1
|
Peev S, Yotsova R, Parushev I. Histomorphometric Analysis of Osseointegrated Intraosseous Dental Implants Using Undecalcified Specimens: A Scoping Review. Biomimetics (Basel) 2024; 9:672. [PMID: 39590244 PMCID: PMC11592138 DOI: 10.3390/biomimetics9110672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/19/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Bone histology and histomorphometry are reliable diagnostic tools for the assessment of the bone-implant interface, material safety and biocompatibility, and tissue response. They allow for the qualitative and quantitative analysis of undecalcified bone specimens. This scoping review aims to identify the most common staining techniques, study models for in vivo experiments, and histomorphometric parameters used for quantitative bone evaluation of osseointegrated dental implants in the last decade. The Web of Science, PubMed, and Scopus databases were searched on 1 July 2024 for relevant articles in English, published in the last ten years, and the data were exported to an MS Excel spreadsheet. A total of 115 studies met the eligibility criteria and were included in the present review. The results indicate that the most common study models are dogs, rabbits, and pigs. Some of the most frequently used methods for the assessment of the bone-implant interface are the Toluidine blue, Stevenel's blue with Van Gieson, and Levai-Laczko stainings. The results from this study demonstrate that the most commonly used histomorphometric parameters in implant dentistry are the bone-to-implant contact (BIC), bone area fraction occupancy (BAFO), bone area (BA), and bone density (BD). This review presents the recent trends in histomorphometric analysis of dental implants and identifies some research gaps that necessitate further research.
Collapse
Affiliation(s)
- Stefan Peev
- Department of Periodontology and Dental Implantology, Faculty of Dental Medicine, Medical University of Varna, 9002 Varna, Bulgaria;
| | - Ralitsa Yotsova
- Department of Oral Surgery, Faculty of Dental Medicine, Medical University of Varna, 9002 Varna, Bulgaria
| | - Ivaylo Parushev
- Department of Clinical Medical Sciences, Faculty of Dental Medicine, Medical University of Varna, 9002 Varna, Bulgaria;
| |
Collapse
|
2
|
Safin Kaosar Saad K, Saba T, Bin Rashid A. Application of PVD coatings in medical implantology for enhanced performance, biocompatibility, and quality of life. Heliyon 2024; 10:e35541. [PMID: 39220946 PMCID: PMC11363861 DOI: 10.1016/j.heliyon.2024.e35541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Physical vapor deposition (PVD) coating is a versatile and well-liked method for depositing thin films of materials onto surfaces in a range of industries. Due to their numerous functional and aesthetic benefits, PVD coatings are beneficial in several applications, from electronics and optics to automotive and medical equipment. PVD coating technology dramatically improves the effectiveness and quality of medical implants. PVD-coated medical implants improve osseointegration, lower wear and friction, increase corrosion resistance, and have antibacterial properties, which lead to better patient outcomes, fewer complications, and overall higher quality of life for people who need implantable medical devices. The essential concepts of PVD coating and the numerous deposition techniques and materials used are covered at the study's outset. The specific uses of PVD-coated medical implants are then highlighted, including those for orthopedic and dental implants and cardiovascular and neurosurgical devices. The review also emphasizes the critical contribution of PVD coatings to reducing wear and friction, improving corrosion resistance, augmenting biocompatibility, enhancing osseointegration, and aesthetic appeal. The challenges and prospects of PVD coating technologies were further addressed in this article. This review is invaluable for academics, doctors, and businesspeople interested in the beneficial combination of PVD coating and medical implantology.
Collapse
Affiliation(s)
- Khondoker Safin Kaosar Saad
- Department of Industrial and Production Engineering, Military Institute of Science and Technology (MIST), Dhaka, 1216, Bangladesh
| | - Tasfia Saba
- Department of Industrial and Production Engineering, Military Institute of Science and Technology (MIST), Dhaka, 1216, Bangladesh
| | - Adib Bin Rashid
- Department of Industrial and Production Engineering, Military Institute of Science and Technology (MIST), Dhaka, 1216, Bangladesh
| |
Collapse
|
3
|
Alshammari H, Neilands J, Jeppesen CS, Almtoft KP, Andersen OZ, Stavropoulos A. Antimicrobial Potential of Strontium-Functionalized Titanium Against Bacteria Associated With Peri-Implantitis. Clin Exp Dent Res 2024; 10:e903. [PMID: 39031165 PMCID: PMC11258639 DOI: 10.1002/cre2.903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 12/30/2023] [Indexed: 07/22/2024] Open
Abstract
OBJECTIVES To explore the antimicrobial potential of strontium (Sr)-functionalized wafers against multiple bacteria associated with per-implant infections, in both mono- and multispecies biofilms. MATERIALS AND METHODS The bactericidal and bacteriostatic effect of silicon wafers functionalized with a strontium titanium oxygen coating (Sr-Ti-O) or covered only with Ti (controls) against several bacteria, either grown as a mono-species or multispecies biofilms, was assessed using a bacterial viability assay and a plate counting method. Mono-species biofilms were assessed after 2 and 24 h, while the antimicrobial effect on multispecies biofilms was assessed at Days 1, 3, and 6. The impact of Sr functionalization on the total percentage of Porphyromonas gingivalis in the multispecies biofilm, using qPCR, and gingipain activity was also assessed. RESULTS Sr-functionalized wafers, compared to controls, were associated with statistically significant less viable cells in both mono- and multispecies tests. The number of colony forming units (CFUs) within the biofilm was significantly less in Sr-functionalized wafers, compared to control wafers, for Staphylococcus aureus at all time points of evaluation and for Escherichia coli at Day 1. Gingipain activity was less in Sr-functionalized wafers, compared to control wafers, and the qPCR showed that P. gingivalis remained below detection levels at Sr-functionalized wafers, while it consisted of 15% of the total biofilm on control wafers at Day 6. CONCLUSION Sr functionalization displayed promising antimicrobial potential, possessing bactericidal and bacteriostatic ability against bacteria associated with peri-implantitis grown either as mono-species or mixed in a multispecies consortium with several common oral microorganisms.
Collapse
Affiliation(s)
- Hatem Alshammari
- Department of Preventive Dentistry, College of DentistryUniversity of HailHailSaudi Arabia
- Periodontology, Faculty of OdontologyUniversity of MalmöMalmöSweden
| | - Jessica Neilands
- Department of Oral Biology, Faculty of OdontologyUniversity of MalmöMalmöSweden
| | | | | | - Ole Zoffmann Andersen
- Department of PeriodontologyUniversity of BernBernSwitzerland
- Institute Straumann AGBaselSwitzerland
| | - Andreas Stavropoulos
- Periodontology, Faculty of OdontologyUniversity of MalmöMalmöSweden
- Department of PeriodontologyUniversity of BernBernSwitzerland
- Division of Conservative Dentistry and PeriodontologyUniversity Clinic of Dentistry, Medical University of ViennaViennaAustria
- Department of PeriodontologyBlekinge HospitalKarlskronaSweden
| |
Collapse
|
4
|
Isler SC, Bellon B, Foss M, Pippenger B, Stavropoulos A, Andersen OZ. Assessing the osseointegration potential of a strontium releasing nanostructured titanium oxide surface: A biomechanical study in the rabbit tibia plateau model. Clin Exp Dent Res 2024; 10:e812. [PMID: 38044566 PMCID: PMC10860460 DOI: 10.1002/cre2.812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023] Open
Abstract
OBJECTIVES To investigate the impact of a Ti-Sr-O technology, applied to either a turned surface or an SLA surface, on the mechanical robustness of osseointegration, benchmarked against the SLActive surface. MATERIAL AND METHODS Ti discs (6.25-mm-diameter and 2-mm-thick) with three different surfaces were inserted on the proximal-anterior part of the tibial plateau of adult Swedish loop rabbits: (I) turned surface modified with Ti-Sr-O (turned + Ti-Sr-O), (II) SLA surface modified with Ti-Sr-O (SLA + Ti-Sr-O), and (III) SLActive surface (SLActive). Following a healing period of 2 weeks and 4 weeks, the pull-out (PO) force needed to detach the discs from the bone was assessed, as a surrogate of osseointegration. RESULTS The SLActive surface exhibited statistically significant higher median PO forces, compared with the SLA + Ti-Sr-O surfaces at both 2- and 4 weeks post-op (p > .05). In this study, no single turned + Ti-Sr-O surface disk was integrated. CONCLUSIONS The tested Ti-Sr-O technology failed to enhance osseointegration; however, this finding may be related to the inappropriateness of the rabbit tibia plateau model for assessing third-generation implant surface technologies, due to the limited diffusion and clearance at the disk-bone interface.
Collapse
Affiliation(s)
- Sila Cagri Isler
- Department of Periodontology, School of Dental MedicineUniversity of BernBernSwitzerland
- Department of Periodontology, Faculty of DentistryGazi UniversityAnkaraTurkey
| | - Benjamin Bellon
- Preclinical & Translational ResearchInstitut Straumann AGBaselSwitzerland
- Department of Periodontology, Faculty of DentistryUniversity of ZurichZurichSwitzerland
| | - Morten Foss
- iNANO and Department of Physics and AstronomyScience and TechnologyAarhusDenmark
| | - Benjamin Pippenger
- Department of Periodontology, School of Dental MedicineUniversity of BernBernSwitzerland
- Preclinical & Translational ResearchInstitut Straumann AGBaselSwitzerland
| | - Andreas Stavropoulos
- Department of Periodontology, School of Dental MedicineUniversity of BernBernSwitzerland
- Department of Periodontology, Faculty of OdontologyMalmö UniversityMalmöSweden
- Division of Conservative Dentistry and Periodontology, University Clinic of DentistryMedical University of ViennaViennaAustria
| | - Ole Zoffmann Andersen
- Department of Periodontology, School of Dental MedicineUniversity of BernBernSwitzerland
- Preclinical & Translational ResearchInstitut Straumann AGBaselSwitzerland
| |
Collapse
|
5
|
Teixeira JFL, de Souza JAC, Magalhães FAC, de Oliveira GJPL, de Santis JB, de Souza Costa CA, de Souza PPC. Laser-Modified Ti Surface Improves Paracrine Osteogenesis by Modulating the Expression of DKK1 in Osteoblasts. J Funct Biomater 2023; 14:jfb14040224. [PMID: 37103314 PMCID: PMC10145280 DOI: 10.3390/jfb14040224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Titanium surface modifications are widely used to modulate cellular behavior by recognition of topographical cues. However, how those modifications affect the expression of mediators that will influence neighboring cells is still elusive. This study aimed to evaluate the effects of conditioned media from osteoblasts cultured on laser-modified titanium surfaces on the differentiation of bone marrow cells in a paracrine manner and to analyze the expression of Wnt pathway inhibitors. Mice calvarial osteoblasts were seeded on polished (P) and Yb:YAG laser-irradiated (L) Ti surfaces. Osteoblast culture media were collected and filtered on alternate days to stimulate mice BMCs. Resazurin assay was performed every other day for 20 days to check BMC viability and proliferation. After 7 and 14 days of BMCs maintained with osteoblasts P and L-conditioned media, alkaline phosphatase activity, Alizarin Red staining, and RT-qPCR were performed. ELISA of conditioned media was conducted to investigate the expression of Wnt inhibitors Dickkopf-1 (DKK1) and Sclerostin (SOST). BMCs showed increased mineralized nodule formation and alkaline phosphatase activity. The L-conditioned media enhanced the BMC mRNA expression of bone-related markers Bglap, Alpl, and Sp7. L-conditioned media decreased the expression of DKK1 compared with P-conditioned media. The contact of osteoblasts with Yb:YAG laser-modified Ti surfaces induces the regulation of the expression of mediators that affect the osteoblastic differentiation of neighboring cells. DKK1 is among these regulated mediators.
Collapse
Affiliation(s)
- Jorge Felipe Lima Teixeira
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara 14801-385, Brazil
| | | | | | | | - José Bernardo de Santis
- Department of Basic and Oral Biology, Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, Brazil
| | - Carlos Alberto de Souza Costa
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara 14801-385, Brazil
| | - Pedro Paulo Chaves de Souza
- Innovation in Biomaterials Laboratory (iBioM), School of Dentistry, Federal University of Goiás, Goiânia 74605-020, Brazil
| |
Collapse
|
6
|
Wang Z, Zhang J, Hu J, Yang G. Gene-activated titanium implants for gene delivery to enhance osseointegration. BIOMATERIALS ADVANCES 2022; 143:213176. [PMID: 36327825 DOI: 10.1016/j.bioadv.2022.213176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Osseointegration is the direct and intimate contact between mineralized tissue and titanium implant at the bone-implant interface. Early establishment and stable maintenance of osseointegration is the key to long-term implant success. However, in patients with compromised conditions such as osteoporosis and patients beginning early load-bearing activities such as walking, lower osseointegration around titanium implants is often observed, which might result in implant early failure. Gene-activated implants show an exciting prospect of combining gene delivery and biomedical implants to solve the problems of poor osseointegration formation, overcoming the shortcomings of protein therapy, including rapid degradation and overdose adverse effects. The conception of gene-activated titanium implants is based on "gene-activated matrix" (GAM), which means scaffolds using non-viral vectors for in situ gene delivery to achieve a long-term and efficient transfection of target cells. Current preclinical studies in animal models have shown that plasmid DNA (pDNA), microRNA (miRNA), and small interference RNA (siRNA) functionalized titanium implants can enhance osseointegration with safety and efficiency, leading to the expectation of applying this technique in dental and orthopedic clinical scenarios. This review aims to comprehensively summarize fabrication strategies, current applications, and futural outlooks of gene-activated implants, emphasizing nucleic acid targets, non-viral vectors, implant surface modification techniques, nucleic acid/vector complexes loading strategies.
Collapse
Affiliation(s)
- Zhikang Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jing Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jinxing Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
7
|
Matos FG, Santana LCL, Cominotte MA, da Silva FS, Vaz LG, de Oliveira DP, Cirelli JA. Strontium-loaded titanium-15molybdenum surface improves physicochemical and biological properties in vitro. Biomed Phys Eng Express 2022; 8. [PMID: 35594845 DOI: 10.1088/2057-1976/ac71cf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/20/2022] [Indexed: 11/11/2022]
Abstract
The titanium alloy composition and microdesign affect the dynamic interplay between the bone cells and titanium surface in the osseointegration process. The current study aimed to evaluate the surface physicochemical properties, electrochemical stability, and the metabolic response of the MC3T3-E1 cells (pre-osteoblast cell line) cultured onto titanium-15molybdenum (Ti-15Mo) discs treated with phosphoric acid (H3PO4) and sodium hydroxide (NaOH) and/or strontium-loading by the hydrothermal method. The x-ray dispersive energy spectroscopy (EDS) and x-ray diffraction (XRD) analysis showed no trace of impurities and the possible formation of hydrated strontium oxide (H2O2Sr), respectively. The confocal laser microscopy (CLSM) analysis indicated that titanium samples treated with strontium (Sr) showed greater surface roughness. The acid/alkali treatment prior to the hydrothermal Sr deposition improved the surface free energy and resistance to corrosion of the Ti-15Mo alloy. The acid/alkali treatment also provided greater retention of the Sr particles on the Ti-15Mo surfaces accordingly with inductively coupled plasma optical emission spectrometry (ICP-OES) analysis. The AlamarBlue and fluorescence analysis indicated noncytotoxic effects against the MC3T3-E1 cells, which allowed cells' adhesion and proliferation, with greater cells' spreading in the Sr-loaded Ti-15Mo samples. These findings suggest that Sr deposition by the hydrothermal method has the potential to enhance the physicochemical properties of the Ti-15Mo previously etched with H3PO4and NaOH, and also improve the initial events related to cell-mediated bone deposition.
Collapse
Affiliation(s)
- Flávia Gomes Matos
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Luís Carlos Leal Santana
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Mariana Aline Cominotte
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, SP, Brazil
| | | | - Luís Geraldo Vaz
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Diego Pedreira de Oliveira
- Department of Materials Engineering-DEMa, Federal University of São Carlos-UFSCar, São Carlos, SP, Brazil
| | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University-UNESP, Araraquara, SP, Brazil
| |
Collapse
|
8
|
Park JW, Seo JH, Lee HJ. Enhanced osteogenic differentiation of mesenchymal stem cells by surface lithium modification in a sandblasted/acid-etched titanium implant. J Biomater Appl 2022; 37:447-458. [PMID: 35594165 DOI: 10.1177/08853282221104242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study investigated the osteogenesis-related cell functions of osteoprogenitor cells modulated by surface chemistry modification using lithium (Li) ions in a current clinical oral implant surface in order to gain insights into the future development of titanium (Ti) implants with enhanced osteogenic capacity. Wet chemical treatment was performed to modify a sandblasted/acid-etched (SLA) Ti implant surface using Li ions. The osteogenesis-related cell response to the surface Li ion-modified SLA sample was evaluated using two kinds of murine bone marrow stem cells, bipotent ST2 cells and primary multipotent mesenchymal stem cells (MSCs). The modified surface exhibited the formation of an Li-containing Ti oxide layer with plate-like nanostructures. The Li-incorporated surface enhanced early cellular events, including spreading, focal adhesion formation and integrin mRNA expression (α2, α5, αv and β3), and accelerated osteogenic differentiation of bipotent ST2 cells compared with unmodified SLA surface. Surface Li modification significantly increased GSK-3β phosphorylation and suppressed β-catenin phosphorylation, and promoted the subsequent osteogenic differentiation of primary MSCs. These results indicate that surface chemistry modification of SLA implants by wet chemical treatment with Li ions induces a more favorable osseointegration outcome through the promotion of the osteogenic differentiation of bone marrow MSCs via the positive regulation of GSK-3β and β-catenin activity.
Collapse
Affiliation(s)
- Jin-Woo Park
- Department of Periodontology, School of Dentistry, 65498Kyungpook National University, Daegu, Korea.,Jin-Woo Park, Department of Periodontology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-Gu, Daegu 41940, Korea.
| | - Ji-Hun Seo
- Department of Materials Science and Engineering, 542877Korea University, Seoul, Korea
| | - Heon-Jin Lee
- School of Dentistry, 65498Kyungpook National University, Daegu, Korea
| |
Collapse
|
9
|
Rezaei M, Davani F, Alishahi M, Masjedi F. Updates in immunocompatibility of biomaterials: applications for regenerative medicine. Expert Rev Med Devices 2022; 19:353-367. [PMID: 35531761 DOI: 10.1080/17434440.2022.2075730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Biomaterials, either metallic, ceramic, or polymeric, can be used in medicine as a part of the implants, dialysis membranes, bone scaffolds, or components of artificial organs. Polymeric biomaterials cover a vast range of biomedical applications. The biocompatibility and immunocompatibility of polymeric materials are of fundamental importance for their possible therapeutic uses, as the immune system can intervene in the materials' performance. Therefore, based on application, different routes can be utilized for immunoregulation. AREAS COVERED As different biomaterials can be modulated by different strategies, this study aims to summarize and evaluate the available methods for the immunocompatibility enhancement of more common polymeric biomaterials based on their nature. Different strategies such as surface modification, physical characterization, and drug incorporation are investigated for the immunomodulation of nanoparticles, hydrogels, sponges, and nanofibers. EXPERT OPINION Recently, strategies for triggering appropriate immune responses by functional biomaterials have been highlighted. As most strategies correspond to the physical and surface properties of biomaterials, specific modulation can be conducted for each biomaterial system. Besides, different applications require different modulations of the immune system. In the future, the selection of novel materials and immune regulators can play a role in tuning the immune system for regenerative medicine.
Collapse
Affiliation(s)
- Mahdi Rezaei
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Farideh Davani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Alishahi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Masjedi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Christensen TEK, Berglund Davidsen M, Van Malderen S, Garrevoet J, Offermanns V, Andersen OZ, Foss M, Birkedal H. Local Release of Strontium from Sputter-Deposited Coatings at Implants Increases the Strontium-to-Calcium Ratio in Peri-implant Bone. ACS Biomater Sci Eng 2022; 8:620-625. [PMID: 35099935 DOI: 10.1021/acsbiomaterials.1c01004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is well known that strontium (Sr) has a significant effect on peri-implant bone healing when administered systemically. Due to the risk of adverse effects of such treatments, new routes focusing on the local, sustained release of Sr from bone-implant contact surfaces have been explored, with success in in vivo experiments. However, the increase of Sr concentrations in the peri-implant bone has not been described in depth yet. Here, we show that a local, sustained Sr release from Ti-Sr-O physical vapor deposition (PVD) coatings by magnetron sputter coating increases the Sr/Ca ratio close to the implant in a rabbit model and that the Sr/Ca background level is reached approximately 500 μm from the implant.
Collapse
Affiliation(s)
- Thorbjørn Erik Køppen Christensen
- Department of Chemistry and iNANO, Faculty of Natural Sciences, Aarhus University, 14 Gustav Wieds Vej, 8000 Aarhus, Denmark.,Sino-Danish College (SDC), University of Chinese Academy of Sciences
| | - Maiken Berglund Davidsen
- Department of Chemistry and iNANO, Faculty of Natural Sciences, Aarhus University, 14 Gustav Wieds Vej, 8000 Aarhus, Denmark
| | - Stijn Van Malderen
- Deutsches Elektronen Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany
| | - Jan Garrevoet
- Deutsches Elektronen Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany
| | | | | | - Morten Foss
- Sino-Danish College (SDC), University of Chinese Academy of Sciences.,iNANO and Department of Physics and Astronomy, Faculty of Natural Sciences, Aarhus University, 14 Gustav Wieds Vej, 8000 Aarhus, Denmark
| | - Henrik Birkedal
- Department of Chemistry and iNANO, Faculty of Natural Sciences, Aarhus University, 14 Gustav Wieds Vej, 8000 Aarhus, Denmark
| |
Collapse
|
11
|
Osteogenic Differentiation of Human Mesenchymal Stem Cells Modulated by Surface Manganese Chemistry in SLA Titanium Implants. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5339090. [PMID: 35071596 PMCID: PMC8776456 DOI: 10.1155/2022/5339090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022]
Abstract
The manganese (Mn) ion has recently been probed as a potential candidate element for the surface chemistry modification of titanium (Ti) implants in order to develop a more osteogenic surface with the expectation of taking advantage of its strong binding affinity to the integrins on bone-forming cells. However, the exact mechanism of how Mn enhances osteogenesis when introduced into the surface of Ti implants is not clearly understood. This study investigated the corrosion resistance and potential osteogenic capacity of a Mn-incorporated Ti surface as determined by electrochemical measurement and examining the behaviors of human mesenchymal stem cells (MSCs) in a clinically available sandblasted/acid-etched (SLA) oral implant surface intended for future biomedical applications. The surface that resulted from wet chemical treatment exhibited the formation of a Mn-containing nanostructured TiO2 anatase thin film in the SLA implant and improved corrosion resistance. The Mn-incorporated SLA surface displayed sustained Mn ion release and enhanced osteogenesis-related MSC function, which enhanced early cellular events such as spreading, focal adhesion, and mRNA expression of critical adhesion-related genes and promoted full human MSC differentiation into mature osteoblasts. Our findings indicate that surface Mn modification by wet chemical treatment is an effective approach to produce a Ti implant surface with increased osteogenic capacity through the promotion of the osteogenic differentiation of MSCs. The improved corrosion resistance of the resultant surface is yet another important benefit of being able to provide favorable osseointegration interface stability with an increased barrier effect.
Collapse
|
12
|
Hasandoost L, Marx D, Zalzal P, Safir O, Hurtig M, Mehrvar C, Waldman SD, Papini M, Towler MR. Comparative Evaluation of Two Glass Polyalkenoate Cements: An In Vivo Pilot Study Using a Sheep Model. J Funct Biomater 2021; 12:jfb12030044. [PMID: 34449631 PMCID: PMC8395762 DOI: 10.3390/jfb12030044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Poly(methyl methacrylate) (PMMA) is used to manage bone loss in revision total knee arthroplasty (rTKA). However, the application of PMMA has been associated with complications such as volumetric shrinkage, necrosis, wear debris, and loosening. Glass polyalkenoate cements (GPCs) have potential bone cementation applications. Unlike PMMA, GPC does not undergo volumetric shrinkage, adheres chemically to bone, and does not undergo an exothermic setting reaction. In this study, two different compositions of GPCs (GPCA and GPCB), based on the patented glass system SiO2-CaO-SrO-P2O5-Ta2O5, were investigated. Working and setting times, pH, ion release, compressive strength, and cytotoxicity of each composition were assessed, and based on the results of these tests, three sets of samples from GPCA were implanted into the distal femur and proximal tibia of three sheep (alongside PMMA as control). Clinical CT scans and micro-CT images obtained at 0, 6, and 12 weeks revealed the varied radiological responses of sheep bone to GPCA. One GPCA sample (implanted in the sheep for 12 weeks) was characterized with no bone resorption. Furthermore, a continuous bone-cement interface was observed in the CT images of this sample. The other implanted GPCA showed a thin radiolucent border at six weeks, indicating some bone resorption occurred. The third sample showed extensive bone resorption at both six and 12 weeks. Possible speculative factors that might be involved in the varied response can be: excessive Zn2+ ion release, low pH, mixing variability, and difficulty in inserting the samples into different parts of the sheep bone.
Collapse
Affiliation(s)
- Leyla Hasandoost
- Faculty of Engineering and Architectural Science, Biomedical Engineering Program, Ryerson University, Toronto, ON M5B 2K3, Canada; (L.H.); (D.M.); (S.D.W.); (M.P.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - Daniella Marx
- Faculty of Engineering and Architectural Science, Biomedical Engineering Program, Ryerson University, Toronto, ON M5B 2K3, Canada; (L.H.); (D.M.); (S.D.W.); (M.P.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - Paul Zalzal
- Faculty of Medicine, Department of Surgery, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Oakville Trafalgar Memorial Hospital, Oakville, ON L6J 3L7, Canada
| | - Oleg Safir
- Division of Orthopedic Surgery, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada;
| | - Mark Hurtig
- Ontario Veterinary College, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada;
| | - Cina Mehrvar
- Department of Mechanical & Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada;
| | - Stephen D. Waldman
- Faculty of Engineering and Architectural Science, Biomedical Engineering Program, Ryerson University, Toronto, ON M5B 2K3, Canada; (L.H.); (D.M.); (S.D.W.); (M.P.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Department of Chemical Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Marcello Papini
- Faculty of Engineering and Architectural Science, Biomedical Engineering Program, Ryerson University, Toronto, ON M5B 2K3, Canada; (L.H.); (D.M.); (S.D.W.); (M.P.)
- Department of Mechanical & Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada;
| | - Mark R. Towler
- Faculty of Engineering and Architectural Science, Biomedical Engineering Program, Ryerson University, Toronto, ON M5B 2K3, Canada; (L.H.); (D.M.); (S.D.W.); (M.P.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Department of Mechanical & Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada;
- Correspondence:
| |
Collapse
|
13
|
Xu N, Fu J, Zhao L, Chu PK, Huo K. Biofunctional Elements Incorporated Nano/Microstructured Coatings on Titanium Implants with Enhanced Osteogenic and Antibacterial Performance. Adv Healthc Mater 2020; 9:e2000681. [PMID: 32875743 DOI: 10.1002/adhm.202000681] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/02/2020] [Indexed: 12/20/2022]
Abstract
Bone fracture is prevalent among athletes and senior citizens and may require surgical insertion of bone implants. Titanium (Ti) and its alloys are widely used in orthopedics due to its high corrosion resistance, good biocompatibility, and modulus compatible with natural bone tissues. However, bone repair and regrowth are impeded by the insufficient intrinsic osteogenetic capability of Ti and Ti alloys and potential bacterial infection. The physicochemical properties of the materials and nano/microstructures on the implant surface are crucial for clinical success and loading with biofunctional elements such as Sr, Zn, Cu, Si, and Ag into nano/microstructured TiO2 coating has been demonstrated to enhance bone repair/regeneration and bacterial resistance of Ti implants. In this review, recent advances in biofunctional element-incorporated nano/microstructured coatings on Ti and Ti alloy implants are described and the prospects and limitations are discussed.
Collapse
Affiliation(s)
- Na Xu
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jijiang Fu
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Lingzhou Zhao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Kaifu Huo
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
14
|
Development and application of physical vapor deposited coatings for medical devices: A review. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.procir.2020.05.149] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Park JW. Positive regulation of Porphyromonas gingivalis lipopolysaccharide-stimulated osteoblast functions by strontium modification of an SLA titanium implant surface. J Biomater Appl 2019; 34:802-811. [PMID: 31558092 DOI: 10.1177/0885328219878836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jin-Woo Park
- School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
16
|
Egawa T, Inagaki Y, Akahane M, Furukawa A, Inoue K, Ogawa M, Tanaka Y. Silicate-substituted strontium apatite nano coating improves osteogenesis around artificial ligament. BMC Musculoskelet Disord 2019; 20:396. [PMID: 31472679 PMCID: PMC6717638 DOI: 10.1186/s12891-019-2777-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
Background Treatment of anterior cruciate ligament injuries commonly involves the use of polyethylene terephthalate (PET) artificial ligaments for reconstruction. However, the currently available methods require long fixation periods, thereby necessitating the development of alternative methods to accelerate the healing process between tendons and bones. Thus, we developed and evaluated a novel technique that utilizes silicate-substituted strontium (SrSiP). Methods PET films, nano-coated with SrSiP, were prepared. Bone marrow mesenchymal cells (BMSCs) from femurs of male rats were cultured and seeded at a density of 1.0 × 104/cm2 onto the SrSiP-coated and non-coated PET film, and subsequently placed in an osteogenic medium. The osteocalcin concentration secreted into the medium was compared in each case. Next, PET artificial ligament, nano-coated with SrSiP, were prepared. BMSCs were seeded at a density of 4.5 × 105/cm2 onto the SrSiP-coated, and non-coated artificial ligament, and then placed in osteogenic medium. The osteocalcin and calcium concentrations in the culture medium were measured on the 8th, 10th, 12th, and 14th day of culture. Furthermore, mRNA expression of osteocalcin, alkaline phosphatase (ALP), bone morphogenetic protein-2 (BMP2), and runt-related transcription factor 2 (Runx2) was evaluated by qPCR. We transplanted the SrSiP-coated and non-coated artificial ligament to the tibiae of mature New Zealand white rabbits. Two months later, we sacrificed them and histologically evaluated them. Results The secretory osteocalcin concentration in the medium on the film was significantly higher for the SrSiP group than for the non-coated group. Secretory osteocalcin concentration in the medium on the artificial ligament was also significantly higher in the SrSiP group than in the non-coated group on the 14th day. Calcium concentration on the artificial ligament was significantly lower in the SrSiP group than in the non-coated group on the 8th, 10th, 12th, and 14th day. In qPCR as well, OC, ALP, BMP2, and Runx2 mRNA expression were significantly higher in the SrSiP group than in the non-coated group. Newly formed bone was histologically found around the artificial ligament in the SrSiP group. Conclusions Our findings demonstrate that artificial ligaments using SrSiP display high osteogenic potential and thus may be efficiently used in future clinical applications.
Collapse
Affiliation(s)
- Takuya Egawa
- Department of Orthopedic Surgery, Nara Medical University, Shijocho 840, Kashihara, Nara, 634-8522, Japan.
| | - Yusuke Inagaki
- Department of Artificial Joint and Regenerative Medicine for Bone and Cartilage, Nara Medical University, Shijocho 840, Kashihara, Nara, 634-8522, Japan
| | - Manabu Akahane
- Department of Public Health, Health Management and Policy, Nara Medical University, Shijocho 840, Kashihara, Nara, 634-8522, Japan
| | - Akira Furukawa
- Department of Orthopedic Surgery, Nara Medical University, Shijocho 840, Kashihara, Nara, 634-8522, Japan
| | - Kazuya Inoue
- Department of Orthopedic Surgery, Nara Medical University, Shijocho 840, Kashihara, Nara, 634-8522, Japan
| | - Munehiro Ogawa
- Department of Orthopedic Surgery, Nara Medical University, Shijocho 840, Kashihara, Nara, 634-8522, Japan
| | - Yasuhito Tanaka
- Department of Orthopedic Surgery, Nara Medical University, Shijocho 840, Kashihara, Nara, 634-8522, Japan
| |
Collapse
|
17
|
Park JW, Hanawa T, Chung JH. The relative effects of Ca and Mg ions on MSC osteogenesis in the surface modification of microrough Ti implants. Int J Nanomedicine 2019; 14:5697-5711. [PMID: 31413570 PMCID: PMC6662177 DOI: 10.2147/ijn.s214363] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/06/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose Calcium (Ca) and magnesium (Mg) ions have been used as promising bioactive ions in the surface chemistry modification of titanium (Ti) bone implants to increase bone regeneration capacity. However, it is not clear which (Ca or Mg) plays the more important role in the early osteogenic differentiation of mesenchymal stem cells (MSCs) when applied to the surface of commercially available microstructured Ti implants. This study investigated the relative effect of these two ions on the early osteogenic functionality of primary mouse bone marrow MSCs in order to obtain insights into the surface design of Ti implants with enhanced early osteogenic capacity. Methods and results Wet chemical treatment was performed to modify a microrough Ti implant surface using Ca or Mg ions. Both the Ca and Mg-incorporated surfaces accelerated early cellular events and the subsequent osteogenic differentiation of MSCs compared with an unmodified microrough Ti surface. Surface Mg modification exhibited a more potent osteoblast differentiation-promoting effect than the Ca modification. Surface Mg incorporation markedly inhibited the phosphorylation of β-catenin. Conclusion These results indicate that alteration of the surface chemistry of microstructured Ti implants by wet chemical treatment with Mg ions exerts a more effect on promoting the early osteogenic differentiation of MSCs than Ca ions by enhancing early cellular functions, including focal adhesion development and stabilization of intracellular β-catenin.
Collapse
Affiliation(s)
- Jin-Woo Park
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Takao Hanawa
- Department of Metallic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Jong-Hyuk Chung
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Icariin-Functionalized Coating on TiO2 Nanotubes Surface to Improve Osteoblast Activity In Vitro and Osteogenesis Ability In Vivo. COATINGS 2019. [DOI: 10.3390/coatings9050327] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Surface modification of titanium is encouraged to facilitate early osseointegration in dental and orthopedic fields. Icariin is the main active constituents of Herba Epimedii, which has good bone-promoting ability. We established an icariin-functionalized coating composed of icariin and poly (lactic-co-glycolic acid) (PLGA) on TiO2 nanotubes surface (NT-ICA-PLGA) to promote osteoblast cell activity and early osseointegration. Surface topography, wettability and drug release pattern of the established NT-ICA-PLGA surface were characterized by scanning electron microscopy (SEM), contact angle test and drug release test. MC3T3-E1 osteoblast cell activity tests were performed using SEM, immunofluorescent staining, cell counting kit-8 and alkaline phosphatase assays. The osteogenic effects of different surfaces were observed using a rat model. Surface characterization proved the successful fabrication of the icariin-functionalized coating on the TiO2 nanotube structure, with increased wettability. The NT-ICA-PLGA substrate showed sustained release of icariin until two weeks. Osteoblast cells grown on the NT-ICA-PLGA substrate displayed improved cell adhesion, proliferation and differentiation ability than the control Ti surface. The in vivo experiment also revealed superior bone forming ability on the NT-ICA-PLGA surface, compared to the pure Ti control. These results imply that the developed NT-ICA-PLGA substrate has a promising future use as functionalized coating for implant surface modification.
Collapse
|
19
|
Song Y, Ma A, Ning J, Zhong X, Zhang Q, Zhang X, Hong G, Li Y, Sasaki K, Li C. Loading icariin on titanium surfaces by phase-transited lysozyme priming and layer-by-layer self-assembly of hyaluronic acid/chitosan to improve surface osteogenesis ability. Int J Nanomedicine 2018; 13:6751-6767. [PMID: 30425487 PMCID: PMC6204858 DOI: 10.2147/ijn.s174953] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Purpose Icariin (ICA) is one of the main active constituents of Herba Epimedii for improving osteogenesis. It is necessary to create a simple and efficient method to load ICA onto the surface of titanium (Ti) implant. The purpose of this study was to establish a local ICA delivery system via a layer-by-layer (LbL) self-assembly system on phase-transited lysozyme (PTL)-primed Ti surface. Materials and methods A PTL nanofilm was first firmly coated on the pristine Ti. Then, the ICA-loaded hyaluronic acid/chitosan (HA/CS) multilayer was applied via the LbL system to form the HA/CS-ICA surface. This established HA/CS-ICA surface was characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle measurement. The ICA release pattern of the HA/CS-ICA surface was also examined. MC3T3-E1 osteoblast culture test and a rat model were used to evaluate the effects of the HA/CS-ICA surface in vitro and in vivo. Results SEM, XPS and contact angle measurement demonstrated successful fabrication of the HA/CS-ICA surface. The HA/CS-ICA surfaces with different ICA concentrations revealed a controlled release profile of ICA during a 2-week monitoring span. Osteoblasts grown on the coated substrates displayed higher adhesion, viability, proliferation and ALP activity than those on the polished Ti surface. Furthermore, in vivo histological evaluation revealed much obvious bone formation in the ICA-coated group by histological staining and double fluorescent labeling at 2 weeks after implantation. Conclusion The present study demonstrated that ICA-immobilized HA/CS multilayer on the PTL-primed Ti surface had a sustained release pattern of ICA which could promote the osteogenesis of osteoblasts in vitro and improve early osseointegration in vivo. This study provides a novel method for creating a sustained ICA delivery system to improve osteoblast response and osseointegration.
Collapse
Affiliation(s)
- Yunjia Song
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China, ; .,Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Aobo Ma
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China, ;
| | - Jia Ning
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China, ;
| | - Xue Zhong
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China, ;
| | - Qian Zhang
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China, ;
| | - Xu Zhang
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China, ;
| | - Guang Hong
- Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia
| | - Ying Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China, ;
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Changyi Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, China, ;
| |
Collapse
|
20
|
Choi SM, Park JW. Multifunctional effects of a modification of SLA titanium implant surface with strontium-containing nanostructures on immunoinflammatory and osteogenic cell function. J Biomed Mater Res A 2018; 106:3009-3020. [PMID: 30192064 DOI: 10.1002/jbm.a.36490] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/10/2018] [Accepted: 06/18/2018] [Indexed: 01/07/2023]
Abstract
This study investigated the effects of surface modification of clinically available sandblasted/acid-etched (SLA) titanium oral implants with strontium (Sr)-containing nanostructures on both early immunoinflammatory macrophage cell functions and osteogenic stem cell functions. The goal was to provide insight for future surface engineering of titanium implants with multifunctional effects, that is, tissue healing capacity at both the nonosteogenic cell centered initial stage and the subsequent osteogenic cell-governed later stage-osseointegration process. The Sr-containing nanostructure was prepared in on the SLA-type implant surface by wet chemical treatment. The results showed that Sr modification is favorable for early macrophage cell functions and increases osteogenic capacity of the SLA surface. Surface Sr modification notably upregulated regenerative macrophage phenotype expression and anti-inflammatory cytokine IL10 production while suppressing inflammatory cytokine TNFα. Sr incorporation enhanced certain early cellular events of ST2 stem cells such as early cellular spreading and critical integrin gene expression, which in turn notably increased osteogenic differentiation (osteogenesis-related phenotype gene expression and osteocalcin production) when combined with the microstructured SLA implant surface. Surface modification of SLA-type implants with Sr-containing nanostructures demonstrated the ability to favorably influence early immunoinflammatory macrophage cell functions and the functionality of osteogenesis cells, resulting in an enhanced osseointegration outcome. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3009-3020, 2018.
Collapse
Affiliation(s)
- Sung-Min Choi
- Department of Periodontology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-Gu, Daegu, 41940, Republic of Korea
| | - Jin-Woo Park
- Department of Periodontology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-Gu, Daegu, 41940, Republic of Korea
| |
Collapse
|
21
|
Yang H, Zhu Q, Qi H, Liu X, Ma M, Chen Q. A Facile Flow-Casting Production of Bioactive Glass Coatings on Porous Titanium for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1540. [PMID: 30150523 PMCID: PMC6163300 DOI: 10.3390/ma11091540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 11/16/2022]
Abstract
Additive manufacturing enabled the fabrication of porous titanium (PT) with customized porosity and mechanical properties. However, functionalization of PT surfaces with bioactive coatings is being challenged due to sophisticated geometry and highly porous structure. In this study, a facile flow-casting technique was developed to produce homogeneous 45S5 bioactive glass (BG) coatings on the entire surface of PT. The coating weight as a function of BG concentration in a BG-PVA slurry was investigated to achieve controllable coating yield without blocking macropore structure. The annealing-treated BG coating not only exhibited compact adhesion confirmed by qualitative sonication treatment, but also enhanced the mechanical properties of PT scaffolds. Moreover, in-vitro assessments of BG-coated PT cultured with MC3T3-E1 cells was carried out having in mind their potential as bioactive bone implants. The experimental results in this study offer a simple and versatile approach for the bio-functionalization of PT and other porous biomedical devices.
Collapse
Affiliation(s)
- Haiou Yang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Qijie Zhu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Hongfei Qi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China.
| | - Meixia Ma
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Qiang Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|