1
|
Silva TC, Cardoso LM, Pansani TN, Alfredo E, de Souza-Costa C, Basso FG. Effect Of Different Alkaline Treatments of Titanium Surface on Human Osteoblasts Metabolism. Braz Dent J 2024; 35:e245786. [PMID: 39476047 PMCID: PMC11520501 DOI: 10.1590/0103-6440202405786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/06/2024] [Indexed: 11/03/2024] Open
Abstract
This investigation demonstrates the effect of alkali modification of titanium on the metabolism of human osteoblasts. Polished titanium discs were subjected to alkalinization protocols with NaOH (5M) at 60°C or 120°C. Surface topography and roughness were evaluated using scanning electron microscopy (SEM). Osteoblasts were seeded onto titanium discs, followed by cell adhesion and viability analysis, total protein and collagen production, and alkaline phosphatase (ALP) activity. Gene expression of tumor necrosis factor-alpha (TNF-α) and beta-defensin 3 (HBD3) was evaluated after inflammatory stimulus with lipopolysaccharides (LPS) of Porphyromonas gingivalis (1 μg/mL) for 4 h. Discs subjected to modification with NaOH showed major irregularities, especially for 120°C-protocol. Increased adhered cell number was observed for surfaces modified by NaOH. Osteoblasts cultured on modified surfaces showed higher cell viability, total protein and collagen synthesis, and ALP activity than that of cells cultured on the polished discs. Osteoblast response to LPS exposure showed increased TNF-α gene expression by these cells when cultured on the polished discs, while increased expression of HBD3 was detected for all groups in the presence of LPS. Modification of titanium discs by NaOH at 60°C or 120°C promoted an increase in adhesion and metabolism of osteoblasts and favored the response to inflammatory stimulus.
Collapse
Affiliation(s)
- Talita Caira Silva
- Department of Dentistry, Ribeirão Preto University(UNAERP), Ribeirão Preto, SP, Brazil
| | - Lais M Cardoso
- São Paulo State University (UNESP) , School of Dentistry, Araraquara, SP, Brazil
| | - Taisa N Pansani
- São Paulo State University (UNESP) , School of Dentistry, Araraquara, SP, Brazil
| | - Edson Alfredo
- Department of Dentistry, Ribeirão Preto University(UNAERP), Ribeirão Preto, SP, Brazil
| | | | - Fernanda Gonçalves Basso
- Department of Dentistry, Ribeirão Preto University(UNAERP), Ribeirão Preto, SP, Brazil
- São Paulo State University (UNESP) , School of Dentistry, Araraquara, SP, Brazil
| |
Collapse
|
2
|
Geng Z, Dong R, Li X, Xu X, Chen L, Han X, Liu D, Liu Y. Study on the Antibacterial Activity and Bone Inductivity of Nanosilver/PLGA-Coated TI-CU Implants. Int J Nanomedicine 2024; 19:6427-6447. [PMID: 38952675 PMCID: PMC11215459 DOI: 10.2147/ijn.s456906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/21/2024] [Indexed: 07/03/2024] Open
Abstract
Background Implants are widely used in the field of orthopedics and dental sciences. Titanium (TI) and its alloys have become the most widely used implant materials, but implant-associated infection remains a common and serious complication after implant surgery. In addition, titanium exhibits biological inertness, which prevents implants and bone tissue from binding strongly and may cause implants to loosen and fall out. Therefore, preventing implant infection and improving their bone induction ability are important goals. Purpose To study the antibacterial activity and bone induction ability of titanium-copper alloy implants coated with nanosilver/poly (lactic-co-glycolic acid) (NSPTICU) and provide a new approach for inhibiting implant-associated infection and promoting bone integration. Methods We first examined the in vitro osteogenic ability of NSPTICU implants by studying the proliferation and differentiation of MC3T3-E1 cells. Furthermore, the ability of NSPTICU implants to induce osteogenic activity in SD rats was studied by micro-computed tomography (micro-CT), hematoxylin-eosin (HE) staining, masson staining, immunohistochemistry and van gieson (VG) staining. The antibacterial activity of NSPTICU in vitro was studied with gram-positive Staphylococcus aureus (Sa) and gram-negative Escherichia coli (E. coli) bacteria. Sa was used as the test bacterium, and the antibacterial ability of NSPTICU implanted in rats was studied by gross view specimen collection, bacterial colony counting, HE staining and Giemsa staining. Results Alizarin red staining, alkaline phosphatase (ALP) staining, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis showed that NSPTICU promoted the osteogenic differentiation of MC3T3-E1 cells. The in vitro antimicrobial results showed that the NSPTICU implants exhibited better antibacterial properties. Animal experiments showed that NSPTICU can inhibit inflammation and promote the repair of bone defects. Conclusion NSPTICU has excellent antibacterial and bone induction ability, and has broad application prospects in the treatment of bone defects related to orthopedics and dental sciences.
Collapse
Affiliation(s)
- Zhaoli Geng
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, People’s Republic of China
- Department of Stomatology, Qingdao West Coast New Area People’s Hospital, Qingdao, Shandong, 266400, People’s Republic of China
| | - Renping Dong
- Department of Stomatology, Qingdao West Coast New Area People’s Hospital, Qingdao, Shandong, 266400, People’s Republic of China
| | - Xinlin Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Xinyi Xu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Lin Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Xu Han
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Dongxu Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, People’s Republic of China
| | - Yi Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, People’s Republic of China
| |
Collapse
|
3
|
Qi D, Wang N, Cheng Y, Zhao Y, Meng L, Yue X, She P, Gao H. Application of Porous Polyetheretherketone Scaffold/ Vancomycin-Loaded Thermosensitive Hydrogel Composites for Antibacterial Therapy in Bone Repair. Macromol Biosci 2022; 22:e2200114. [PMID: 35850169 DOI: 10.1002/mabi.202200114] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/04/2022] [Indexed: 11/09/2022]
Abstract
Polyetheretherketone (PEEK) has been widely used in bone repair, but it often fails due to bacterial infection. Herein, a high-strength porous polyetheretherketone scaffold (ps-PK) loaded with antibacterial drug-loaded hydrogel strategy is proposed. The prepared ps-PK possesses high porosity (30.8%-64.7%) and the compression modulus is between 0.4-0.98 GPa. The interconnected pore-type structure endows it with a drug loading capacity. Poly(D,L -lactic acid-co-glycolic acid)-b-Poly(ethylene glycol)-b-Poly(D,L -lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) thermoresponsive hydrogels loaded with vancomycin are used as the drug sustained-release system. The vancomycin-loaded hydrogels in the solution state at a low temperature were filled into a porous polyetheretherketone scaffold (ps-PK-VGel) and formed a gel state after implantation in vivo. The antibacterial rate of ps-PK-VGel against methicillin-resistant staphylococcus aureus (MRSA) in vitro was 99.7% and histological observation in vivo demonstrates that the ps-PK-VGel shows obvious antibacterial activity. Given its excellent antibacterial ability and mechanical properties, the porous PEEK scaffold composite drug-loaded thermosensitive hydrogel has great potential in bone repair surgery applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Desheng Qi
- Engineering Research Center of Special Engineering Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130021, China
| | - Ningning Wang
- Department of Prosthetic Dentistry, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yuanqiang Cheng
- Department of Bone and Joint Surgery, No1 Hospital of Jilin University, Changchun, 130021, China
| | - Yao Zhao
- Department of Bone and Joint Surgery, No1 Hospital of Jilin University, Changchun, 130021, China
| | - Lingcheng Meng
- Engineering Research Center of Special Engineering Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130021, China
| | - Xigui Yue
- Engineering Research Center of Special Engineering Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130021, China
| | - Peng She
- Department of orthopedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 528406, China
| | - Hang Gao
- Department of Bone and Joint Surgery, No1 Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
4
|
Wei H, Song X, Liu P, Liu X, Yan X, Yu L. Antimicrobial coating strategy to prevent orthopaedic device-related infections: recent advances and future perspectives. BIOMATERIALS ADVANCES 2022; 135:212739. [PMID: 35929213 DOI: 10.1016/j.bioadv.2022.212739] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/15/2023]
Abstract
The rapid development of multidrug-resistant (MDR) bacteria and biofilm-related infections (BRIs) has urgently called for new strategies to combat severe orthopaedic device-related infections (ODRIs). Antimicrobial coating has emerged as a promising strategy in halting the incidence of ODRIs and treating ODRIs in long term. With the advancement of material science and biotechnology, numerous antimicrobial coatings have been reported in literature, showing superior antimicrobial and osteogenic functions. This review has specifically discussed the currently developed antimicrobial coatings in the perspective of drug release from the coating system, focusing on their realization of controlled and on demand antimicrobial agents release, as well as multi-functionality. Acknowledging the multidisciplinary nature of antimicrobial coating, the conceptual design, the deposition method and the therapeutic effect of the antimicrobial coatings have been described in detail and discussed critically. Particularly, the challenges and opportunities on the way toward the clinical translation of antimicrobial coatings have been highlighted.
Collapse
Affiliation(s)
- Huichao Wei
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xinyu Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Pengyan Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaohu Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xuefeng Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
5
|
Lex JR, Koucheki R, Stavropoulos NA, Michele JD, Toor JS, Tsoi K, Ferguson PC, Turcotte RE, Papagelopoulos PJ. Megaprosthesis anti-bacterial coatings: A comprehensive translational review. Acta Biomater 2022; 140:136-148. [PMID: 34879295 DOI: 10.1016/j.actbio.2021.11.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022]
Abstract
Periprosthetic joint infections (PJI) are catastrophic complications for patients with implanted megaprostheses and pose significant challenges in the management of orthopaedic oncology patients. Despite various preventative strategies, with the increasing rate of implanted orthopaedic prostheses, the number of PJIs may be increasing. PJIs are associated with a high rate of amputation. Therefore, novel strategies to combat bacterial colonization and biofilm formation are required. A promising strategy is the utilization of anti-bacterial coatings on megaprosthetic implants. In this translational review, a brief overview of the mechanism of bacterial colonization of implants and biofilm formation will be provided, followed by a discussion and classification of major anti-bacterial coatings currently in use and development. In addition, current in vitro outcomes, clinical significance, economic importance, evolutionary perspectives, and future directions of anti-bacterial coatings will also be discussed. Megaprosthetic anti-bacterial coating strategies will help reduce infection rates following the implantation of megaprostheses and would positively impact sarcoma care. STATEMENT OF SIGNIFICANCE: This review highlights the clinical challenges and a multitude of potential solutions to combating peri-prosthetic join infections in megaprotheses using anti-bacterial coatings. Reducing infection rates following the implantation of megaprostheses would have a major impact on sarcoma care and major trauma surgeries that require reconstruction of large skeletal defects.
Collapse
Affiliation(s)
- Johnathan R Lex
- Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Robert Koucheki
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | | | - Joseph Di Michele
- Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Jay S Toor
- Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Kim Tsoi
- Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada; University Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, Canada
| | - Peter C Ferguson
- Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Toronto, Canada; University Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, Canada
| | - Robert E Turcotte
- Division of Orthopedic Surgery, McGill University Health Centre, Montreal, Canada
| | - Panayiotis J Papagelopoulos
- 1st Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
6
|
Bozorgi A, Khazaei M, Soleimani M, Jamalpoor Z. Application of nanoparticles in bone tissue engineering; a review on the molecular mechanisms driving osteogenesis. Biomater Sci 2021; 9:4541-4567. [PMID: 34075945 DOI: 10.1039/d1bm00504a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The introduction of nanoparticles into bone tissue engineering strategies is beneficial to govern cell fate into osteogenesis and the regeneration of large bone defects. The present study explored the role of nanoparticles to advance osteogenesis with a focus on the cellular and molecular pathways involved. Pubmed, Pubmed Central, Embase, Scopus, and Science Direct databases were explored for those published articles relevant to the involvement of nanoparticles in osteogenic cellular pathways. As multifunctional compounds, nanoparticles contribute to scaffold-free and scaffold-based tissue engineering strategies to progress osteogenesis and bone regeneration. They regulate inflammatory responses and osteo/angio/osteoclastic signaling pathways to generate an osteogenic niche. Besides, nanoparticles interact with biomolecules, enhance their half-life and bioavailability. Nanoparticles are promising candidates to promote osteogenesis. However, the interaction of nanoparticles with the biological milieu is somewhat complicated, and more considerations are recommended on the employment of nanoparticles in clinical applications because of NP-induced toxicities.
Collapse
Affiliation(s)
- Azam Bozorgi
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran and Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran and Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Jamalpoor
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Zhang QJ, Liu Y, Zhang WT, Huang JJ, Li HH, Lu YG, Zheng M, Zheng DL. Synthesis, Antifungal Activity, and Cytotoxicity of AgBr-NP@CTMAB Hybrid and Its Application in PMMA. Int J Nanomedicine 2021; 16:3091-3103. [PMID: 33953557 PMCID: PMC8092853 DOI: 10.2147/ijn.s290673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/16/2021] [Indexed: 12/27/2022] Open
Abstract
Objective To synthesize and determine the antifungal activity of AgBr-nanoparticles (NP) @CTMAB (cetyltrimethyl-ammonium bromide) against Candida albicans (C. albicans) for use in the field of denture cleaning. Methods The morphology and structure of AgBr-NP@CTMAB were characterized by IR, UV-Vis, XRD and SEM. The antifungal potential of AgBr-NP@CTMAB against C. albicans was determined by colony formation assay and growth curve analysis. PMMA containing AgBr-NP@CTMAB was prepared, and the long-term antifungal efficacy was analyzed. The effect against C. albicans biofilm was analyzed by SEM and OD600 , and the color changes of the specimens were observed by stereomicroscopy after 1 week of incubation. Cytotoxicity to human oral gingival fibroblasts and oral mucosal epithelial cells was detected by Cell Counting Kit-8 (CCK-8) in vitro. Results The compound showed a good crystalline phase, the presence of AgBr nanoparticles and the hybridization of CTMAB+ with AgBr-NPs. AgBr-NP@CTMAB showed significant antifungal activity against C. albicans at concentrations of 10 μg/mL and 20 μg/mL. PMMA specimens containing AgBr-NP@CTMAB showed no long-term antifungal effect against C. albicans biofilm. The clearance rate of C. albicans attached to PMMA was 44.73% after soaking in 10 µg/mL AgBr-NP@CTMAB solution for 30 min and 91.35% for 8 h. There was no significant residual cytotoxicity or visual color change after soaking. Significance AgBr-NP@CTMAB showed promising potential treatment for denture cleaners.
Collapse
Affiliation(s)
- Qiao-Jun Zhang
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, 350004, People's Republic of China.,Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Yue Liu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, People's Republic of China
| | - Wen-Ting Zhang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, People's Republic of China
| | - Jing-Jing Huang
- Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Hao-Hong Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, People's Republic of China
| | - You-Guang Lu
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, 350004, People's Republic of China
| | - Ming Zheng
- Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Da-Li Zheng
- Fujian Key Laboratory of Oral Diseases, Fujian Biological Materials Engineering and Technology Center of Stomatology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, 350004, People's Republic of China
| |
Collapse
|
8
|
Antibacterial Effects of Erbium Chromium Laser along with/without Silver Nanoparticles in Root Canals Infected by Enterococcus faecalis. Int J Dent 2021; 2021:6659146. [PMID: 33927764 PMCID: PMC8049813 DOI: 10.1155/2021/6659146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/01/2021] [Accepted: 03/21/2021] [Indexed: 11/17/2022] Open
Abstract
This study investigates the antibacterial effects of erbium chromium laser at 2780 nm, silver nanoparticles, and erbium chromium along with silver nanoparticles on Enterococcus faecalis in comparison with sodium hypochlorite. In the present study, 90 extracted human single-rooted teeth were selected and standardized to a length of 15 mm. The canals were prepared by V-taper Gold rotary files and then incubated with E. faecalis for 21 days. The samples were divided into four experimental groups including hypochlorite sodium, silver nanoparticle, erbium chromium laser, and erbium chromium laser along with silver nanoparticle groups. Results showed that there was a significant reduction in colony count for all groups after interventions. Moreover, there was a significant reduction in the colony count for sodium hypochlorite group in comparison with another groups, and this group showed the highest reduction of colony count. There was a significant difference between silver nanoparticles and erbium chromium laser groups in colony count. According to the results, the silver nanoparticles offered strong antibacterial effects on E. faecalis and therefore can decrease bacterial colonies, while the use of the laser, despite the reduction of the bacterial colony, could not be sufficiently used for disinfection of root canal system.
Collapse
|
9
|
Preparation and Characterization of Sustained-Release Naringin Coating on Magnesium Surface. COATINGS 2021. [DOI: 10.3390/coatings11030288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Given the three-dimensional multi-level structure of natural bone and the multi-factor time-shifting effect in the healing process after bone trauma, there are plans to introduce drug-controlled release systems into the treatment of orthopedic diseases. To achieve multi-level loading and controlled release of biologically active substances, it is necessary to create synergistic behavior between biological factors, thereby improving the bone regeneration ability of artificial bone replacement materials. A naringin-loaded (NG) coating was prepared, compared with ultrasonic micro-arc oxidation (UMAO). The coating was characterized by X-ray diffraction, infrared spectroscopy, and scanning electron microscopy. The corrosion resistance of the coating was studied through the wetting angle and polarization curve. The high-performance liquid chromatography method was used to test the release of the drug. It can be seen from the experimental results that the NG coating has a larger wetting angle and better corrosion resistance. In addition, the NG coating produces more apatite substances and has good biological activity. The NG coatings can stimulate the natural bone regeneration and repair process by releasing drugs during the process, which can effectively promote bone regeneration and repair after implantation in the body.
Collapse
|
10
|
Gherasim O, Puiu RA, Bîrcă AC, Burdușel AC, Grumezescu AM. An Updated Review on Silver Nanoparticles in Biomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2318. [PMID: 33238486 PMCID: PMC7700255 DOI: 10.3390/nano10112318] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
Silver nanoparticles (AgNPs) represent one of the most explored categories of nanomaterials for new and improved biomaterials and biotechnologies, with impressive use in the pharmaceutical and cosmetic industry, anti-infective therapy and wound care, food and the textile industry. Their extensive and versatile applicability relies on the genuine and easy-tunable properties of nanosilver, including remarkable physicochemical behavior, exceptional antimicrobial efficiency, anti-inflammatory action and antitumor activity. Besides commercially available and clinically safe AgNPs-based products, a substantial number of recent studies assessed the applicability of nanosilver as therapeutic agents in augmented and alternative strategies for cancer therapy, sensing and diagnosis platforms, restorative and regenerative biomaterials. Given the beneficial interactions of AgNPs with living structures and their nontoxic effects on healthy human cells, they represent an accurate candidate for various biomedical products. In the present review, the most important and recent applications of AgNPs in biomedical products and biomedicine are considered.
Collapse
Affiliation(s)
- Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Rebecca Alexandra Puiu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandra-Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (O.G.); (R.A.P.); (A.C.B.); (A.-C.B.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90-92 Panduri Road, 050657 Bucharest, Romania
| |
Collapse
|
11
|
Hu CC, Chang CH, Chang Y, Hsieh JH, Ueng SWN. Beneficial Effect of TaON-Ag Nanocomposite Titanium on Antibacterial Capacity in Orthopedic Application. Int J Nanomedicine 2020; 15:7889-7900. [PMID: 33116507 PMCID: PMC7568682 DOI: 10.2147/ijn.s264303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose In this study, a novel oxygenated nanocomposite thin film, TaON-Ag, was investigated in vitro and in vivo to evaluate its biocompatibility and antibacterial ability. Material and Methods The antibacterial ability of TaON-Ag nanocomposite-coated titanium (Ti) was evaluated using the Kirby-Bauer disk diffusion susceptibility test. The effects of TaON-Ag nanocomposite-coated metal on osteogenesis were further evaluated in an in vitro osteogenic culture model with rat marrow-derived mesenchymal stem cells (rMSCs). Furthermore, titanium rods coated with TaON-Ag were implanted into a rat femur fracture model either with or without osteomyelitis to investigate the effects of TaON-Ag in osteogenesis. Results The TaON-Ag-coated Ti exhibited an effective antibacterial effect against Staphylococcus aureus, coagulase-negative Staphylococcus, and the Gram-negative strains Escherichia coli and Pseudomonas aeruginosa. Using an osteogenic culture with rMSCs and a rat femoral fracture model, the TaON-Ag-coated Ti did not interfere with the ossification of rMSCs in vitro or during fracture healing in vivo. Field-emission scanning electron microscopy (FE-SEM) revealed that coating with TaON-Ag could inhibit pathogen adhesion and biofilm formation in both Staphylococcus aureus and Escherichia coli. Conclusion Using the proposed novel oxygenation process, TaON-Ag nanocomposite-coated Ti yielded robust biocompatibility and antibacterial ability against common microorganisms in orthopedic infections, thereby demonstrating potential for use in clinical applications.
Collapse
Affiliation(s)
- Chih-Chien Hu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan 33305, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Kweishan, Taoyuan 33305, Taiwan.,College of Medicine, Chang Gung University, Kweishan, Taoyuan 33302, Taiwan.,Department of Orthopedic Surgery, Xiamen Chang Gung Hospital, Xiamen, Fujian, People's Republic of China
| | - Chih-Hsiang Chang
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan 33305, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Kweishan, Taoyuan 33305, Taiwan.,College of Medicine, Chang Gung University, Kweishan, Taoyuan 33302, Taiwan
| | - Yuhan Chang
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan 33305, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Kweishan, Taoyuan 33305, Taiwan.,College of Medicine, Chang Gung University, Kweishan, Taoyuan 33302, Taiwan
| | - Jang-Hsing Hsieh
- Department of Materials Engineering, Ming Chi University of Technology, Taishan, Taipei 24301, Taiwan.,Center for Thin Film Technologies and Applications, Ming Chi University of Technology, Taishan, Taipei 24301, Taiwan
| | - Steve Wen-Neng Ueng
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan 33305, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Kweishan, Taoyuan 33305, Taiwan.,College of Medicine, Chang Gung University, Kweishan, Taoyuan 33302, Taiwan
| |
Collapse
|
12
|
Chen Y, Guan M, Ren R, Gao C, Cheng H, Li Y, Gao B, Wei Y, Fu J, Sun J, Xiong W. Improved Immunoregulation of Ultra-Low-Dose Silver Nanoparticle-Loaded TiO 2 Nanotubes via M2 Macrophage Polarization by Regulating GLUT1 and Autophagy. Int J Nanomedicine 2020; 15:2011-2026. [PMID: 32273699 PMCID: PMC7102919 DOI: 10.2147/ijn.s242919] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
Introduction The bone regeneration of endosseous implanted biomaterials is often impaired by the host immune response, especially macrophage-related inflammation which plays an important role in the bone healing process. Thus, it is a promising strategy to design an osteo-immunomodulatory biomaterial to take advantage of the macrophage-related immune response and improve the osseointegration performance of the implant. Methods In this study, we developed an antibacterial silver nanoparticle-loaded TiO2 nanotubes (Ag@TiO2-NTs) using an electrochemical anodization method to make the surface modification and investigated the influences of Ag@TiO2-NTs on the macrophage polarization, osteo-immune microenvironment as well as its potential molecular mechanisms in vitro and in vivo. Results The results showed that Ag@TiO2-NTs with controlled releasing of ultra-low-dose Ag+ ions had the excellent ability to induce the macrophage polarization towards the M2 phenotype and create a suitable osteo-immune microenvironment in vitro, via inhibiting PI3K/Akt, suppressing the downstream effector GLUT1, and activating autophagy. Moreover, Ag@TiO2-NTs surface could improve bone formation, suppress inflammation, and promote osteo-immune microenvironment compared to the TiO2-NTs and polished Ti surfaces in vivo. These findings suggested that Ag@TiO2-NTs with controlled releasing of ultra-low-dose Ag+ ions could not only inhibit the inflammation process but also promote the bone healing by inducing healing-associated M2 polarization. Discussion Using this surface modification strategy to modulate the macrophage-related immune response, rather than prevent the host response, maybe a promising strategy for implant surgeries in the future.
Collapse
Affiliation(s)
- Yangmengfan Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ming Guan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ranyue Ren
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chenghao Gao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hao Cheng
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Yong Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Biao Gao
- The State Key Laboratory of Refractories and Metallurgy, School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Yong Wei
- The State Key Laboratory of Refractories and Metallurgy, School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Jijiang Fu
- The State Key Laboratory of Refractories and Metallurgy, School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Jun Sun
- Department of Biochemistry and Molecular Biology, Basic Medical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Wei Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
13
|
Dhar Y, Han Y. Current developments in biofilm treatments: Wound and implant infections. ENGINEERED REGENERATION 2020. [DOI: 10.1016/j.engreg.2020.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
14
|
Liu Y, Rath B, Tingart M, Eschweiler J. Role of implants surface modification in osseointegration: A systematic review. J Biomed Mater Res A 2019; 108:470-484. [DOI: 10.1002/jbm.a.36829] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Yu Liu
- Department of Orthopaedic Surgery RWTH Aachen University Clinic Aachen Germany
| | - Björn Rath
- Department of Orthopaedic Surgery RWTH Aachen University Clinic Aachen Germany
| | - Markus Tingart
- Department of Orthopaedic Surgery RWTH Aachen University Clinic Aachen Germany
| | - Jörg Eschweiler
- Department of Orthopaedic Surgery RWTH Aachen University Clinic Aachen Germany
| |
Collapse
|
15
|
Lin W, Huang K, Li Y, Qin Y, Xiong D, Ling J, Yi G, Tang Z, Lin J, Huang Y, Yang C, Wang J. Facile In Situ Preparation and In Vitro Antibacterial Activity of PDMAEMA-Based Silver-Bearing Copolymer Micelles. NANOSCALE RESEARCH LETTERS 2019; 14:256. [PMID: 31352529 PMCID: PMC6661048 DOI: 10.1186/s11671-019-3074-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Well-defined polymer micelles with core-shell structure are good delivery platform for stabilizing silver nanoparticles (AgNPs) in the field of antimicrobials targeting diseases. The rational construction of the polymer structure, an efficient, facile, and green preparation approach, and comprehensive exploration of the derived AgNPs are necessary, such as size, particle stability, antibacterial activity, and other properties. Herein, we designed and assessed the in vitro antimicrobial activity of AgNPs-decorated copolymer micelles with different copolymer topologies. First, linear or four-arm star triblock copolymers with the similar molecular weight and degree of polymerization were obtained, which consisted of DMAEMA for in situ reduction of silver ions to form AgNPs without external reducing agent. HEMA and PEGMA in micellar shell gave an enhanced stability of AgNPs during blood circulation. The combination of computational modeling and experimental results indicated that both types of micelles could fabricate AgNPs with monodisperse and spherical morphology. Star copolymer micelles stabilized AgNPs had smaller average size, better stability, and higher antibacterial activity than those with linear structure, which may due to higher stability of micelles from star copolymers. Furthermore, the cytotoxicity evaluation test showed that the achieved linear or star copolymers micelles stabilized AgNPs had good biocompatibility. This work provides a facile and universal approach in the rational design of micelles stabilized AgNPs with suitable topology for fighting against a wide range of bacterial infections.
Collapse
Affiliation(s)
- Wenjing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Kaihang Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Yanzhe Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Yanlin Qin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Di Xiong
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Jiabao Ling
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Guobin Yi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Zilun Tang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Jinglian Lin
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Yunwei Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Chufen Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Jufang Wang
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|