1
|
Liang J, Liang J, Xiao X, Guo F, Zhan Y, Zhou X, Zhou Z, Li G. A sandwich-type electrochemical sensor based on RGO-CeO 2-Au nanoparticles and double aptamers for ultrasensitive detection of glypican-3. Mikrochim Acta 2024; 191:681. [PMID: 39427046 DOI: 10.1007/s00604-024-06704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/11/2024] [Indexed: 10/21/2024]
Abstract
A sandwich-type electrochemical aptasensor for ultrasensitive detection of glypican-3 (GPC3) was constructed using GPC3 aptamer (GPC3Apt) labelled reduced graphene oxide-cerium oxide-gold nanoparticles (RGO-CeO2-Au NPs) as the signal probe and the same GPC3Apt as the capture probe. The electrochemical redox properties of CeO2 (Ce3+/Ce4+) in the RGO-CeO2-Au NPs indicate the electrochemical signals. When the target GPC3 was present, an "aptamer-protein-aptamer" sandwich structure was formed on the sensing interface due to the specific binding between the protein and aptamers, resulting in an increased electrochemical redox signal detected by differential pulse voltammetry (DPV) technique. Under optimal conditions, the established aptasensor exhibited a logarithmic linear relationship between the current response and GPC3 concentration in the range 0.001-100.0 ng/mL, with a minimum detection limit of 0.74 pg/mL. Using the spike-recovery tests for measurement of the human serum samples, the recovery was from 99.26 to 114.01%, and the RSD range was 3.04 to 5.34%. Furthermore, the sandwich-type electrochemical aptasensor exhibited excellent performance characteristics such as good stability, high specificity, and high sensitivity, demonstrating effective detection of GPC3 in human serum samples and can be used as a clinical detection tool for GPC3.
Collapse
Affiliation(s)
- Jintao Liang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China
| | - Jianlu Liang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China
| | - Xinkai Xiao
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China
| | - Fei Guo
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China
| | - Yulian Zhan
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China
| | - Xueqing Zhou
- Department of Clinical Laboratory, The 924, Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Guilin, Guangxi, 541002, People's Republic of China.
| | - Zhide Zhou
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.
| | - Guiyin Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong, 525000, People's Republic of China.
| |
Collapse
|
2
|
Shradhanjali A, Wolfe JT, Tefft BJ. Magnetic Cell Targeting for Cardiovascular Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39078330 DOI: 10.1089/ten.teb.2024.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
There is a critical need for novel approaches to translate cell therapy and regenerative medicine to clinical practice. Magnetic cell targeting with site specificity has started to open avenues in these fields as a potential therapeutic platform. Magnetic targeting is gaining popularity in the field of biomedicine due to its ability to concentrate and retain at a target site while minimizing deleterious effects at off-target sites. It is regarded as a relatively straightforward and safe approach for a wide range of therapeutic applications. This review discusses the latest advancements and approaches in magnetic cell targeting using endocytosed and surface-bound magnetic nanoparticles as well as in vivo tracking using magnetic resonance imaging (MRI). The most common form of magnetic nanoparticles is superparamagnetic iron oxide nanoparticles (SPION). The biodegradable and biocompatible properties of these magnetically responsive particles and capacity for rapid endocytosis into cells make them a breakthrough in targeted therapy. This review further discusses specific applications of magnetic targeting approaches in cardiovascular tissue engineering including myocardial regeneration, therapeutic angiogenesis, and endothelialization of implantable cardiovascular devices.
Collapse
Affiliation(s)
- Akankshya Shradhanjali
- Joint Department of Biomedical Engineering, Medical College of Wisconsin & Marquette University, Milwaukee, Wisconsin, USA
| | - Jayne T Wolfe
- Joint Department of Biomedical Engineering, Medical College of Wisconsin & Marquette University, Milwaukee, Wisconsin, USA
| | - Brandon J Tefft
- Joint Department of Biomedical Engineering, Medical College of Wisconsin & Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
3
|
Yin X, Rong J, Shao M, Zhang S, Yin L, He Z, Wang X. Aptamer-functionalized nanomaterials (AFNs) for therapeutic management of hepatocellular carcinoma. J Nanobiotechnology 2024; 22:243. [PMID: 38735927 PMCID: PMC11089756 DOI: 10.1186/s12951-024-02486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents one of the deadliest cancers globally, making the search for more effective diagnostic and therapeutic approaches particularly crucial. Aptamer-functionalized nanomaterials (AFNs), an innovative nanotechnology, have paved new pathways for the targeted diagnosis and treatment of HCC. Initially, we outline the epidemiological background of HCC and the current therapeutic challenges. Subsequently, we explore in detail how AFNs enhance diagnostic and therapeutic efficiency and reduce side effects through the specific targeting of HCC cells and the optimization of drug delivery. Furthermore, we address the challenges faced by AFNs in clinical applications and future research directions, with a particular focus on enhancing their biocompatibility and assessing long-term effects. In summary, AFNs represent an avant-garde therapeutic approach, opening new avenues and possibilities for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Xiujuan Yin
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Jing Rong
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Min Shao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Saisai Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Likang Yin
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Zhenqiang He
- Clinical Medical College, Hebei University, Baoding, 071002, Hebei, China
| | - Xiao Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
4
|
Meng YQ, Shi YN, Zhu YP, Liu YQ, Gu LW, Liu DD, Ma A, Xia F, Guo QY, Xu CC, Zhang JZ, Qiu C, Wang JG. Recent trends in preparation and biomedical applications of iron oxide nanoparticles. J Nanobiotechnology 2024; 22:24. [PMID: 38191388 PMCID: PMC10775472 DOI: 10.1186/s12951-023-02235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
The iron oxide nanoparticles (IONPs), possessing both magnetic behavior and semiconductor property, have been extensively used in multifunctional biomedical fields due to their biocompatible, biodegradable and low toxicity, such as anticancer, antibacterial, cell labelling activities. Nevertheless, there are few IONPs in clinical use at present. Some IONPs approved for clinical use have been withdrawn due to insufficient understanding of its biomedical applications. Therefore, a systematic summary of IONPs' preparation and biomedical applications is crucial for the next step of entering clinical practice from experimental stage. This review summarized the existing research in the past decade on the biological interaction of IONPs with animal/cells models, and their clinical applications in human. This review aims to provide cutting-edge knowledge involved with IONPs' biological effects in vivo and in vitro, and improve their smarter design and application in biomedical research and clinic trials.
Collapse
Affiliation(s)
- Yu Qing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ya Nan Shi
- School of Pharmacy, Yantai University, No. 30, Qingquan Road, Laishan District, Yantai, Shandong, China
| | - Yong Ping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yan Qing Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li Wei Gu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dan Dan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ang Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiu Yan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Cheng Chao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Zhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ji Gang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
5
|
Wang Z, Wu C, Liu J, Hu S, Yu J, Yin Q, Tian H, Ding Z, Qi G, Wang L, Hao L. Aptamer-mediated hollow MnO 2 for targeting the delivery of sorafenib. Drug Deliv 2023; 30:28-39. [DOI: 10.1080/10717544.2022.2149897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Ziyue Wang
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Cuicui Wu
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Jinren Liu
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Shunxin Hu
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Junli Yu
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Qiangqiamg Yin
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Hongda Tian
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Zhipeng Ding
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Guiqiang Qi
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Li Wang
- Department of Personnel, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Liguo Hao
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
6
|
Lin B, Xiao F, Jiang J, Zhao Z, Zhou X. Engineered aptamers for molecular imaging. Chem Sci 2023; 14:14039-14061. [PMID: 38098720 PMCID: PMC10718180 DOI: 10.1039/d3sc03989g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
Molecular imaging, including quantification and molecular interaction studies, plays a crucial role in visualizing and analysing molecular events occurring within cells or organisms, thus facilitating the understanding of biological processes. Moreover, molecular imaging offers promising applications for early disease diagnosis and therapeutic evaluation. Aptamers are oligonucleotides that can recognize targets with a high affinity and specificity by folding themselves into various three-dimensional structures, thus serving as ideal molecular recognition elements in molecular imaging. This review summarizes the commonly employed aptamers in molecular imaging and outlines the prevalent design approaches for their applications. Furthermore, it highlights the successful application of aptamers to a wide range of targets and imaging modalities. Finally, the review concludes with a forward-looking perspective on future advancements in aptamer-based molecular imaging.
Collapse
Affiliation(s)
- Bingqian Lin
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Feng Xiao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Jinting Jiang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Zhengjia Zhao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
7
|
Pugachev AD, Kozlenko AS, Makarova NI, Rostovtseva IA, Ozhogin IV, Dmitriev VS, Borodkin GS, Tkachev VV, Utenyshev AN, Sazykina MA, Sazykin IS, Azhogina TN, Karchava SK, Klimova MV, Metelitsa AV, Lukyanov BS. Molecular design and synthesis of methoxy-substitued spiropyrans with photomodulated NIR-fluorescence. Photochem Photobiol Sci 2023; 22:2651-2673. [PMID: 37733213 DOI: 10.1007/s43630-023-00479-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023]
Abstract
This study focuses on the molecular design and synthesis of salt spiropyrans with near-IR fluorescence. The structure of the obtained compounds was confirmed by NMR, IR and mass spectroscopy. In the course of studying the spectral and photoluminescent characteristics, it was possible to reveal the effect of some substituents in various positions on the properties of spiropyran dyes. Due to the structural similarity of one of the isomers to cyanine dyes, the obtained compounds are of interest as potential fluorescent probes for bioimagimg, in particular, for DNA studies. To reveal their ability of binding to DNA molecules molecular docking was carried out. Toxic effects of compounds demonstrating NIR fluorescence were studied on biofilms, as well as using bacterial lux-biosensors.
Collapse
Affiliation(s)
- Artem D Pugachev
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Stachki prosp., 194/2, Rostov-On-Don, Russian Federation.
| | - Anastasia S Kozlenko
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Stachki prosp., 194/2, Rostov-On-Don, Russian Federation
| | - Nadezhda I Makarova
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Stachki prosp., 194/2, Rostov-On-Don, Russian Federation
| | - Irina A Rostovtseva
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Stachki prosp., 194/2, Rostov-On-Don, Russian Federation
| | - Ilya V Ozhogin
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Stachki prosp., 194/2, Rostov-On-Don, Russian Federation
| | - Vitaly S Dmitriev
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Stachki prosp., 194/2, Rostov-On-Don, Russian Federation
| | - Gennady S Borodkin
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Stachki prosp., 194/2, Rostov-On-Don, Russian Federation
| | - Valery V Tkachev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Ac. Semenov Avenue, 1, Moscow Region, Chernogolovka, Russian Federation
| | - Andrey N Utenyshev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Ac. Semenov Avenue, 1, Moscow Region, Chernogolovka, Russian Federation
| | - Marina A Sazykina
- Academy of Biology and Biotechnologies, Southern Federal University, 344090 Stachki prosp., 194/1, Rostov-On-Don, Russian Federation
| | - Ivan S Sazykin
- Academy of Biology and Biotechnologies, Southern Federal University, 344090 Stachki prosp., 194/1, Rostov-On-Don, Russian Federation
| | - Tatiana N Azhogina
- Academy of Biology and Biotechnologies, Southern Federal University, 344090 Stachki prosp., 194/1, Rostov-On-Don, Russian Federation
| | - Shorena K Karchava
- Academy of Biology and Biotechnologies, Southern Federal University, 344090 Stachki prosp., 194/1, Rostov-On-Don, Russian Federation
| | - Maria V Klimova
- Academy of Biology and Biotechnologies, Southern Federal University, 344090 Stachki prosp., 194/1, Rostov-On-Don, Russian Federation
| | - Anatoly V Metelitsa
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Stachki prosp., 194/2, Rostov-On-Don, Russian Federation
| | - Boris S Lukyanov
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Stachki prosp., 194/2, Rostov-On-Don, Russian Federation
| |
Collapse
|
8
|
Qi YM, Xiao EH. Advances in application of novel magnetic resonance imaging technologies in liver disease diagnosis. World J Gastroenterol 2023; 29:4384-4396. [PMID: 37576700 PMCID: PMC10415971 DOI: 10.3748/wjg.v29.i28.4384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
Liver disease is a major health concern globally, with high morbidity and mor-tality rates. Precise diagnosis and assessment are vital for guiding treatment approaches, predicting outcomes, and improving patient prognosis. Magnetic resonance imaging (MRI) is a non-invasive diagnostic technique that has been widely used for detecting liver disease. Recent advancements in MRI technology, such as diffusion weighted imaging, intravoxel incoherent motion, magnetic resonance elastography, chemical exchange saturation transfer, magnetic resonance spectroscopy, hyperpolarized MR, contrast-enhanced MRI, and ra-diomics, have significantly improved the accuracy and effectiveness of liver disease diagnosis. This review aims to discuss the progress in new MRI technologies for liver diagnosis. By summarizing current research findings, we aim to provide a comprehensive reference for researchers and clinicians to optimize the use of MRI in liver disease diagnosis and improve patient prognosis.
Collapse
Affiliation(s)
- Yi-Ming Qi
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan Province, China
| | - En-Hua Xiao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan Province, China
| |
Collapse
|
9
|
Shabatina TI, Vernaya OI, Shimanovskiy NL, Melnikov MY. Metal and Metal Oxides Nanoparticles and Nanosystems in Anticancer and Antiviral Theragnostic Agents. Pharmaceutics 2023; 15:pharmaceutics15041181. [PMID: 37111666 PMCID: PMC10141702 DOI: 10.3390/pharmaceutics15041181] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The development of antiviral treatment and anticancer theragnostic agents in recent decades has been associated with nanotechnologies, and primarily with inorganic nanoparticles (INPs) of metal and metal oxides. The large specific surface area and its high activity make it easy to functionalize INPs with various coatings (to increase their stability and reduce toxicity), specific agents (allowing retention of INPs in the affected organ or tissue), and drug molecules (for antitumor and antiviral therapy). The ability of magnetic nanoparticles (MNPs) of iron oxides and ferrites to enhance proton relaxation in specific tissues and serve as magnetic resonance imaging contrast agents is one of the most promising applications of nanomedicine. Activation of MNPs during hyperthermia by an external alternating magnetic field is a promising method for targeted cancer therapy. As therapeutic tools, INPs are promising carriers for targeted delivery of pharmaceuticals (either anticancer or antiviral) via magnetic drug targeting (in case of MNPs), passive or active (by attaching high affinity ligands) targeting. The plasmonic properties of Au nanoparticles (NPs) and their application for plasmonic photothermal and photodynamic therapies have been extensively explored recently in tumor treatment. The Ag NPs alone and in combination with antiviral medicines reveal new possibilities in antiviral therapy. The prospects and possibilities of INPs in relation to magnetic hyperthermia, plasmonic photothermal and photodynamic therapies, magnetic resonance imaging, targeted delivery in the framework of antitumor theragnostic and antiviral therapy are presented in this review.
Collapse
Affiliation(s)
- Tatyana I Shabatina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gori Build. 1/3, Moscow 119991, Russia
- Faculty of Fundamental Sciences, N.E. Bauman Moscow Technical University, Moscow 105005, Russia
| | - Olga I Vernaya
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gori Build. 1/3, Moscow 119991, Russia
- Faculty of Fundamental Sciences, N.E. Bauman Moscow Technical University, Moscow 105005, Russia
| | - Nikolay L Shimanovskiy
- Department of Molecular Pharmacology and Radiobiology, N.I. Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Mikhail Ya Melnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gori Build. 1/3, Moscow 119991, Russia
| |
Collapse
|
10
|
Jin D, Zhu Y, Liu M, Yu W, Yu J, Zheng X, Wang L, Wu Y, Wei K, Cheng J, Liu Y. A Leaking-Proof Theranostic Nanoplatform for Tumor-Targeted and Dual-Modality Imaging-Guided Photodynamic Therapy. BME FRONTIERS 2023; 4:0015. [PMID: 37849678 PMCID: PMC10085250 DOI: 10.34133/bmef.0015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/06/2023] [Indexed: 10/19/2023] Open
Abstract
Objective: A protein-based leaking-proof theranostic nanoplatform for dual-modality imaging-guided tumor photodynamic therapy (PDT) has been designed. Impact Statement: A site-specific conjugation of chlorin e6 (Ce6) to ferrimagnetic ferritin (MFtn-Ce6) has been constructed to address the challenge of unexpected leakage that often occurs during small-molecule drug delivery. Introduction: PDT is one of the most promising approaches for tumor treatment, while a delivery system is typically required for hydrophobic photosensitizers. However, the nonspecific distribution and leakage of photosensitizers could lead to insufficient drug accumulation in tumor sites. Methods: An engineered ferritin was generated for site-specific conjugation of Ce6 to obtain a leaking-proof delivery system, and a ferrimagnetic core was biomineralized in the cavity of ferritin, resulting in a fluorescent ferrimagnetic ferritin nanoplatform (MFtn-Ce6). The distribution and tumor targeting of MFtn-Ce6 can be detected by magnetic resonance imaging (MRI) and fluorescence imaging (FLI). Results: MFtn-Ce6 showed effective dual-modality MRI and FLI. A prolonged in vivo circulation and increased tumor accumulation and retention of photosensitizer was observed. The time-dependent distribution of MFtn-Ce6 can be precisely tracked in real time to find the optimal time window for PDT treatment. The colocalization of ferritin and the iron oxide core confirms the high stability of the nanoplatform in vivo. The results showed that mice treated with MFtn-Ce6 exhibited marked tumor-suppressive activity after laser irradiation. Conclusion: The ferritin-based leaking-proof nanoplatform can be used for the efficient delivery of the photosensitizer to achieve an enhanced therapeutic effect. This method established a general approach for the dual-modality imaging-guided tumor delivery of PDT agents.
Collapse
Affiliation(s)
- Duo Jin
- Department of Chemistry, University of Science and Technology of China, Hefei 230001, China
| | - Yang Zhu
- Department of Chemistry, University of Science and Technology of China, Hefei 230001, China
| | - Manman Liu
- Department of Chemistry, University of Science and Technology of China, Hefei 230001, China
| | - Wenxin Yu
- Department of Chemistry, University of Science and Technology of China, Hefei 230001, China
| | - Jiaji Yu
- Department of Chemistry, University of Science and Technology of China, Hefei 230001, China
| | - Xinwei Zheng
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Lulu Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Yun Wu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Kaiju Wei
- Nano Science and Technology Institute, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou 215123, China
| | - Junjie Cheng
- Department of Chemistry, University of Science and Technology of China, Hefei 230001, China
| | - Yangzhong Liu
- Department of Chemistry, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
11
|
Song Y, Zhang YY, Yu Q, Chen T, Wei CG, Zhang R, Hu W, Qian XJ, Zhu Z, Zhang XW, Shen JK. A nomogram based on LI-RADS features, clinical indicators and quantitative contrast-enhanced MRI parameters for predicting glypican-3 expression in hepatocellular carcinoma. Front Oncol 2023; 13:1123141. [PMID: 36824129 PMCID: PMC9941525 DOI: 10.3389/fonc.2023.1123141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Purpose Noninvasively assessing the tumor biology and microenvironment before treatment is greatly important, and glypican-3 (GPC-3) is a new-generation immunotherapy target for hepatocellular carcinoma (HCC). This study investigated the application value of a nomogram based on LI-RADS features, quantitative contrast-enhanced MRI parameters and clinical indicators in the noninvasive preoperative prediction of GPC-3 expression in HCC. Methods and materials We retrospectively reviewed 127 patients with pathologically confirmed solitary HCC who underwent Gd-EOB-DTPA MRI examinations and related laboratory tests. Quantitative contrast-enhanced MRI parameters and clinical indicators were collected by an abdominal radiologist, and LI-RADS features were independently assessed and recorded by three trained intermediate- and senior-level radiologists. The pathological and immunohistochemical results of HCC were determined by two senior pathologists. All patients were divided into a training cohort (88 cases) and validation cohort (39 cases). Univariate analysis and multivariate logistic regression were performed to identify independent predictors of GPC-3 expression in HCC, and a nomogram model was established in the training cohort. The performance of the nomogram was assessed by the area under the receiver operating characteristic curve (AUC) and the calibration curve in the training cohort and validation cohort, respectively. Results Blood products in mass, nodule-in-nodule architecture, mosaic architecture, contrast enhancement ratio (CER), transition phase lesion-liver parenchyma signal ratio (TP-LNR), and serum ferritin (Fer) were independent predictors of GPC-3 expression, with odds ratios (ORs) of 5.437, 10.682, 5.477, 11.788, 0.028, and 1.005, respectively. Nomogram based on LI-RADS features (blood products in mass, nodule-in-nodule architecture and mosaic architecture), quantitative contrast-enhanced MRI parameters (CER and TP-LNR) and clinical indicators (Fer) for predicting GPC-3 expression in HCC was established successfully. The nomogram showed good discrimination (AUC of 0.925 in the training cohort and 0.908 in the validation cohort) and favorable calibration. The diagnostic sensitivity and specificity were 76.9% and 92.3% in the training cohort, 76.8% and 93.8% in the validation cohort respectively. Conclusion The nomogram constructed from LI-RADS features, quantitative contrast-enhanced MRI parameters and clinical indicators has high application value, can accurately predict GPC-3 expression in HCC and may help noninvasively identify potential patients for GPC-3 immunotherapy.
Collapse
Affiliation(s)
- Yan Song
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China,Department of Radiology, Jieshou City People’s Hospital, Fuyang, China
| | - Yue-yue Zhang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qin Yu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China,Department of Radiology, Dongtai City People’s Hospital, Yancheng, China
| | - Tong Chen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chao-gang Wei
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Rui Zhang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Hu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xu-jun Qian
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhi Zhu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xue-wu Zhang
- Department of Infectious Diseases, Jieshou City People’s Hospital, Fuyang, China
| | - Jun-kang Shen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China,Institute of Imaging Medicine, Soochow University, Suzhou, China,*Correspondence: Jun-kang Shen,
| |
Collapse
|
12
|
Li N, Dong T, Wang P, Li Q, Nie F. Predicting glypican-3 expression in hepatocellular carcinoma: A comprehensive analysis using combined contrast-enhanced ultrasound and clinical factors. Clin Hemorheol Microcirc 2023; 85:407-420. [PMID: 37638421 DOI: 10.3233/ch-231912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
OBJECTIVE Glypican-3 (GPC3) has emerged as a significant marker for the diagnosis and prognosis of hepatocellular carcinoma (HCC) and has garnered considerable attention as an immunotherapeutic target. In this study, we propose a combination of preoperative contrast-enhanced ultrasound (CEUS) imaging features and clinical factors to predict the positive expression of GPC3 in HCC patients. METHODS We retrospectively included 30 cases of GPC3-negative HCC and 115 cases of GPC3-positive HCC patients who underwent conventional ultrasound and CEUS evaluation. We assessed and compared the clinical characteristics, conventional ultrasound features, and CEUS features between the two groups of HCC patients. Based on the clinical and ultrasound features between the two groups, we developed a binary logistic regression model for predicting GPC3-positive HCC. RESULTS A total of 145 HCC patients were included in this study. Binary logistic regression analysis showed that AFP > 20 ng/mL (OR = 4.047; 95% CI: 1.467-11.16; p = 0.007), arterial phase hyperenhancement (APHE) (OR = 12.557; 95% CI: 3.608-43.706; p < 0.001), and asynchronous perfusion (OR = 4.209; 95% CI: 1.206-14.691; p = 0.024) were predictive factors for GPC3-positive HCC. Receiver operating characteristic (ROC) analysis was conducted to predict GPC3-positive expression. The model combining the three independent predictive factors showed good predictive performance (AUC 0.817, 95% CI: 0.731-0.902, sensitivity: 91.3%, specificity: 60.0%). This combined model demonstrated excellent discriminatory ability to predict GPC3-positive HCC. CONCLUSION Preoperative integration of CEUS features and clinical factors can non-invasively and effectively identify GPC3-positive HCC patients, providing valuable assistance in making personalized treatment decisions.
Collapse
Affiliation(s)
- Nana Li
- Ultrasound Medical Center, Lanzhou University Second Hospital, Chengguan District, Lanzhou, Gansu, China
| | - Tiantian Dong
- Ultrasound Medical Center, Lanzhou University Second Hospital, Chengguan District, Lanzhou, Gansu, China
| | - Peihua Wang
- Ultrasound Medical Center, Lanzhou University Second Hospital, Chengguan District, Lanzhou, Gansu, China
| | - Qi Li
- Ultrasound Medical Center, Lanzhou University Second Hospital, Chengguan District, Lanzhou, Gansu, China
| | - Fang Nie
- Ultrasound Medical Center, Lanzhou University Second Hospital, Chengguan District, Lanzhou, Gansu, China
| |
Collapse
|
13
|
Chen Y, Qin Y, Wu Y, Wei H, Wei Y, Zhang Z, Duan T, Jiang H, Song B. Preoperative prediction of glypican-3 positive expression in solitary hepatocellular carcinoma on gadoxetate-disodium enhanced magnetic resonance imaging. Front Immunol 2022; 13:973153. [PMID: 36091074 PMCID: PMC9453305 DOI: 10.3389/fimmu.2022.973153] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose As a coreceptor in Wnt and HGF signaling, glypican-3 (GPC-3) promotes the progression of tumor and is associated with a poor prognosis in hepatocellular carcinoma (HCC). GPC-3 has evolved as a target molecule in various immunotherapies, including chimeric antigen receptor T cell. However, its evaluation still relies on invasive histopathologic examination. Therefore, we aimed to develop an easy-to-use and noninvasive risk score integrating preoperative gadoxetic acid–enhanced magnetic resonance imaging (EOB-MRI) and clinical indicators to predict positive GPC-3 expression in HCC. Methods and materials Consecutive patients with surgically-confirmed solitary HCC who underwent preoperative EOB-MRI between January 2016 and November 2021 were retrospectively included. EOB-MRI features were independently evaluated by two masked abdominal radiologists and the expression of GPC-3 was determined by two liver pathologists. On the training dataset, a predictive scoring system for GPC-3 was developed against pathology via logistical regression analysis. Model performances were characterized by computing areas under the receiver operating characteristic curve (AUCs). Results A total of 278 patients (training set, n=156; internal validation set, n=39; external validation set, n=83) with solitary HCC (208 [75%] with positive GPC-3 expression) were included. Serum alpha-fetoprotein >10 ng/ml (AFP, odds ratio [OR]=2.3, four points) and five EOB-MR imaging features, including tumor size >3.0cm (OR=0.5, -3 points), nonperipheral “washout” (OR=3.0, five points), infiltrative appearance (OR=9.3, 10 points), marked diffusion restriction (OR=3.3, five points), and iron sparing in solid mass (OR=0.2, -7 points) were significantly associated with positive GPC-3 expression. The optimal threshold of scoring system for predicting GPC-3 positive expression was 5.5 points, with AUC 0.726 and 0.681 on the internal and external validation sets, respectively. Conclusion Based on serum AFP and five EOB-MRI features, we developed an easy-to-use and noninvasive risk score which could accurately predict positive GPC-3 HCC, which may help identify potential responders for GPC-3-targeted immunotherapy.
Collapse
Affiliation(s)
- Yidi Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Qin
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanan Wu
- Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Wei
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Wei
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Zhang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Duan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Hanyu Jiang, ; Bin Song,
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiology, Sanya People’s Hospital, Sanya, China
- *Correspondence: Hanyu Jiang, ; Bin Song,
| |
Collapse
|
14
|
Grega SD, Zheng DX, Zheng QH. Imaging ligands targeting glypican-3 receptor expression in hepatocellular carcinoma. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2022; 12:113-121. [PMID: 36072763 PMCID: PMC9441927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality. Early detection of HCC is important since potentially curative therapies exist in the initial stages of HCC; no curative therapies exist for late-stage HCC. However, the initial detection of HCC remains challenging due to the lack of symptoms during the early stage of the disease. Other methods of screening and detecting HCC, including blood serum tests and conventional imaging methods, remain inadequate due to genetic differences between patients and the high background activity of liver tissues. Thus, there is a need for an accurate imaging agent for the diagnosis, staging, and prognosis of HCC. Glypican-3 (GPC3) is an oncofetal receptor responsible for regulating cell division, growth, and survival. GPC3 is a clinically relevant biomarker for imaging and therapeutics, as its expression is HCC tumor-specific and absent from normal and other pathological liver tissues. The development of novel GPC3-targeting imaging agents has encompassed three classes of biomolecules: peptides, antibodies, and aptamers. These biomolecules serve as constructs for diagnostic imaging (demonstrating potential as positron emission tomography [PET], single-photon emission tomography [SPECT], and optical imaging agents) and HCC treatment delivery. More than 20 unique ligands have been identified in the literature as showing specificity for the GPC3 receptor. Although several ligands are currently under clinical investigation as therapies for HCC, clinical translation of GPC3-targeting ligands as imaging agents is lacking. This review highlights the current landscape of ligands targeting GPC3 and describes their promising possibilities as imaging agents for HCC.
Collapse
Affiliation(s)
- Shaun D Grega
- Department of Radiology and Imaging Sciences, Indiana University School of MedicineIndianapolis, IN, USA
| | - David X Zheng
- Department of Dermatology, Case Western Reserve University School of MedicineCleveland, OH, USA
| | - Qi-Huang Zheng
- Department of Radiology and Imaging Sciences, Indiana University School of MedicineIndianapolis, IN, USA
| |
Collapse
|
15
|
Zhang Y, Numata K, Du Y, Maeda S. Contrast Agents for Hepatocellular Carcinoma Imaging: Value and Progression. Front Oncol 2022; 12:921667. [PMID: 35720001 PMCID: PMC9200965 DOI: 10.3389/fonc.2022.921667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has the third-highest incidence in cancers and has become one of the leading threats to cancer death. With the research on the etiological reasons for cirrhosis and HCC, early diagnosis has been placed great hope to form a favorable prognosis. Non-invasive medical imaging, including the associated contrast media (CM)-based enhancement scan, is taking charge of early diagnosis as mainstream. Meanwhile, it is notable that various CM with different advantages are playing an important role in the different imaging modalities, or even combined modalities. For both physicians and radiologists, it is necessary to know more about the proper imaging approach, along with the characteristic CM, for HCC diagnosis and treatment. Therefore, a summarized navigating map of CM commonly used in the clinic, along with ongoing work of agent research and potential seeded agents in the future, could be a needed practicable aid for HCC diagnosis and prognosis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Medical Ultrasound, Ningbo Medical Centre Li Huili Hospital, Ningbo, China.,Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan.,Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kazushi Numata
- Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Yuewu Du
- Department of Medical Ultrasound, Ningbo Medical Centre Li Huili Hospital, Ningbo, China
| | - Shin Maeda
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
16
|
Zhao D, Cao J, Zhang L, Zhang S, Wu S. Targeted Molecular Imaging Probes Based on Magnetic Resonance Imaging for Hepatocellular Carcinoma Diagnosis and Treatment. BIOSENSORS 2022; 12:bios12050342. [PMID: 35624643 PMCID: PMC9138815 DOI: 10.3390/bios12050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most commonly malignant tumor and the third leading cause of cancer-related death in the world, and the early diagnosis and treatment of patients with HCC is core in improving its prognosis. The early diagnosis of HCC depends largely on magnetic resonance imaging (MRI). MRI has good soft-tissue resolution, which is the international standard method for the diagnosis of HCC. However, MRI is still insufficient in the diagnosis of some early small HCCs and malignant nodules, resulting in false negative results. With the deepening of research on HCC, researchers have found many specific molecular biomarkers on the surface of HCC cells, which may assist in diagnosis and treatment. On the other hand, molecular imaging has progressed rapidly in recent years, especially in the field of cancer theranostics. Hence, the preparation of molecular imaging probes that can specifically target the biomarkers of HCC, combined with MRI testing in vivo, may achieve the theranostic purpose of HCC in the early stage. Therefore, in this review, taking MR imaging as the basic point, we summarized the recent progress regarding the molecular imaging targeting various types of biomarkers on the surface of HCC cells to improve the theranostic rate of HCC. Lastly, we discussed the existing obstacles and future prospects of developing molecular imaging probes as HCC theranostic nanoplatforms.
Collapse
Affiliation(s)
- Dongxu Zhao
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China;
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jian Cao
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, China;
| | - Lei Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
- Correspondence: (L.Z.); (S.Z.); (S.W.)
| | - Shaohua Zhang
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China;
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Correspondence: (L.Z.); (S.Z.); (S.W.)
| | - Song Wu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China;
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Correspondence: (L.Z.); (S.Z.); (S.W.)
| |
Collapse
|
17
|
Ma XH, Chen K, Wang S, Liu SY, Li DF, Mi YT, Wu ZY, Qu CF, Zhao XM. Bi-specific T1 positive-contrast-enhanced magnetic resonance imaging molecular probe for hepatocellular carcinoma in an orthotopic mouse model. World J Gastrointest Oncol 2022; 14:858-871. [PMID: 35582105 PMCID: PMC9048532 DOI: 10.4251/wjgo.v14.i4.858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/31/2021] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality. HCC-targeted magnetic resonance imaging (MRI) is an effective noninvasive diagnostic method that involves targeting clinically-related HCC biomarkers, such as alpha-fetoprotein (AFP) or glypican-3 (GPC3), with iron oxide nanoparticles. However, in vivo studies of HCC-targeted MRI utilize single-target iron oxide nanoprobes as negative (T2) contrast agents, which might weaken their future clinical applications due to tumor heterogeneity and negative MRI contrast. Ultra-small superparamagnetic iron oxide (USPIO) nanoparticles (approximately 5 nm) are potential optimal positive (T1) contrast agents. We previously verified the efficiency of AFP/GPC3-double-antibody-labeled iron oxide MR molecular probe in vitro.
AIM To validate the effectiveness of a bi-specific probe in vivo for enhancing T1-weighted positive contrast to diagnose the early-stage HCC.
METHODS The single- and double-antibody-conjugated 5-nm USPIO probes, including anti-AFP-USPIO (UA), anti-GPC3-USPIO (UG), and anti-AFP-USPIO-anti-GPC3 (UAG), were synthesized. T1- and T2-weighted MRI were performed on day 10 after establishment of the orthotopic HCC mouse model. Following intravenous injection of U, UA, UG, and UAG probes, T1- and T2-weighted images were obtained at 12, 12, and 32 h post-injection. At the end of scanning, mice were euthanized, and a histologic analysis was performed on tumor samples.
RESULTS T1- and T2-weighted MRI showed that absolute tumor-to-background ratios in UAG-treated HCC mice peaked at 24 h post-injection, with the T1- and T2-weighted signals increasing by 46.7% and decreasing by 11.1%, respectively, relative to pre-injection levels. Additionally, T1-weighted contrast in the UAG-treated group at 24 h post-injection was enhanced 1.52-, 2.64-, and 4.38-fold compared to those observed for single-targeted anti-GPC3-USPIO, anti-AFP-USPIO, and non-targeted USPIO probes, respectively. Comparison of U-, UA-, UG-, and UAG-treated tumor sections revealed that UAG-treated mice exhibited increased stained regions compared to those observed in UG- or UA-treated mice.
CONCLUSION The bi-specific T1-positive contrast-enhanced MRI probe (UAG) for HCC demonstrated increased specificity and sensitivity to diagnose early-stage HCC irrespective of tumor size and/or heterogeneity.
Collapse
Affiliation(s)
- Xiao-Hong Ma
- Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Kun Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Shuang Wang
- Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Si-Yun Liu
- GE Healthcare (China), Beijing 100176, China
| | - Deng-Feng Li
- Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yong-Tao Mi
- Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhi-Yuan Wu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Chun-Feng Qu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Xin-Ming Zhao
- Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
18
|
Single-nanometer iron oxide nanoparticles as tissue-permeable MRI contrast agents. Proc Natl Acad Sci U S A 2021; 118:2102340118. [PMID: 34654743 DOI: 10.1073/pnas.2102340118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Magnetic nanoparticles are robust contrast agents for MRI and often produce particularly strong signal changes per particle. Leveraging these effects to probe cellular- and molecular-level phenomena in tissue can, however, be hindered by the large sizes of typical nanoparticle contrast agents. To address this limitation, we introduce single-nanometer iron oxide (SNIO) particles that exhibit superparamagnetic properties in conjunction with hydrodynamic diameters comparable to small, highly diffusible imaging agents. These particles efficiently brighten the signal in T 1-weighted MRI, producing per-molecule longitudinal relaxation enhancements over 10 times greater than conventional gadolinium-based contrast agents. We show that SNIOs permeate biological tissue effectively following injection into brain parenchyma or cerebrospinal fluid. We also demonstrate that SNIOs readily enter the brain following ultrasound-induced blood-brain barrier disruption, emulating the performance of a gadolinium agent and providing a basis for future biomedical applications. These results thus demonstrate a platform for MRI probe development that combines advantages of small-molecule imaging agents with the potency of nanoscale materials.
Collapse
|
19
|
Wang W, Wang J, Hong G, Mao L, Zhu N, Liu T. Methoxypolyethylene Glycol-Substituted Zinc Phthalocyanines for Multiple Tumor-Selective Fluorescence Imaging and Photodynamic Therapy. Biomacromolecules 2021; 22:4284-4294. [PMID: 34569232 DOI: 10.1021/acs.biomac.1c00855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Highly tumor-tissue-selective drugs are a prerequisite for accurate diagnosis and efficient photodynamic therapy (PDT) of tumors, but the currently used fluorescent dyes and photosensitizers generally lack the ability for high accumulation and precise localization in tumor tissues. Here we report that monomethoxy polyethylene glycol (MPEG)-modified zinc phthalocyanine (ZnPc) can be selectively accumulated in multiple tumor tissues, and that the selectivity is controlled by the chain length of MPEG. MPEG-monosubstituted ZnPcs with different chain lengths were synthesized, among which the shorter chain (mw < 2k)-modified ZnPc did not show tumor tissue selectivity, while MPEG2k-5k-substituted ZnPc could be rapidly and selectively accumulated in H22 tumor tissues in mice after intravenous injection. Especially, MPEG4k-Pc showed the best tumor tissue selectivity with a tumor/liver (T/L) ratio of 1.7-2.2 in HepG2, MDA-MB231, AGS, and HT-29 tumor-bearing mice. It also exhibited potent photodynamic therapy effects after one PDT treatment, and tumor growth was significantly inhibited in H22-bearing mice with an inhibition rate over 98% and no obvious toxicity. Consequently, MPEG-modified ZnPc could serve as a potential platform for selective fluorescence imaging and photodynamic therapy of multiple tumors.
Collapse
Affiliation(s)
- Wenzhi Wang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jiawen Wang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Ge Hong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Lina Mao
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Na Zhu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Tianjun Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
20
|
Zhu J, Wang Y, Yang P, Liu Q, Hu J, Yang W, Liu P, He F, Bai Y, Gai S, Xie R, Li C. GPC3-targeted and curcumin-loaded phospholipid microbubbles for sono-photodynamic therapy in liver cancer cells. Colloids Surf B Biointerfaces 2021; 197:111358. [DOI: 10.1016/j.colsurfb.2020.111358] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/10/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022]
|
21
|
Dai Y, Han B, Dong L, Zhao J, Cao Y. Recent advances in nanomaterial-enhanced biosensing methods for hepatocellular carcinoma diagnosis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115965] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Avasthi A, Caro C, Pozo-Torres E, Leal MP, García-Martín ML. Magnetic Nanoparticles as MRI Contrast Agents. Top Curr Chem (Cham) 2020; 378:40. [PMID: 32382832 PMCID: PMC8203530 DOI: 10.1007/s41061-020-00302-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Abstract
Iron oxide nanoparticles (IONPs) have emerged as a promising alternative to conventional contrast agents (CAs) for magnetic resonance imaging (MRI). They have been extensively investigated as CAs due to their high biocompatibility and excellent magnetic properties. Furthermore, the ease of functionalization of their surfaces with different types of ligands (antibodies, peptides, sugars, etc.) opens up the possibility of carrying out molecular MRI. Thus, IONPs functionalized with epithelial growth factor receptor antibodies, short peptides, like RGD, or aptamers, among others, have been proposed for the diagnosis of various types of cancer, including breast, stomach, colon, kidney, liver or brain cancer. In addition to cancer diagnosis, different types of IONPs have been developed for other applications, such as the detection of brain inflammation or the early diagnosis of thrombosis. This review addresses key aspects in the development of IONPs for MRI applications, namely, synthesis of the inorganic core, functionalization processes to make IONPs biocompatible and also to target them to specific tissues or cells, and finally in vivo studies in animal models, with special emphasis on tumor models.
Collapse
Affiliation(s)
- Ashish Avasthi
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía-Universidad de Málaga, C/Severo Ochoa, 35, 29590, Málaga, Spain
| | - Carlos Caro
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía-Universidad de Málaga, C/Severo Ochoa, 35, 29590, Málaga, Spain
| | - Esther Pozo-Torres
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012, Seville, Spain
| | - Manuel Pernia Leal
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012, Seville, Spain.
| | - María Luisa García-Martín
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía-Universidad de Málaga, C/Severo Ochoa, 35, 29590, Málaga, Spain. .,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Málaga, Spain.
| |
Collapse
|
23
|
Aptamers Increase Biocompatibility and Reduce the Toxicity of Magnetic Nanoparticles Used in Biomedicine. Biomedicines 2020; 8:biomedicines8030059. [PMID: 32183370 PMCID: PMC7148517 DOI: 10.3390/biomedicines8030059] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 11/16/2022] Open
Abstract
Aptamer-based approaches are very promising tools in nanomedicine. These small single-stranded DNA or RNA molecules are often used for the effective delivery and increasing biocompatibility of various therapeutic agents. Recently, magnetic nanoparticles (MNPs) have begun to be successfully applied in various fields of biomedicine. The use of MNPs is limited by their potential toxicity, which depends on their biocompatibility. The functionalization of MNPs by ligands increases biocompatibility by changing the charge and shape of MNPs, preventing opsonization, increasing the circulation time of MNPs in the blood, thus shielding iron ions and leading to the accumulation of MNPs only in the necessary organs. Among various ligands, aptamers, which are synthetic analogs of antibodies, turned out to be the most promising for the functionalization of MNPs. This review describes the factors that determine MNPs’ biocompatibility and affect their circulation time in the bloodstream, biodistribution in organs and tissues, and biodegradation. The work also covers the role of the aptamers in increasing MNPs’ biocompatibility and reducing toxicity.
Collapse
|
24
|
Guan B, Zhang X. Aptamers as Versatile Ligands for Biomedical and Pharmaceutical Applications. Int J Nanomedicine 2020; 15:1059-1071. [PMID: 32110008 PMCID: PMC7035142 DOI: 10.2147/ijn.s237544] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
Aptamers are a class of targeting ligands that bind exclusively to biomarkers of interest. Aptamers have been identified as candidates for the construction of various smart systems for therapy, diagnosis, bioimaging, and drug delivery due to their high target affinity and specificity. Aptamers are accounted as chemical antibodies that can be readily linked to drugs, sensors, signal enhancers, or nanocarriers for functionalization. Use of aptamer-guided medications, especially nanomedicines, has resulted in encouraging outcomes compared to those use of aptamer-free counterparts. This article reviews recent advances in the use of aptamers as targeting ligands for various biomedical and pharmaceutical purposes. Special interests focus on aptamer-based theranostics, biosensing, bioimaging, drug potentiation, and targeted drug delivery.
Collapse
Affiliation(s)
- Baozhang Guan
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
| | - Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
25
|
Wang W, Wei C. Advances in the early diagnosis of hepatocellular carcinoma. Genes Dis 2020; 7:308-319. [PMID: 32884985 PMCID: PMC7452544 DOI: 10.1016/j.gendis.2020.01.014] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/10/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers globally. In contrast to the declining death rates observed for all other common cancers such as breast, lung, and prostate cancers, the death rates for HCC continue to increase by ~2–3% per year because HCC is frequently diagnosed late and there is no curative therapy for an advanced HCC. The early diagnosis of HCC is truly a big challenge. Over the past years, the early diagnosis of HCC has relied on surveillance with ultrasonography (US) and serological assessments of alpha-fetoprotein (AFP). However, the specificity and sensitivity of US/AFP is not satisfactory enough to detect early onset HCC. Recent technological advancements offer hope for early HCC diagnosis. Herein, we review the progress made in HCC diagnostics, with a focus on emerging imaging techniques and biomarkers for early disease diagnosis.
Collapse
Affiliation(s)
- Weiyi Wang
- Xiamen Amplly Bio-engineering Co., Ltd, Xiamen, PR China
| | - Chao Wei
- Xiamen Amplly Bio-engineering Co., Ltd, Xiamen, PR China
| |
Collapse
|
26
|
Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomater 2020; 102:13-34. [PMID: 31759124 DOI: 10.1016/j.actbio.2019.11.027] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
Abstract
Among various nanoparticles, superparamagnetic iron oxide nanoparticles (SPIONs) have been increasingly studied for their excellent superparamagnetism, magnetic heating properties, and enhanced magnetic resonance imaging (MRI). The conjugation of SPIONs with drugs to obtain delivery nanosystems has several advantages including magnetic targeted functionalization, in vivo imaging, magnetic thermotherapy, and combined delivery of anticancer agents. To further increase the targeting efficiency of drugs through a delivery nanosystem based on SPIONs, additional targeting moieties including transferrin, antibodies, aptamers, hyaluronic acid, folate, and targeting peptides are coated onto the surface of SPIONs. Therefore, this review summarizes the latest progresses in the conjugation of targeting molecules and drug delivery nanosystems based on SPIONs, especially focusing on their performances to develop efficient targeted drug delivery systems for tumor therapy. STATEMENT OF SIGNIFICANCE: Some magnetic nanoparticle-based nanocarriers loaded with drugs were evaluated in patients and did not produce convincing results, leading to termination of clinical development in phase II/III. An alternative strategy for drug delivery systems based on SPIONs is the conjugation of these systems with targeting segments such as transferrin, antibodies, aptamers, hyaluronic acid, folate, and targeting peptides. These targeting moieties can be recognized by specific integrin/receptors that are overexpressed specifically on the tumor cell surface, resulting in minimizing dosage and reducing off-target effects. This review focuses on magnetic nanoparticle-based nonviral drug delivery systems with targeting moieties to deliver anticancer drugs, with an aim to provide suggestions on the development of SPIONs through discussion.
Collapse
|
27
|
Alphandéry E. Iron oxide nanoparticles for therapeutic applications. Drug Discov Today 2020; 25:141-149. [DOI: 10.1016/j.drudis.2019.09.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/24/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023]
|
28
|
Nishida T, Kataoka H. Glypican 3-Targeted Therapy in Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:E1339. [PMID: 31510063 PMCID: PMC6770328 DOI: 10.3390/cancers11091339] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 02/08/2023] Open
Abstract
Glypican-3 (GPC3) is an oncofetal glycoprotein attached to the cell membrane by a glycophosphatidylinositol anchor. GPC3 is overexpressed in some kinds of tumors, particularly hepatocellular carcinoma (HCC). The prognostic significance of serum GPC3 levels and GPC3 immunoreactivity in tumor cells has been defined in patients with HCC. In addition to its usefulness as a biomarker, GPC3 has attracted attention as a novel therapeutic target molecule, and clinical trials targeting GPC3 are in progress. The major mechanism of anti-GPC3 antibody (GPC3Ab) against cancer cells is antibody-dependent cellular cytotoxicity and/or complement-dependent cytotoxicity. Since GPC3Ab is associated with immune responses, a combination of protocols with immune checkpoint inhibitors has also been investigated. Moreover, some innovative approaches for GPC3-targeting therapy have emerged in recent years. This review introduces the results of recent clinical trials targeting GPC3 in HCC and summarizes the latest knowledge regarding the role of GPC3 in HCC progression and clinical application targeting GPC3.
Collapse
Affiliation(s)
- Takahiro Nishida
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
- Division of Gastrointestinal, Endocrine and Pediatric Surgery, Department of Surgery, University of Miyazaki Faculty of Medicine, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | - Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| |
Collapse
|
29
|
Imaging Characteristics of USPIO Nanoparticles (<5 nm) as MR Contrast Agent In Vitro and in the Liver of Rats. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:3687537. [PMID: 31427909 PMCID: PMC6679865 DOI: 10.1155/2019/3687537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/23/2019] [Accepted: 03/28/2019] [Indexed: 12/31/2022]
Abstract
Iron nanoparticles have an increasingly more and more important role in MR molecular imaging due to their novel magnetic and surface chemical properties. They provide new possibilities for noninvasive diagnosis and treatment monitoring, especially for tissues that are rich in macrophages. The smaller size and prolongation of the plasma half-life change the in vivo fate of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles captured by liver in reticuloendothelial system (RES) or mononuclear phagocytic system (MPS). However, there is still a lack of MR imaging studies on the liver assessing USPIO nanoparticles <5 nm in size to reflect its absorption and clearance properties. In this study, we used MRI to study the in vitro phantom and in vivo rat liver imaging characteristics of USPIO nanoparticles (<5 nm). The results showed that USPIO nanoparticles (<5 nm) could potentially reduce longitudinal and transverse relaxation times and showed similar T 1 relaxation rates compared with commercial gadolinium chelates. In addition, USPIO nanoparticles (<5 nm) in vivo demonstrated both positive (T 1) and negative (T 2) liver contrast enhancement in healthy rats' liver. Furthermore, USPIO nanoparticles showed relatively good in vitro biocompatibility and fast clearance (within 45.17 minutes after intravenous injection) in the normal liver. Taken together, these data might inspire a new personalized and precise diagnostic tool and stimulate new applications for specific targeted molecular probes.
Collapse
|
30
|
Zhang GQ, Zhong LP, Yang N, Zhao YX. Screening of aptamers and their potential application in targeted diagnosis and therapy of liver cancer. World J Gastroenterol 2019; 25:3359-3369. [PMID: 31341361 PMCID: PMC6639558 DOI: 10.3748/wjg.v25.i26.3359] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/02/2019] [Accepted: 06/08/2019] [Indexed: 02/06/2023] Open
Abstract
Aptamers are a class of single oligonucleotide molecules (DNA or RNA) that are screened from random DNA or RNA oligonucleotide chain libraries by the systemic evolution of ligands by exponential enrichment technology. The selected aptamers are capable of specifically binding to different targeting molecules, which is achieved by the three-dimensional structure of aptamers. Aptamers are similar in function to monoclonal antibodies, and therefore, they are also referred to as "chemical antibodies". Due to their high affinity and specificity and low immunogenicity, aptamers are topics of intense interest in today's biological targeting research especially in tumor research. They not only have high potential for clinical advances in tumor targeting detection but also are highly promising as targeted tumor drug carriers for use in tumor therapy. Various experimental studies have shown that aptamer-based diagnostic and therapeutic methods for liver cancer have great potential for application. This paper summarizes the structure, characteristics, and screening methods of aptamers and reviews the recent research progress on nucleic acid aptamers in the targeted diagnosis and treatment of liver cancer.
Collapse
Affiliation(s)
- Guo-Qing Zhang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Li-Ping Zhong
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Nuo Yang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yong-Xiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
31
|
Ma XH, Wang S, Liu SY, Chen K, Wu ZY, Li DF, Mi YT, Hu LB, Chen ZW, Zhao XM. Development and in vitro study of a bi-specific magnetic resonance imaging molecular probe for hepatocellular carcinoma. World J Gastroenterol 2019; 25:3030-3043. [PMID: 31293339 PMCID: PMC6603812 DOI: 10.3748/wjg.v25.i24.3030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/03/2019] [Accepted: 05/18/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) ranks second in terms of cancer mortality worldwide. Molecular magnetic resonance imaging (MRI) targeting HCC biomarkers such as alpha-fetoprotein (AFP) or glypican-3 (GPC3) offers new strategies to enhance specificity and help early diagnosis of HCC. However, the existing iron oxide nanoparticle-based MR molecular probes singly target AFP or GPC3, which may hinder their efficiency to detect heterogeneous micro malignant HCC tumors < 1 cm (MHCC). We hypothesized that the strategy of double antibody-conjugated iron oxide nanoparticles which simultaneously target AFP and GPC3 antigens may potentially be used to overcome the tumor heterogeneity and enhance the detection rate for MRI-based MHCC diagnosis.
AIM To synthesize an AFP/GPC3 double antibody-labeled iron oxide MRI molecular probe and to assess its impact on MRI specificity and sensitivity at the cellular level.
METHODS A double antigen-targeted MRI probe for MHCC anti-AFP–USPIO–anti-GPC3 (UAG) was developed by simultaneously conjugating AFP andGPC3 antibodies to a 5 nm ultra-small superparamagnetic iron oxide nanoparticle (USPIO). At the same time, the singly labeled probes of anti-AFP–USPIO (UA) and anti-GPC3–USPIO (UG) and non-targeted USPIO (U) were also prepared for comparison. The physical characterization including morphology (transmission electron microscopy), hydrodynamic size, and zeta potential (dynamic light scattering) was conducted for each of the probes. The antigen targeting and MRI ability for these four kinds of USPIO probes were studied in the GPC3-expressing murine hepatoma cell line Hepa1-6/GPC3. First, AFP and GPC3 antigen expression in Hepa1-6/GPC3 cells was confirmed by flow cytometry and immunocytochemistry. Then, the cellular uptake of USPIO probes was investigated by Prussian blue staining assay and in vitro MRI (T2-weighted and T2-map) with a 3.0 Tesla clinical MR scanner.
RESULTS Our data showed that the double antibody-conjugated probe UAG had the best specificity in targeting Hepa1-6/GPC3 cells expressing AFP and GPC3 antigens compared with single antibody-conjugated and unconjugated USPIO probes. The iron Prussian blue staining and quantitative T2-map MRI analysis showed that, compared with UA, UG, and U, the uptake of double antigen-targeted UAG probe demonstrated a 23.3% (vs UA), 15.4% (vs UG), and 57.3% (vs U) increased Prussian stained cell percentage and a 14.93% (vs UA), 9.38% (vs UG), and 15.3% (vs U) reduction of T2 relaxation time, respectively. Such bi-specific probe might have the potential to overcome tumor heterogeneity. Meanwhile, the coupling of two antibodies did not influence the magnetic performance of USPIO, and the relatively small hydrodynamic size (59.60 ± 1.87 nm) of double antibody-conjugated USPIO probe makes it a viable candidate for use in MHCC MRI in vivo, as they are slowly phagocytosed by macrophages.
CONCLUSION The bi-specific probe presents enhanced targeting efficiency and MRI sensitivity to HCC cells than singly- or non-targeted USPIO, paving the way for in vivo translation to further evaluate its clinical potential.
Collapse
Affiliation(s)
- Xiao-Hong Ma
- Department of Diagnostic Radiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuang Wang
- Department of Diagnostic Radiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Si-Yun Liu
- GE Healthcare (China), Beijing 100176, China
| | - Kun Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Zhi-Yuan Wu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Deng-Feng Li
- Department of Diagnostic Radiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yong-Tao Mi
- Department of Diagnostic Radiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Long-Bin Hu
- Department of Diagnostic Radiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | | | - Xin-Ming Zhao
- Department of Diagnostic Radiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
32
|
Zhang Q, Han Z, Tao J, Zhao M, Zhang W, Li P, Tang L, Gu Y. An innovative peptide with high affinity to GPC3 for hepatocellular carcinoma diagnosis. Biomater Sci 2019; 7:159-167. [PMID: 30417190 DOI: 10.1039/c8bm01016a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glypican-3 (GPC3) is a key biomarker for early diagnosis of human hepatocellular carcinoma (HCC) due to its overexpression in most HCC tumor tissues. Recently, peptides with high affinity to GPC3 have attracted more attention because of their high biocompatibility, non-immunogenicity, fast clearing and easy modification. Herein, we have designed an innovative GPC3 targeting peptide (sequence: DYEMHLWWGTEL, denoted as IPA) by using structure-based virtual simulation. The higher binding abilities of IPA over the reported peptide (YP) were displayed on different cell lines, showing a positive correlation with GPC3 expressions, which were further verified by the GPC3 protein binding assay. The GPC3 targeting specificity of IPA was proved by peptide blocking and siRNA experiment. The localized anchor of peptide IPA on the cell membranes of HepG2 and Huh-7 with GPC3 overexpression confirmed the GPC3 binding capacity. By connecting a near-infrared dye MPA, the in vivo identification ability of IPA to GPC3 was also demonstrated on GPC3-positive (HepG2) and GPC3-negative (U87) xenograft-bearing mice. These results indicated that the designed IPA presented desirable GPC3 targeting ability, showing promising prospects in detecting the expression of GPC3 for HCC targeting imaging.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, Gulou District 210009, China.
| | | | | | | | | | | | | | | |
Collapse
|