from [Ru(dipy)3]2+ complexes encapsulated into a silica matrix. The internalized nanoparticles are predominantly located in the cell cytoplasm as revealed by confocal microscopy imaging. The magnetic function of the nanoparticles resulted from the incorporation of 17 nm sized superparamagnetic iron oxide cores into the silica matrix, enabling their responsivity to magnetic fields. Fluorescence analysis revealed the "on-off" switching of Ca2+ influx under the application and further removal of the permanent magnetic field. This result for the first time highlights the movement of the nanoparticles within the cell cytoplasm in the permanent magnetic field as a promising tool to enhance the neuronal activity of motoneurons.
Collapse
Affiliation(s)
- Svetlana Fedorenko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Design of organoruthenium complexes for nanoparticle functionalization. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Piccolo M, Misso G, Ferraro MG, Riccardi C, Capuozzo A, Zarone MR, Maione F, Trifuoggi M, Stiuso P, D'Errico G, Caraglia M, Paduano L, Montesarchio D, Irace C, Santamaria R. Exploring cellular uptake, accumulation and mechanism of action of a cationic Ru-based nanosystem in human preclinical models of breast cancer. Sci Rep 2019; 9:7006. [PMID: 31065032 PMCID: PMC6505035 DOI: 10.1038/s41598-019-43411-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 01/15/2019] [Indexed: 01/07/2023] Open
Abstract
According to WHO, breast cancer incidence is increasing so that the search for novel chemotherapeutic options is nowadays an essential requirement to fight neoplasm subtypes. By exploring new effective metal-based chemotherapeutic strategies, many ruthenium complexes have been recently proposed as antitumour drugs, showing ability to impact on diverse cellular targets. In the framework of different molecular pathways leading to cell death in human models of breast cancer, here we demonstrate autophagy involvement behind the antiproliferative action of a ruthenium(III)-complex incorporated into a cationic nanosystem (HoThyRu/DOTAP), proved to be hitherto one of the most effective within the suite of nucleolipidic formulations we have developed for the in vivo transport of anticancer ruthenium(III)-based drugs. Indeed, evidences are implicating autophagy in both cancer development and therapy, and anticancer interventions endowed with the ability to trigger this biological response are currently considered attractive oncotherapeutic approaches. Moreover, crosstalk between apoptosis and autophagy, regulated by finely tuned metallo-chemotherapeutics, may provide novel opportunities for future improvement of cancer treatment. Following this line, our in vitro and in vivo preclinical investigations suggest that an original strategy based on suitable formulations of ruthenium(III)-complexes, inducing sustained cell death, could open new opportunities for breast cancer treatment, including the highly aggressive triple-negative subtype.
Collapse
Affiliation(s)
- Marialuisa Piccolo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138, Naples, Italy
| | - Maria Grazia Ferraro
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, 80126, Naples, Italy
| | - Antonella Capuozzo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Mayra Rachele Zarone
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138, Naples, Italy
| | - Francesco Maione
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, 80126, Naples, Italy
| | - Paola Stiuso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138, Naples, Italy
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, 80126, Naples, Italy
- CSGI - Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138, Naples, Italy
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, 80126, Naples, Italy.
- CSGI - Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, 80126, Naples, Italy.
| | - Carlo Irace
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy.
| | - Rita Santamaria
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| |
Collapse
|
32
|
Nagaraja S, Ankri S. Target identification and intervention strategies against amebiasis. Drug Resist Updat 2019; 44:1-14. [PMID: 31112766 DOI: 10.1016/j.drup.2019.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022]
Abstract
Entamoeba histolytica is the etiological agent of amebiasis, which is an endemic parasitic disease in developing countries and is the cause of approximately 70,000 deaths annually. E. histolytica trophozoites usually reside in the colon as a non-pathogenic commensal in most infected individuals (90% of infected individuals are asymptomatic). For unknown reasons, these trophozoites can become virulent and invasive, cause amebic dysentery, and migrate to the liver where they cause hepatocellular damage. Amebiasis is usually treated either by amebicides which are classified as (a) luminal and are active against the luminal forms of the parasite, (b) tissue and are effective against those parasites that have invaded tissues, and (c) mixed and are effective against the luminal forms of the parasite and those forms which invaded the host's tissues. Of the amebicides, the luminal amebicide, metronidazole (MTZ), is the most widely used drug to treat amebiasis. Although well tolerated, concerns about its adverse effects and the possible emergence of MTZ-resistant strains of E. histolytica have led to the development of new therapeutic strategies against amebiasis. These strategies include improving the potency of existing amebicides, discovering new uses for approved drugs (repurposing of existing drugs), drug rediscovery, vaccination, drug targeting of essential E. histolytica components, and the use of probiotics and bioactive natural products. This review examines each of these strategies in the light of the current knowledge on the gut microbiota of patients with amebiasis.
Collapse
Affiliation(s)
- Shruti Nagaraja
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
33
|
Potential anticancer applications of the novel naringin-based ruthenium (II) complex. 3 Biotech 2019; 9:181. [PMID: 31065481 DOI: 10.1007/s13205-019-1718-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022] Open
Abstract
Ruthenium seems to be a promising alternative to platinum because of the wide range of oxidation states it has and its ability to form complexes with bioactive ligands. In this study, naringin, a naturally occurring flavonoid, was used to synthesize a novel ruthenium complex with potential anticancer activity. The characterization of the synthesized complex was done by UV-Vis spectroscopy, FTIR and NMR studies. In addition, the complex was tested against Human A549 cell lines to determine the anticancer effect, and against human dermal fibroblasts (HDFa) to find any underlying toxicity. Further, the morphological changes of the cancer cells can be determined by using bio-atomic force microscopy. Results showed that the synthesized complex was able to induce anticancer effects against A549 with minimal impact to HDFa. In this study, we investigated the anticancer properties of naringin-ruthenium (II) complex using live- and dead-cell staining assay, MTT, Trypan blue, and lactate dehydrogenase assay. Further, morphological changes were observed in the A549 cells using Bio-AFM. The Bio-AFM results have proven the better cytotoxic behavior of naringin-ruthenium (II) complex. The cell viability results also provided the anticancer efficacy of the complex.
Collapse
|
34
|
Fei Z, Chen F, Zhong M, Qiu J, Li W, Sadeghzadeh SM. Synthesis and characterization of a novel ruthenium(ii) trisbipyridine complex magnetic nanocomposite for the selective oxidation of phenols. RSC Adv 2019; 9:28078-28088. [PMID: 35530489 PMCID: PMC9070753 DOI: 10.1039/c9ra05079e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/14/2019] [Indexed: 12/31/2022] Open
Abstract
Anchoring ruthenium(ii) trisbipyridine complex [Ru(Bpy)3]2+ into a magnetic dendritic fibrous silica nanostructure produces an unprecedented strong nanocatalyst, FeNi3/DFNS/[Ru(Bpy)3]2+.
Collapse
Affiliation(s)
- Zhengxin Fei
- College of Material Science and Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
- Jinhua Polytechnic
| | - Feng Chen
- College of Material Science and Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Mingqiang Zhong
- College of Material Science and Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | | | - Weidong Li
- Polytechnic Institute of Qianjiang College
- Hangzhou Normal University
- Hangzhou
- China
| | - Seyed Mohsen Sadeghzadeh
- New Materials Technology and Processing Research Center
- Department of Chemistry
- Neyshabur Branch
- Islamic Azad University
- Neyshabur
| |
Collapse
|
35
|
Lu M, Henry CE, Lai H, Khine YY, Ford CE, Stenzel MH. A new 3D organotypic model of ovarian cancer to help evaluate the antimetastatic activity of RAPTA-C conjugated micelles. Biomater Sci 2019; 7:1652-1660. [DOI: 10.1039/c8bm01326h] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel 3D co-culture model of ovarian cancer can be used to test the efficacy of nanomedicine.
Collapse
Affiliation(s)
- Mingxia Lu
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Claire E. Henry
- Gynaecological Cancer Research Group
- Lowy Cancer Research Centre and School of Women's and Children's Health
- Faculty of Medicine
- University of New South Wales
- Sydney
| | - Haiwang Lai
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Yee Yee Khine
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Caroline E. Ford
- Gynaecological Cancer Research Group
- Lowy Cancer Research Centre and School of Women's and Children's Health
- Faculty of Medicine
- University of New South Wales
- Sydney
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| |
Collapse
|
36
|
Buddolla AL, Kim S. Recent insights into the development of nucleic acid-based nanoparticles for tumor-targeted drug delivery. Colloids Surf B Biointerfaces 2018; 172:315-322. [DOI: 10.1016/j.colsurfb.2018.08.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/14/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022]
|
37
|
Gouveia M, Figueira J, Jardim MG, Castro R, Tomás H, Rissanen K, Rodrigues J. Poly(alkylidenimine) Dendrimers Functionalized with the Organometallic Moiety [Ru(η⁵-C₅H₅)(PPh₃)₂]⁺ as Promising Drugs Against Cisplatin-Resistant Cancer Cells and Human Mesenchymal Stem Cells. Molecules 2018; 23:E1471. [PMID: 29914219 PMCID: PMC6100097 DOI: 10.3390/molecules23061471] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 02/05/2023] Open
Abstract
Here and for the first time, we show that the organometallic compound [Ru(η⁵-C₅H₅)(PPh₃)₂Cl] (RuCp) has potential to be used as a metallodrug in anticancer therapy, and further present a new approach for the cellular delivery of the [Ru(η⁵-C₅H₅)(PPh₃)₂]⁺ fragment via coordination on the periphery of low-generation poly(alkylidenimine) dendrimers through nitrile terminal groups. Importantly, both the RuCp and the dendrimers functionalized with [Ru(η⁵-C₅H₅)(PPh₃)₂]⁺ fragments present remarkable toxicity towards a wide set of cancer cells (Caco-2, MCF-7, CAL-72, and A2780 cells), including cisplatin-resistant human ovarian carcinoma cell lines (A2780cisR cells). Also, RuCp and the prepared metallodendrimers are active against human mesenchymal stem cells (hMSCs), which are often found in the tumor microenvironment where they seem to play a role in tumor progression and drug resistance.
Collapse
Affiliation(s)
- Marisol Gouveia
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal.
| | - João Figueira
- Department of Chemistry, ScilifeLab, Umeå University, KBC-Building, Linnaeus väg 6, 90736 Umeå, Sweden.
| | - Manuel G Jardim
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal.
| | - Rita Castro
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal.
| | - Helena Tomás
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal.
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, P.O. Box. 35, FI-40014 Jyväskylä, Finland.
| | - João Rodrigues
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal.
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
38
|
Gouveia M, Figueira J, Jardim M, Castro R, Tomás H, Rissanen K, Rodrigues J. Poly(alkylidenimine) Dendrimers Functionalized with the Organometallic Moiety [Ru(η5-C5H5)(PPh3)2]+ as Promising Drugs Against Cisplatin-Resistant Cancer Cells and Human Mesenchymal Stem Cells. Molecules 2018. [DOI: https://doi.org/10.3390/molecules23061471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
39
|
Synthesis and characterization of kaempferol-based ruthenium (II) complex: A facile approach for superior anticancer application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:87-94. [PMID: 29752123 DOI: 10.1016/j.msec.2018.03.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/31/2018] [Accepted: 03/21/2018] [Indexed: 12/24/2022]
Abstract
In this study, we synthesized a novel metal flavonoid complex and investigated its effects on the non-small cell lung cancer cell lines, A549 and toxicity on the human dermal fibroblast cell lines, HDFa. 1H, 13C NMR, single crystal X-ray diffraction and elemental micro analysis (C,H,N,S/O) were used to characterize the synthesized kaempferol-based Ru (II) complex. Cell toxicity was studied using MTT assay and electric cell substrate impedance sensing (ECIS). It was evident from the MTT results that no significant cytotoxicity in HDFa cells occurs with the synthesized complex, but in case of A549 cells, significant cytotoxicity was observed even at low concentrations (10-20 μm). In addition, the effect of the newly synthesized complex on the A549 cell line was studied by investigating the cellular damage via atomic force microscopy and DNA fragmentation assay. The obtained results revealed that the synthesized complex was able to inhibit the cancer cells and have shown moderate anticancer activity against A549 cancer cell lines. In addition, it was evident that the complex was more active than kaempferol and well tolerated by normal cell lines.
Collapse
|