1
|
Kamal HK, Almutairi BO, Abdel-Naim AB. Asiatic acid mitigates testosterone-induced benign prostatic hyperplasia in rats via activation of PPAR-γ. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1991-2001. [PMID: 39222244 DOI: 10.1007/s00210-024-03405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Prostate enlargement due to benign prostate hyperplasia (BPH) is a common, progressive disorder in elderly males with increasing prevalence. It causes devastating lower urinary tract symptoms with no satisfactory medication. Asiatic acid (AA), a natural pentacyclic triterpenoid, is known to have antiproliferative, antioxidant, and anti-inflammatory activities. The aim of this study was to evaluate the possible preventive activities of AA against BPH induced by testosterone in rats. Finasteride (0.5 mg/kg) was used as a reference drug. AA (10 or 20 mg/kg) administration inhibited the rise in prostatic weight and index induced by testosterone. Histopathological staining proved that AA mitigated the pathological features of BPH induced by testosterone, which was reflected as lower glandular epithelial in AA-treated groups. Also, the administration of AA along with testosterone restored the redox valance by inhibiting lipid peroxidation, and MDA production, and restoring the activities of superoxide dismutase (SOD) and catalase (CAT) activities. Also, AA reduced prostate interleukin-6 (IL-6), cyclooxygenase-2 (COX-2), tumor necrosis factor-alpha (TNF-α), and nuclear factor-kappa B (NF-κB) protein expression. In addition, AA modulated mRNA expression of Bax and Bcl-2 in favor of apoptosis. The effects of AA (20 mg/kg) were comparable to those of finasteride. Further, AA ameliorated the rise in insulin-like growth factor 1 receptor (IGF-1R) mRNA expression. This was associated with the enhancement of the prostatic content of PPAR-γ. It can be concluded that AA mitigated the features of BPH induced by testosterone in rats. This involves antioxidant, anti-inflammatory and pro-apototic activities of AA as well as its ability to down-regulate IGF-1R expression and enhance PPAR-γ concentration in prostatic tissues.
Collapse
Affiliation(s)
- Hani K Kamal
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Gu L, Alemasi A, Chen Y, Li X, Mei Y, Zhou J, He D, Zeng J. Gut Microbiota Disorders in Obesity-Associated Benign Prostatic Hyperplasia in Rats. Biochem Genet 2024; 62:4639-4653. [PMID: 38349437 DOI: 10.1007/s10528-023-10634-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 12/12/2023] [Indexed: 11/29/2024]
Abstract
Benign prostatic hyperplasia (BPH), commonly seen in older men, can cause symptoms of discomfort, and may even need surgical intervention. Studies have shown the potential link between gut microbes and BPH, but the molecular association is not fully understood. METHODS Four-week-old male Sprague-Dawley rats (n = 16) were randomly allocated to normal control diet (ND, 10% fat) and high-fat diet-induced BPH (HFD, 45% fat) groups. Metagenomic analysis was used to examine the abundance and discrepancies in gut microbiota within the two groups after 24 weeks of feeding. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was conducted to assess the biological functions of the differentially expressed genes. RESULTS Rats with HFD-induced obesity exhibited morphological abnormalities in their prostate tissues. Metagenomic analysis of the gut revealed that Firmicutes were the dominant phyla in the HFD group, whereas the ND group had a higher abundance of Spirochaetes. At the genus level, Ruminococcus spp exhibited greater abundance in the HFD group, whereas Treponema spp were more abundant in the ND group. KEGG analysis demonstrated that the differentially expressed genes were mainly enriched in the NOD-like receptor (NLR) signaling, PI3K-Akt signaling, estrogen-signaling, signalings associated with GABAergic synapses, pantothenate and CoA biosynthesis. CONCLUSION The findings of our study indicated that there was a notable variation in the microbiota abundance within the intestinal tract of obese rats suffering from prostate hyperplasia. It is plausible that these differentially abundant bacteria played a role in the development of pathological alterations in the prostate through the facilitation of inflammatory responses; however, additional research is required to validate the findings.
Collapse
Affiliation(s)
- Lijiang Gu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Akehu Alemasi
- Department of Nephrology, Capital Medical University, Beijing Tiantan Hospital, Beijing, 100070, China
| | - Yuhang Chen
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xing Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yibo Mei
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jinlai Zhou
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Jin Zeng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Acharya B, Behera A, Behera S, Moharana S. Recent Advances in Nanotechnology-Based Drug Delivery Systems for the Diagnosis and Treatment of Reproductive Disorders. ACS APPLIED BIO MATERIALS 2024; 7:1336-1361. [PMID: 38412066 DOI: 10.1021/acsabm.3c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Over the past decade, nanotechnology has seen extensive integration into biomedical applications, playing a crucial role in biodetection, drug delivery, and diagnostic imaging. This is especially important in reproductive health care, which has become an emerging and significant area of research. Global concerns have intensified around disorders such as infertility, endometriosis, ectopic pregnancy, erectile dysfunction, benign prostate hyperplasia, sexually transmitted infections, and reproductive cancers. Nanotechnology presents promising solutions to address these concerns by introducing innovative tools and techniques, facilitating early detection, targeted drug delivery, and improved imaging capabilities. Through the utilization of nanoscale materials and devices, researchers can craft treatments that are not only more precise but also more effective, significantly enhancing outcomes in reproductive healthcare. Looking forward, the future of nanotechnology in reproductive medicine holds immense potential for reshaping diagnostics, personalized therapies, and fertility preservation. The utilization of nanotechnology-driven drug delivery systems is anticipated to elevate treatment effectiveness, minimize side effects, and offer patients therapies that are not only more precise but also more efficient. This review aims to delve into the various types, properties, and preparation techniques of nanocarriers specifically designed for drug delivery in the context of reproductive disorders, shedding light on the current landscape and potential future directions in this dynamic field.
Collapse
Affiliation(s)
- Biswajeet Acharya
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| | - Amulyaratna Behera
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| | | | - Srikanta Moharana
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
4
|
Oliveira M, Sousa A, Sá S, Soares S, Pereira AC, Rocha AC, Pais P, Ferreira D, Almeida C, Luís C, Lima C, Almeida F, Gestoso Á, Duarte MC, Barata P, Martins-Mendes D, Baylina P, Pereira CF, Fernandes R. Harvesting the Power of Green Synthesis: Gold Nanoparticles Tailored for Prostate Cancer Therapy. Int J Mol Sci 2024; 25:2277. [PMID: 38396953 PMCID: PMC10889744 DOI: 10.3390/ijms25042277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Biosynthetic gold nanoparticles (bAuNPs) present a promising avenue for enhancing bio-compatibility and offering an economically and environmentally responsible alternative to traditional production methods, achieved through a reduction in the use of hazardous chemicals. While the potential of bAuNPs as anticancer agents has been explored, there is a limited body of research focusing on the crucial physicochemical conditions influencing bAuNP production. In this study, we aim to identify the optimal growth phase of Pseudomonas aeruginosa cultures that maximizes the redox potential and coordinates the formation of bAuNPs with increased efficiency. The investigation employs 2,6-dichlorophenolindophenol (DCIP) as a redox indicator. Simultaneously, we explore the impact of temperature, pH, and incubation duration on the biosynthesis of bAuNPs, with a specific emphasis on their potential application as antitumor agents. Characterization of the resulting bAuNPs is conducted using ATR-FT-IR, TEM, and UV-Vis spectroscopy. To gain insights into the anticancer potential of bAuNPs, an experimental model is employed, utilizing both non-neoplastic (HPEpiC) and neoplastic (PC3) epithelial cell lines. Notably, P. aeruginosa cultures at 9 h/OD600 = 1, combined with biosynthesis at pH 9.0 for 24 h at 58 °C, produce bAuNPs that exhibit smaller, more spherical, and less aggregated characteristics. Crucially, these nanoparticles demonstrate negligible effects on HPEpiC cells while significantly impacting PC3 cells, resulting in reduced viability, migration, and lower IL-6 levels. This research lays the groundwork for the development of more specialized, economical, and ecologically friendly treatment modalities.
Collapse
Affiliation(s)
- Marco Oliveira
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
| | - André Sousa
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- FMUP, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- FFCC-Facultad de Ciencias, University of Vigo, 36310 Vigo, Spain
| | - Sara Sá
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- FMUP, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- FFCC-Facultad de Ciencias, University of Vigo, 36310 Vigo, Spain
| | - Sílvia Soares
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- FMUP, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Ana Cláudia Pereira
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
| | - Ana Catarina Rocha
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- FMUP, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Patrick Pais
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- ECVA-UTAD, Escola de Ciências da Vida e do Ambiente, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Diogo Ferreira
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- FFCC-Facultad de Ciencias, University of Vigo, 36310 Vigo, Spain
- TBIO, Center for Translational Health and Medical Biotechnology Research, ESS-IPP, Escola S. Saúde, Instituto Politécnico do Porto, 4200-465 Porto, Portugal
| | - Cátia Almeida
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- FMUP, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Carla Luís
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- FMUP, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Cláudio Lima
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
| | - Fábio Almeida
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
| | - Álvaro Gestoso
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
| | - Miguel-Correa Duarte
- FFCC-Facultad de Ciencias, University of Vigo, 36310 Vigo, Spain
- CINBIO, University of Vigo, 36310 Vigo, Spain
- Southern Galicia Institute of Health Research (IISGS), Biomedical Research Networking Center for Mental Health (CIBERSAM), 36310 Madrid, Spain
| | - Pedro Barata
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- FMUP, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Daniela Martins-Mendes
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- FMUP, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Pilar Baylina
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- TBIO, Center for Translational Health and Medical Biotechnology Research, ESS-IPP, Escola S. Saúde, Instituto Politécnico do Porto, 4200-465 Porto, Portugal
| | - Carla F. Pereira
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
| | - Rúben Fernandes
- FP-I3ID, FP-BHS, Instituto de Investigação, Inovação e Desenvolvimento, Biomedical Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- RISE-UFP, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
| |
Collapse
|
5
|
Akkam N, Aljabali AAA, Akkam Y, Abo Alrob O, Al-Trad B, Alzoubi H, Tambuwala MM, Al-Batayneh KM. Investigating the fate and toxicity of green synthesized gold nanoparticles in albino mice. Drug Dev Ind Pharm 2023; 49:508-520. [PMID: 37530565 DOI: 10.1080/03639045.2023.2243334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVE This study aims to investigate the acute and chronic adverse effects of ∼50 nm (nanometer) gold nanoparticles (AuNPs) synthesized using Ziziphus zizyphus leaf extract in mice. SIGNIFICANCE AuNPs have shown promise for medical applications, but their safety and biocompatibility need to be addressed. Understanding the potential adverse effects of AuNPs is crucial to ensure their safe use in medical applications. METHODS The ∼50 nm AuNPs were synthesized using Ziziphus zizyphus leaf extract and characterized using scanning electron microscopy, dynamic light scattering, and zeta potential analysis. Mice were subjected to a single intraperitoneal injection of AuNPs at a dose of 1 g/mg (grams per milligram) or a daily dose of 1 mg/kg for 28 days. Various parameters, including gold bioaccumulation, survival, behavior, body weight, and blood glucose levels, were measured. Histopathological changes and organ indices were assessed. RESULTS Gold levels in the blood and heart did not significantly increase with daily administration of AuNPs. However, there were proportional increases in gold content observed in the liver, spleen, and kidney, indicating effective tissue uptake. Histopathological alterations were predominantly observed in the kidney, suggesting potential tissue injury. CONCLUSIONS The findings of this study indicate that ∼50 nm AuNPs synthesized using Z. zizyphus leaf extract can induce adverse effects, particularly in the kidney, in mice. These results highlight the importance of addressing safety concerns when using AuNPs in medical applications. Further investigations that encompass a comprehensive set of toxicological parameters are necessary to confirm the long-term adverse effects of AuNP exposure.
Collapse
Affiliation(s)
- Nosaibah Akkam
- Department of Biological Science, Yarmouk University, Irbid, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Yazan Akkam
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Osama Abo Alrob
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Bahaa Al-Trad
- Department of Biological Science, Yarmouk University, Irbid, Jordan
| | - Hiba Alzoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, UK
| | | |
Collapse
|
6
|
Maher S, Nisar S, Aslam SM, Saleem F, Behlil F, Imran M, Assiri MA, Nouroz A, Naheed N, Khan ZA, Aslam P. Synthesis and Characterization of ZnO Nanoparticles Derived from Biomass ( Sisymbrium Irio) and Assessment of Potential Anticancer Activity. ACS OMEGA 2023; 8:15920-15931. [PMID: 37179630 PMCID: PMC10173346 DOI: 10.1021/acsomega.2c07621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/30/2023] [Indexed: 05/15/2023]
Abstract
Cancer treatment development is hampered by chemotherapy side effects, drug resistance, and tumor metastasis, giving cancer patients a gloomy prognosis. Nanoparticles (NPs) have developed as a promising medicinal delivery technique in the last 10 years. The zinc oxide (ZnO) NPs can precisely and captivatingly promote the apoptosis of cancer cells in cancer treatment. There is also an urgent need to discover novel anti-cancer therapies, and current research suggests that ZnO NPs hold significant promise. ZnO NPs have been tested for phytochemical screening and in vitro chemical efficiency. The green synthesis method was employed for the preparation of ZnO NPs from Sisymbrium irio (L.) (Khakshi). An alcoholic and aqueous extract of S. irio was prepared using the Soxhlet method. Various chemical compounds were revealed in the methanolic extract through qualitative analysis. The results of quantitative analysis showed that the total phenolic content has the highest amount (42.7861 mgGAE/g), while the resultant amounts of (5.72175 mgAAE/g) and (15.20725 mgAAE/g) were obtained in total flavonoid content and antioxidant property, respectively. ZnO NPs were prepared using a 1:1 ratio. The synthesized ZnO NPs were identified to have a hexagonal wurtzite crystal arrangement. The nanomaterial was characterized by scanning electron microscopy, transmission electron microscopy, and UV-visible spectroscopy. The ZnO-NPs' morphology exhibited an absorbance at 350-380 nm. Furthermore, different fractions were prepared and assessed for anticancer activity. As a result of this anticancer activity, all fractions exhibited cytotoxic activity against both BHK and HepG2 human cancer cell lines. The methanol fraction showed the highest activity of 90% (IC50 = 0.4769 mg/mL), followed by the hexane fraction that showed 86.72%, ethyl acetate showed 85%, and chloroform fraction showed 84% against BHK and HepG2 cell lines. These findings suggested that synthesized ZnO-NPs have anticancer potential.
Collapse
Affiliation(s)
- Saima Maher
- Department
of Chemistry, Sardar Bahadur Khan Women
University, Quetta 5XR6+85F, Balochistan, Pakistan
| | - Shazia Nisar
- Department
of Chemistry, University of Karachi, Karachi 72500, Pakistan
| | - Sania Muhammad Aslam
- Department
of Chemistry, Sardar Bahadur Khan Women
University, Quetta 5XR6+85F, Balochistan, Pakistan
| | - Farooq Saleem
- Faculty
of Pharmacy, The University of Lahore, Lahore 82000, Pakistan
| | - Farida Behlil
- Department
of Chemistry, Sardar Bahadur Khan Women
University, Quetta 5XR6+85F, Balochistan, Pakistan
| | - Muhammad Imran
- Department
of Chemistry, Faculty of Science and Research Center for Advanced
Materials Science (RCAMS) King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohammed A. Assiri
- Department
of Chemistry, Faculty of Science and Research Center for Advanced
Materials Science (RCAMS) King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Arifa Nouroz
- Department
of Chemistry, Sardar Bahadur Khan Women
University, Quetta 5XR6+85F, Balochistan, Pakistan
| | - Nadra Naheed
- ICCBS,
University of Karachi, Karachi 72500, Pakistan
| | - Zarmina Azad Khan
- Department
of Chemistry, Sardar Bahadur Khan Women
University, Quetta 5XR6+85F, Balochistan, Pakistan
| | - Parveen Aslam
- Department
of Chemistry, Sardar Bahadur Khan Women
University, Quetta 5XR6+85F, Balochistan, Pakistan
| |
Collapse
|
7
|
Seaberg J, Clegg JR, Bhattacharya R, Mukherjee P. Self-Therapeutic Nanomaterials: Applications in Biology and Medicine. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2023; 62:190-224. [PMID: 36938366 PMCID: PMC10022599 DOI: 10.1016/j.mattod.2022.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Over past decades, nanotechnology has contributed to the biomedical field in areas including detection, diagnosis, and drug delivery via opto-electronic properties or enhancement of biological effects. Though generally considered inert delivery vehicles, a plethora of past and present evidence demonstrates that nanomaterials also exude unique intrinsic biological activity based on composition, shape, and surface functionalization. These intrinsic biological activities, termed self-therapeutic properties, take several forms, including mediation of cell-cell interactions, modulation of interactions between biomolecules, catalytic amplification of biochemical reactions, and alteration of biological signal transduction events. Moreover, study of biomolecule-nanomaterial interactions offers a promising avenue for uncovering the molecular mechanisms of biology and the evolution of disease. In this review, we observe the historical development, synthesis, and characterization of self-therapeutic nanomaterials. Next, we discuss nanomaterial interactions with biological systems, starting with administration and concluding with elimination. Finally, we apply this materials perspective to advances in intrinsic nanotherapies across the biomedical field, from cancer therapy to treatment of microbial infections and tissue regeneration. We conclude with a description of self-therapeutic nanomaterials in clinical trials and share our perspective on the direction of the field in upcoming years.
Collapse
Affiliation(s)
- Joshua Seaberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- M.D./Ph.D. Program, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - John R. Clegg
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
8
|
San Valentin EMD, Barcena AJR, Klusman C, Martin B, Melancon MP. Nano-embedded medical devices and delivery systems in interventional radiology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1841. [PMID: 35946543 PMCID: PMC9840652 DOI: 10.1002/wnan.1841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 01/31/2023]
Abstract
Nanomaterials research has significantly accelerated the development of the field of vascular and interventional radiology. The incorporation of nanoparticles with unique and functional properties into medical devices and delivery systems has paved the way for the creation of novel diagnostic and therapeutic procedures for various clinical disorders. In this review, we discuss the advancements in the field of interventional radiology and the role of nanotechnology in maximizing the benefits and mitigating the disadvantages of interventional radiology theranostic procedures. Several nanomaterials have been studied to improve the efficacy of interventional radiology interventions, reduce the complications associated with medical devices, improve the accuracy and efficiency of drug delivery systems, and develop innovative imaging modalities. Here, we summarize the recent progress in the development of medical devices and delivery systems that link nanotechnology in vascular and interventional radiology. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease.
Collapse
Affiliation(s)
- Erin Marie D San Valentin
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- St. Luke's Medical Center College of Medicine-William H. Quasha Memorial, Quezon City, Philippines
| | | | - Carleigh Klusman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Baylor College of Medicine, Houston, Texas, USA
| | - Benjamin Martin
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Baylor College of Medicine, Houston, Texas, USA
| | - Marites P Melancon
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
9
|
Jarrar Q, Al-Doaiss A, Jarrar BM, Alshehri M. On the toxicity of gold nanoparticles: Histological, histochemical and ultrastructural alterations. Toxicol Ind Health 2022; 38:789-800. [PMID: 36253334 DOI: 10.1177/07482337221133881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gold nanoparticles (Au NPs) are used in diagnostic and therapeutic applications together with a variety of industrial purposes and in many biomedical sectors with potential risks to human health. The present study aimed to the histological, histochemical, and ultrastructural alterations induced by Au NPS in vital organs. Healthy male Wistar Albino rats (Rattus norvegicus) were subjected to 20 injections of 10-nm Au NPs at a daily dose of 2 mg/kg. Liver, kidney, heart, and lung biopsies from control and Au NPs-treated rats under study were subjected to histological and histochemical examinations. In comparison with the control rats, the renal tissue of Au NPs-treated rats demonstrated glomerular congestion, interstitial inflammatory cell infiltration, renal tubular hydropic degeneration, cloudy swelling, necrosis, and hyaline cast precipitation. In addition, Au NPs induced the following hepatic alterations: hepatocyte cytolysis, cytoplasmic vacuolation, hydropic degeneration, and nuclear alterations together with sinusoidal dilatation. Moreover, the hearts of the treated rats demonstrated myocarditis, cardiac congestion, hyalinosis, cardiomyocyte hydropic degeneration, myofiber disarray and cardiac congestion. The lungs of Au NPs-treated rats also exhibited the following pulmonary alterations: alectasis, emphysema, inflammatory cell inflammation, thickened alveolar walls, pulmonary interstitial edema, congestion, hypersensitivity, fibrocyte proliferation, and honeycombing. In conclusion, exposure to Au NPs induced histological, histochemical and ultrastructural alterations in the vital organs that may alter the function of these organs. Additional efforts are needed for better understanding the potential risks of Au NPs to human health.
Collapse
Affiliation(s)
- Qais Jarrar
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, 108568Isra University, Amman, Jordan
| | - Amin Al-Doaiss
- Department of Biology, College of Science, 48144King Khalid University, Abha, Saudi Arabia.,Histology Department, College of Medicine, Sana University
| | - Bashir M Jarrar
- Nanobiology Unit, College of Applied Medical Sciences, 123295Jerash University, Jerash, Jordan
| | - Mohammed Alshehri
- Department of Biology, College of Science, 48144King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
10
|
Molecular and cellular effects of gold nanoparticles treatment in experimental diabetic myopathy. Heliyon 2022; 8:e10358. [PMID: 36060470 PMCID: PMC9437799 DOI: 10.1016/j.heliyon.2022.e10358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 08/15/2022] [Indexed: 12/25/2022] Open
Abstract
Background This study aims to address the effects of gold nanoparticles (AuNPs) on diabetic myopathy in streptozotocin (STZ)-induced diabetic rats. Materials and methods Adult male rats were separated into three groups (n = 15): non-diabetic control (ND), diabetic (D), and diabetic treated with AuNPs (2.5 mg/kg, D + AuNPs) intraperitoneally for 4 weeks. A single injection of 50 mg/kg STZ was used to induce diabetes. Results Treatment with AuNPs lowered blood glucose levels. Skeletal muscle mRNA expression of two muscle-specific E3 ubiquitin-ligases enzymes, F-box-only protein 32 (FBXO32) and muscle RING-finger protein-1 (MuRF1) were upregulated in the D group. Diabetic rats showed significant increases in the skeletal muscle expression levels of plasminogen activator inhibitor-1 (PAI-1), tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), and a decrease in glucose transporter 4 (GLUT4) expression. Superoxide dismutase (SOD) activity decreased and malondialdehyde (MDA) level increased in skeletal muscles of D group. Compared to the D group, expression levels of FBXO32, MuRF1, PAI-1 TNF-α, and TGF-β1 were decreased in the D + AuNPs group, and mRNA of GLUT4 increased. Furthermore, in D + AuNPs group, skeletal muscle MDA levels decreased while SOD activity increased. Conclusion In experimental models, AuNPs can ameliorate muscle atrophy by reducing hyperglycemia, inflammation, and oxidative stress, and by suppressing the ubiquitin-proteasome proteolytic process.
Collapse
|
11
|
Rajasree R, Ittiyavirah SP, Poonkuzhi Naseef P, Saheer Kuruniyan M, Elayadeth-Meethal M, Sankar S. The anti-inflammatory properties of the methanolic extract of Cucumis melo Linn. against prostate enlargement in Wistar rats. Saudi J Biol Sci 2022; 29:103396. [PMID: 35942162 PMCID: PMC9356295 DOI: 10.1016/j.sjbs.2022.103396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
In different parts of the world, Cucumis melo Linn. (C melo) is used for its medicinal properties. The present study examined the effects of a methanolic extract of C melo Linn. (F1 hybrid, MECM) on benign prostatic hyperplasia in adult male Wistar rats and evaluated its anti-inflammatory activity in vivo. MECM treatment reduced prostate weight mildly. Histopathological studies showed that the extract produced a strong protective effect against the development of BPH by testosterone. The MECM also showed protection from testosterone-induced benign prostatic hyperplasia (BPH). MECM was tested against carrageenan-induced inflammation in rats' paws to determine its anti-inflammatory activity. It was shown that MECM had a pronounced effect on the inflammatory response in the late phase, i.e., one hour after carrageenan injection. Prostaglandins and nitric oxide are primarily responsible for this phase indicating that MECM can modify the production and release of prostaglandin and nitric oxide. A novel formulation containing C melo may be able to treat the conditions mentioned above.
Collapse
Affiliation(s)
- R.S. Rajasree
- College of Pharmaceutical Sciences, Government Thirumala Devaswom Medical College, Alappuzha 688005, India
| | - Sibi P. Ittiyavirah
- Department of Pharmaceutical Sciences, Centre for Professional and Advanced Sciences Cheruvandoor, Kottayam 686631, India
| | - Punnoth Poonkuzhi Naseef
- Department of Pharmaceutics, Moulana College of Pharmacy, Perinthalmanna 679321, India
- Corresponding author.
| | - Mohamed Saheer Kuruniyan
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Muhammed Elayadeth-Meethal
- Department of Animal Breeding and Genetics, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad 675621, India
| | - S Sankar
- Department of Pathology, Govt Medical College, Kottayam 686008, India
| |
Collapse
|
12
|
Loloi J, Babar M, Davies KP, Suadicani SO. Nanotechnology as a tool to advance research and treatment of non-oncologic urogenital diseases. Ther Adv Urol 2022; 14:17562872221109023. [PMID: 35924206 PMCID: PMC9340423 DOI: 10.1177/17562872221109023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Nanotechnology represents an expanding area of research and innovation in almost every field of science, including Medicine, where nanomaterial-based products have been developed for diagnostic and therapeutic applications. Because of their small, nanoscale size, these materials exhibit unique physical and chemical properties that differ from those of each component when considered in bulk. In Nanomedicine, there is an increasing interest in harnessing these unique properties to engineer nanocarriers for the delivery of therapeutic agents. Nano-based drug delivery platforms have many advantages over conventional drug administration routes as this technology allows for local and transdermal applications of therapeutics that can bypass the first-pass metabolism, improves drug efficacy through encapsulation of hydrophobic drugs, and allows for a sustained and controlled release of encapsulated agents. In Urology, nano-based drug delivery platforms have been extensively investigated and implemented for cancer treatment. However, there is also great potential for use of nanotechnology to treat non-oncologic urogenital diseases. We provide an update on research that is paving the way for clinical translation of nanotechnology in the areas of erectile dysfunction (ED), overactive bladder (OAB), interstitial cystitis/bladder pain syndrome (IC/BPS), and catheter-associated urinary tract infections (CAUTIs). Overall, preclinical and clinical studies have proven the utility of nanomaterials both as vehicles for transdermal and intravesical delivery of therapeutic agents and for urinary catheter formulation with antimicrobial agents to treat non-oncologic urogenital diseases. Although clinical translation will be dependent on overcoming regulatory challenges, it is inevitable before there is universal adoption of this technology to treat non-oncologic urogenital diseases.
Collapse
|
13
|
Origanum majorana L. Extract Attenuated Benign Prostatic Hyperplasia in Rat Model: Effect on Oxidative Stress, Apoptosis, and Proliferation. Antioxidants (Basel) 2022; 11:antiox11061149. [PMID: 35740046 PMCID: PMC9219805 DOI: 10.3390/antiox11061149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is a widespread androgenic illness influencing elderly men. It is distinguished by prostatic epithelial and stromal muscle cell proliferation. Inflammation, oxidative stress, and apoptosis have all been interrelated to the development of BPH. Marjoram (Origanum majorana L.) is a herb with reported antiproliferative, proapoptotic, and antioxidative properties, which have not yet been studied in relation to BPH. Consequently, in this work, an ethanolic extract of O. majorana was prepared in two doses (250 and 500 mg/kg/day) to be injected into castrated rats after induction of a testosterone-BPH model. Testosterone propionate (TP) was subcutaneously injected (0.5 mg/kg/day) for one week after castration to induce BPH. Forty adult Wistar male rats were randomly allocated into five groups: control, BPH model, high and low O. majorana doses (250, 500 mg/kg/day), and finasteride (FN) (0.8 mg/kg/day) as a positive control. Treatment was continued with drugs/normal saline for 28 days. Rat’s body and prostate were weighed, prostate index (PI) and % of prostate growth inhibition were calculated, serum dihydrotestosterone (DHT), prostatic content of superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (TAC), and malondialdehyde (MDA), DN damage, histopathological changes, immune expression of proliferating cell nuclear antigen (PCNA), caspase-3, α-SMA, and TGF-β1 were assessed. In addition, molecular quantitative PCR and ELISA analyses were performed to identify the expression of mRNAs and related proteins of both caspase-3 and TGF-β1 in prostate tissue from O. majorana-treated and untreated groups. Rats with BPH had significantly higher prostate weights and PI, higher DHT, DNA damage (8-hydroxyguanine, 8-OH-dG), and MDA levels with prominent PCNA, α-SMA, and TGF-β expression, but lower SOD, CAT, and TAC activity and caspase-3 expression. O. majorana (250 and 500 mg/kg/day)-treated groups revealed a decrease in prostate weights and PI, lower levels of DHT, suppressed oxidative stress, reduced tissue proliferation and fibrosis, and restored antioxidant and proapoptotic activity. Additionally, quantitative PCR and ELISA analysis showed that treatment with O. majorana significantly upregulated the expression of caspase-3 and downregulated the expression of TGF-β in prostate tissues of BPH rats. The data were confirmed by the immunohistological reactivity of these targeted markers in the prostate tissues. These effects were more significant with O. majorana 500 mg/mL/rat. In conclusion, the current study indicates the efficient use of O. majorana in the treatment of testosterone-induced BPH through its antiproliferative, proapoptotic, and antioxidative mechanisms.
Collapse
|
14
|
Aljabali AAA, Obeid MA, Bakshi HA, Alshaer W, Ennab RM, Al-Trad B, Al Khateeb W, Al-Batayneh KM, Al-Kadash A, Alsotari S, Nsairat H, Tambuwala MM. Synthesis, Characterization, and Assessment of Anti-Cancer Potential of ZnO Nanoparticles in an In Vitro Model of Breast Cancer. Molecules 2022; 27:1827. [PMID: 35335190 PMCID: PMC8952501 DOI: 10.3390/molecules27061827] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 12/10/2022] Open
Abstract
Advanced innovations for combating variants of aggressive breast cancer and overcoming drug resistance are desired. In cancer treatment, ZnO nanoparticles (NPs) have the capacity to specifically and compellingly activate apoptosis of cancer cells. There is also a pressing need to develop innovative anti-cancer therapeutics, and recent research suggests that ZnO nanoparticles hold great potential. Here, the in vitro chemical effectiveness of ZnO NPs has been tested. Zinc oxide (ZnO) nanoparticles were synthesized using Citrullus colocynthis (L.) Schrad by green methods approach. The generated ZnO was observed to have a hexagonal wurtzite crystal arrangement. The generated nanomaterials were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-visible spectroscopy. The crystallinity of ZnO was reported to be in the range 50-60 nm. The NPs morphology showed a strong absorbance at 374 nm with an estimated gap band of 3.20 eV to 3.32 eV. Microscopy analysis proved the morphology and distribution of the generated nanoparticles to be around 50 nm, with the elemental studies showing the elemental composition of ZnO and further confirming the purity of ZnO NPs. The cytotoxic effect of ZnO NPs was evaluated against wild-type and doxorubicin-resistant MCF-7 and MDA-MB-231 breast cancer cell lines. The results showed the ability of ZnO NPs to inhibit the prefoliation of MCF-7 and MDA-MB-231 prefoliation through the induction of apoptosis without significant differences in both wild-type and resistance to doxorubicin.
Collapse
Affiliation(s)
- Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Mohammad A. Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Hamid A. Bakshi
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, County Londonderry, Northern Ireland, UK;
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (W.A.); (S.A.)
| | - Raed M. Ennab
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan;
| | - Bahaa Al-Trad
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 21163, Jordan; (B.A.-T.); (W.A.K.); (K.M.A.-B.)
| | - Wesam Al Khateeb
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 21163, Jordan; (B.A.-T.); (W.A.K.); (K.M.A.-B.)
| | - Khalid M. Al-Batayneh
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 21163, Jordan; (B.A.-T.); (W.A.K.); (K.M.A.-B.)
| | | | - Shrouq Alsotari
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (W.A.); (S.A.)
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan;
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, County Londonderry, Northern Ireland, UK;
| |
Collapse
|
15
|
Aescin Protects against Experimental Benign Prostatic Hyperplasia and Preserves Prostate Histomorphology in Rats via Suppression of Inflammatory Cytokines and COX-2. Pharmaceuticals (Basel) 2022; 15:ph15020130. [PMID: 35215244 PMCID: PMC8880638 DOI: 10.3390/ph15020130] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
Background: Benign prostatic hyperplasia (BPH) is the most common urogenital condition in aging males, while inflammation and tissue proliferation constitute the main pathophysiological factors. The adverse effects of currently available BPH medications limit patient compliance. We tested the protective effect of aescin against the development of BPH in rats. Methods: A total of 18 male Wistar rats were divided into 3 groups: control (sesame oil 1 mL/kg, s.c.); BPH (testosterone oenanthate 3 mg/kg, s.c., in sesame oil), and BPH-aescin rats (testosterone oenanthate 3 mg/kg, s.c. + aescin 10 mg/kg/day, p.o.). All treatments continued for 4 weeks. Serum and prostatic samples were harvested for biochemical and histopathological examination. Results: Induction of BPH by testosterone increased the prostate weight and prostate weight index, serum testosterone, prostate expression of inflammatory (IL-1β, TNF-α, and COX-2), and proliferative markers (PCNA and TGF-β1). Concurrent treatment with aescin decreased the testosterone-induced increase in prostatic IL-1β, TNF-α, and COX-2 expression by 47.9%, 71.2%, and 64.4%, respectively. Moreover, aescin reduced the prostatic proliferation markers TGF-β1 and PCNA by 58.3% and 71.9%, respectively, and normalized the prostate weight. Conclusion: The results of this study showed, for the first time, that aescin protected against the development of experimental BPH in rats via its anti-inflammatory and antiproliferative effects. These findings warrant further studies to clinically repurpose aescin in the management of BPH.
Collapse
|
16
|
Liu C, Wu K, Gao H, Li J, Xu X. Current Strategies and Potential Prospects for Nanoparticle-Mediated Treatment of Diabetic Nephropathy. Diabetes Metab Syndr Obes 2022; 15:2653-2673. [PMID: 36068795 PMCID: PMC9441178 DOI: 10.2147/dmso.s380550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic nephropathy (DN), a severe microvascular complication of diabetes mellitus (DM), is the most common form of chronic kidney disease (CKD) and a leading cause of renal failure in end-stage renal disease. No currently available treatment can achieve complete cure. Traditional treatments have many limitations, such as painful subcutaneous insulin injections, nephrotoxicity and hepatotoxicity with oral medication, and poor patient compliance with continual medication intake. Given the known drawbacks, recent research has suggested that nanoparticle-based drug delivery platforms as therapeutics may provide a promising strategy for treating debilitating diseases such as DN in the future. This administration method provides multiple advantages, such as delivering the loaded drug to the precise target of action and enabling early prevention of CKD progression. This article discusses the development of the main currently used nanoplatforms, such as liposomes, polymeric NPs, and inorganic NPs, as well as the prospects and drawbacks of nanoplatform application in the treatment of CKD.
Collapse
Affiliation(s)
- Chunkang Liu
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Kunzhe Wu
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Huan Gao
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jianyang Li
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xiaohua Xu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
- Correspondence: Xiaohua Xu, Email
| |
Collapse
|
17
|
Shabani E, Kalantari H, Kalantar M, Goudarzi M, Mansouri E, Kalantar H. Berberine ameliorates testosterone-induced benign prostate hyperplasia in rats. BMC Complement Med Ther 2021; 21:301. [PMID: 34930229 PMCID: PMC8690423 DOI: 10.1186/s12906-021-03472-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/30/2021] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Benign prostatic hyperplasia (BPH) is a major urologic problem that mostly develops in older males. Oxidative stress and inflammation influence the occurrence of BPH. Berberine (BBR) is a natural ingredient that has antioxidant and anti-inflammatory properties. The current research aims at examining the effects of BBR on testosterone-stimulated BPH in rats. METHODS Animals were randomly categorized to six groups. In the control group, normal saline and olive oil were injected as the vehicle. BPH group: received testosterone (3 mg/kg, subcutaneous, 28 days), BPH + BBR groups; received BBR (25 and 50 mg/kg, p.o, 28 days), BPH + finasteride groups: received finasteride (1 mg/kg, p.o, 28 days), BBR (50 mg/kg, p.o, alone) was administered for subjects in the BBR group. On the 29th day, after anesthesia, cervical dislocation was used to kill the subjects. Serum concentration of testosterone and dihydrotestosterone was measured and prostate tissues were excised and used for biochemical, inflammation, and histological analysis. RESULTS BBR prevented increased serum concentrations of testosterone and dihydrotestosterone. BBR considerably reduced BPH-stimulated oxidative stress and inflammation through preventing the rise in lipid peroxidation and nitrite concentration and declined the accumulations of pro-inflammatory cytokines (e.g. interleukin 1β and tumor necrosis factor α) and declining the depletion rate of GSH and the function of catalase and superoxide dismutase. Histopathological investigations reported that administration of BBR could suppress testosterone-stimulated BPH. CONCLUSION This study demonstrated that BBR could significantly prevent the development of BPH in rats.
Collapse
Affiliation(s)
- Ehsan Shabani
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heibatullah Kalantari
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Kalantar
- Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Kalantar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
18
|
Marghani BH, Fehaid A, Ateya AI, Ezz MA, Saleh RM. Photothermal therapeutic potency of plasmonic silver nanoparticles for apoptosis and anti-angiogenesis in testosterone induced benign prostate hyperplasia in rats. Life Sci 2021; 291:120240. [PMID: 34942164 DOI: 10.1016/j.lfs.2021.120240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 12/11/2022]
Abstract
AIMS In this study, we used a near-infrared laser (NIR) to increase the potency of silver nanoparticles (AgNPs) to develop a novel, less invasive, and simple photothermal therapy technique for benign prostate hyperplasia (BPH). MATERIALS AND METHODS The shape, particle size, and zeta-potential of polyvinylpyrrolidone coated-AgNPs (PVP-AgNPs) were determined using transmission electron microscopy (TEM), Zeta-potential, and Particle size analyzer (ELSZ). To induce BPH, thirty-six male Sprague-Dawley (SD) rats were given intramuscular (i.m) injections of testosterone propionate (TP) at 5 mg/kg body weight (b.w)/day suspended in 0.1 ml of olive oil for 14 days. Photothermal therapy with AgNPs-NIR for 14 days was carried out. Prostate size, prostate index (PI), dihydrotestosterone (DHT), prostate-specific antigen (PSA), gross, hepatic, and renal toxicity, as well as antioxidant activity, apoptosis, and angiogenesis markers in prostatic tissues were measured. Histological examinations of prostates and biocompatibility of NIR-AgNPs on vital organs were also performed. KEY FINDINGS The aggregated spherical AgNPs with a mean size of 50-90 nm and a Zeta potential of -53.22 mV displayed high effectiveness in the NIR (532 nm-1 W) region by decreasing prostate size, PI, DHT, and PSA in BPH rats with no signs of gross, hepatic, or renal damage. As compared to alternative therapies, hyperthermia therapy increased antioxidant activities, induced apoptosis, inhibited angiogenesis, reduced histological alterations in the prostates of BPH rats, and improved biocompatibility of the vital organs. SIGNIFICANCE The current study demonstrated the effectiveness of plasmonic AgNPs photothermal therapy in the treatment of BPH.
Collapse
Affiliation(s)
- Basma H Marghani
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Alaa Fehaid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed I Ateya
- Department of Husbandry & Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Aboul Ezz
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rasha M Saleh
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
19
|
Arizmendi-Grijalva A, Martínez-Higuera AA, Soto-Guzmán JA, Martínez-Soto JM, Rodríguez-León E, Rodríguez-Beas C, López-Soto LF, Alvarez-Cirerol FJ, Garcia-Flores N, Cortés-Reynosa P, Pérez-Salazar E, Iñiguez-Palomares R. Effect on Human Vascular Endothelial Cells of Au Nanoparticles Synthesized from Vitex mollis. ACS OMEGA 2021; 6:24338-24350. [PMID: 34604617 PMCID: PMC8482397 DOI: 10.1021/acsomega.1c01506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Indexed: 06/13/2023]
Abstract
A green method for synthesizing gold nanoparticles is proposed using hydroethanolic extract of Vitex mollis fruit (Vm extract) as a reducer and stabilizer. The formation of gold nanoparticles synthesized with Vm extract (AuVmNPs) was monitored by measuring the ultraviolet-visible spectra. The morphology and crystalline phase were determined using scanning electron microscopy, X-ray diffraction, and high-resolution transmission electron microscopy. Synthesized nanoparticles were generally spherical, and the size distribution obtained by transmission electron microscopy shows two populations with mean sizes of 12.5 and 22.5 nm. Cell viability assay using MTT and cellular apoptosis studies using annexin V on human umbilical vein endothelial cells (HUVECs) and the human mammary epithelial cell line (MCF10A) indicate that AuVmNPs have low toxicity. Cell migration tests indicate that AuVmNPs significantly inhibit HUVEC cell migration in a dose-dependent manner. The evaluation of the localization of AuVmNPs in HUVECs using confocal laser scanning microscopy indicates that nanoparticles penetrate cells and are found in the cytosol without preferential distribution and without entering the nucleus. The inhibitory effect on cellular migration and low toxicity suggest AuVmNPs as appropriate candidates in future studies of antiangiogenic activity.
Collapse
Affiliation(s)
- Abraham Arizmendi-Grijalva
- Nanotechnology
Graduate Program, Department of Physics, Universidad de Sonora, Rosales and
Transversal, Hermosillo, Sonora 83000, Mexico
| | - Aarón Alberto Martínez-Higuera
- Nanotechnology
Graduate Program, Department of Physics, Universidad de Sonora, Rosales and
Transversal, Hermosillo, Sonora 83000, Mexico
| | - Jesús Adriana Soto-Guzmán
- Department
of Medicine and Health Science, Universidad
de Sonora, Rosales and
Transversal, Hermosillo, Sonora 83000, Mexico
| | - Juan Manuel Martínez-Soto
- Department
of Medicine and Health Science, Universidad
de Sonora, Rosales and
Transversal, Hermosillo, Sonora 83000, Mexico
| | - Ericka Rodríguez-León
- Nanotechnology
Graduate Program, Department of Physics, Universidad de Sonora, Rosales and
Transversal, Hermosillo, Sonora 83000, Mexico
| | - César Rodríguez-Beas
- Nanotechnology
Graduate Program, Department of Physics, Universidad de Sonora, Rosales and
Transversal, Hermosillo, Sonora 83000, Mexico
| | - Luis Fernando López-Soto
- Department
of Medicine and Health Science, Universidad
de Sonora, Rosales and
Transversal, Hermosillo, Sonora 83000, Mexico
| | - Francisco Javier Alvarez-Cirerol
- Health
Sciences Graduate Program, Department of Biological Chemistry, Universidad de Sonora, Rosales and Transversal, Hermosillo, Sonora 83000, Mexico
| | - Nadia Garcia-Flores
- Nanotechnology
Graduate Program, Department of Physics, Universidad de Sonora, Rosales and
Transversal, Hermosillo, Sonora 83000, Mexico
| | - Pedro Cortés-Reynosa
- Departamento
de Biología Celular, Cinvestav-IPN, San Pedro Zacatenco, 07360 Mexico DF, Mexico
| | - Eduardo Pérez-Salazar
- Departamento
de Biología Celular, Cinvestav-IPN, San Pedro Zacatenco, 07360 Mexico DF, Mexico
| | - Ramón Iñiguez-Palomares
- Nanotechnology
Graduate Program, Department of Physics, Universidad de Sonora, Rosales and
Transversal, Hermosillo, Sonora 83000, Mexico
| |
Collapse
|
20
|
Biogenic Synthesis of Silver Nanoparticles with Bitter Leaf (Vernonia amygdalina) Aqueous Extract and Its Effects on Testosterone-Induced Benign Prostatic Hyperplasia (BPH) in Wistar Rat. CHEMISTRY AFRICA 2021. [DOI: 10.1007/s42250-021-00272-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Ekeyi Y, Uchendu NO, Anaduaka EG, Ezeanyika LUS. Ethanol extract of Cassia sieberiana leaves ameliorates deviances associated with benign prostatic hyperplasia in rats. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1927857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Yusuf Ekeyi
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Nene Orizu Uchendu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Emeka Godwin Anaduaka
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | | |
Collapse
|
22
|
Liu J, Yin J, Chen P, Liu D, He W, Li Y, Li M, Fu X, Zeng G, Guo Y, Wang X, DiSanto ME, Zhang X. Smoothened inhibition leads to decreased cell proliferation and suppressed tissue fibrosis in the development of benign prostatic hyperplasia. Cell Death Discov 2021; 7:115. [PMID: 34006832 PMCID: PMC8131753 DOI: 10.1038/s41420-021-00501-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/10/2021] [Accepted: 04/28/2021] [Indexed: 02/08/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common disease in aging males. It has been proven that the Hedgehog (HH) is implied as an effective and fundamental regulatory growth factor signal for organogenesis, homeostasis, and regeneration. Smoothened (SMO), as the major control point of HH signals, activates aberrantly in most human solid tumors. However, the specific function of SMO and its downstream glioma-associated oncogene (GLI) family in BPH has not been well understood. Here, we first revealed that the SMO cascade was upregulated in BPH tissues and was localized in both the stromal and the epithelium compartments of human prostate tissues. Cyclopamine, as a specific SMO inhibitor, was incubated with BPH-1 and WPMY-1, and intraperitoneally injected into a BPH rat model established by castration with testosterone supplementation. SMO inhibition could induce cell apoptosis, cell cycle arrest at the G0/G1 phase, and a reduction of tissue fibrosis markers, both in vitro and in vivo. Finally, a tissue microarray, containing 104 BPH specimens, was constructed to analyze the correlations between the expression of SMO cascade and clinical parameters. The GLI2 was correlated positively with nocturia and negatively with fPSA. The GLI3 was in a positive relationship with International Prostate Symptom Score and nocturia. In conclusion, our study suggested that SMO cascade could play important roles in the development of BPH and it might be rediscovered as a promising therapeutic target for BPH.
Collapse
Affiliation(s)
- Jianmin Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Yin
- Department of Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Daoquan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weixiang He
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingzhou Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xun Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guang Zeng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuming Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
23
|
Aljabali AAA, Al-Trad B, Gazo LA, Alomari G, Al Zoubi M, Alshaer W, Al-Batayneh K, Kanan B, Pal K, Tambuwala MM. Gold Nanoparticles Ameliorate Diabetic Cardiomyopathy in Streptozotocin-Induced Diabetic Rats. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Aljabali A. Meet Our Editorial Board Member. Curr Drug Metab 2020. [DOI: 10.2174/138920022112201207105350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Ponedal A, Zhu S, Sprangers AJ, Wang XQ, Yeo DC, Lio DCS, Zheng M, Capek M, Narayan SP, Meckes B, Paller AS, Xu C, Mirkin CA. Attenuation of Abnormal Scarring Using Spherical Nucleic Acids Targeting Transforming Growth Factor Beta 1. ACS APPLIED BIO MATERIALS 2020; 3:8603-8610. [PMID: 33709070 DOI: 10.1021/acsabm.0c00990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abnormal scarring is a consequence of dysregulation in the wound healing process, with limited options for effective and noninvasive therapies. Given the ability of spherical nucleic acids (SNAs) to penetrate skin and regulate gene expression within, we investigated whether gold-core SNAs (AuSNAs) and liposome-core SNAs (LSNAs) bearing antisense oligonucleotides targeting transforming growth factor beta 1 (TGF-β1) can function as a topical therapy for scarring. Importantly, both SNA constructs appreciably downregulated TGF-β1 protein expression in primary hypertrophic and keloid scar fibroblasts in vitro. In vivo, topically applied AuSNAs and LSNAs downregulated TGF-β1 protein expression levels and improved scar histology as determined by the scar elevation index. These data underscore the potential of SNAs as a localized, self-manageable treatment for skin-related diseases and disorders that are driven by increased gene expression.
Collapse
Affiliation(s)
- Adam Ponedal
- Department of Chemical and Biological Engineering and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Shengshuang Zhu
- International Institute for Nanotechnology and Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Anthony J Sprangers
- International Institute for Nanotechnology and Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiao-Qi Wang
- Department of Dermatology, Northwestern University, Chicago, Illinois 60611, United States
| | - David C Yeo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798
| | - Daniel C S Lio
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798
| | - Mengjia Zheng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798
| | - Matthew Capek
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Suguna P Narayan
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Brian Meckes
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States; Department of Biomedical Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Amy S Paller
- Department of Dermatology, Northwestern University, Chicago, Illinois 60611, United States
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Chad A Mirkin
- Department of Chemical and Biological Engineering, International Institute for Nanotechnology, Department of Materials Science and Engineering, and Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
26
|
Shandilya R, Pathak N, Lohiya NK, Sharma RS, Mishra PK. Nanotechnology in reproductive medicine: Opportunities for clinical translation. Clin Exp Reprod Med 2020; 47:245-262. [PMID: 33227186 PMCID: PMC7711096 DOI: 10.5653/cerm.2020.03650] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
In recent years, nanotechnology has revolutionized global healthcare and has been predicted to exert a remarkable effect on clinical medicine. In this context, the clinical use of nanomaterials for cancer diagnosis, fertility preservation, and the management of infertility and other pathologies linked to pubertal development, menopause, sexually transmitted infections, and HIV (human immunodeficiency virus) has substantial promise to fill the existing lacunae in reproductive healthcare. Of late, a number of clinical trials involving the use of nanoparticles for the early detection of reproductive tract infections and cancers, targeted drug delivery, and cellular therapeutics have been conducted. However, most of these trials of nanoengineering are still at a nascent stage, and better synergy between pharmaceutics, chemistry, and cutting-edge molecular sciences is needed for effective translation of these interventions from bench to bedside. To bridge the gap between translational outcome and product development, strategic partnerships with the insight and ability to anticipate challenges, as well as an in-depth understanding of the molecular pathways involved, are highly essential. Such amalgamations would overcome the regulatory gauntlet and technical hurdles, thereby facilitating the effective clinical translation of these nano-based tools and technologies. The present review comprehensively focuses on emerging applications of nanotechnology, which holds enormous promise for improved therapeutics and early diagnosis of various human reproductive tract diseases and conditions.
Collapse
Affiliation(s)
- Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Neelam Pathak
- School of Life Sciences, University of Rajasthan, Jaipur, India
| | | | - Radhey Shyam Sharma
- Division of Reproductive Biology, Maternal and Child Health, Indian Council of Medical Research, New Delhi, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
27
|
Zhang J, Zhang M, Tang J, Yin G, Long Z, He L, Zhou C, Luo L, Qi L, Wang L. Animal models of benign prostatic hyperplasia. Prostate Cancer Prostatic Dis 2020; 24:49-57. [PMID: 32873917 DOI: 10.1038/s41391-020-00277-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
Benign prostatic hyperplasia (BPH) and associated lower urinary tract symptoms are common clinical concerns that affect aging men all over the world. The underlying molecular and cellular mechanisms remain elusive. Over the past few years, a number of animal models of BPH, including spontaneous model, BPH-induction model, xenograft model, metabolic syndrome model, mechanical obstruction model, and transgenic model, have been established that may provide useful tools to fill these critical knowledge gaps. In this review, we therefore outlined the present status quo for animal models of BPH, comparing the pros and cons with respect to their ability to mimic the etiological, histological, and clinical hallmarks of BPH and discussed their applicability for future research.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.,Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Mengda Zhang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.,Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jin Tang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Guangming Yin
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zhi Long
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Leye He
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Chuanchi Zhou
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.,Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lufeng Luo
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.,Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lin Qi
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
28
|
Gold nanoparticles against respiratory diseases: oncogenic and viral pathogens review. Ther Deliv 2020; 11:521-534. [PMID: 32757745 DOI: 10.4155/tde-2020-0071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nanoscale size-dependent properties give nanomaterials unique specifications that are robust in many applications of human medicine. Gold nanoparticles (AuNPs) have recently gained attention because of their unique optical, physical and electrical properties. AuNPs increase the efficacy of biomedical applications in diagnostic treatments for infectious diseases, by targeting or labeling target cells/bioactive compounds. However, it is imperative to develop the regimens for more accurate diagnostic tools, preventive care and effective therapy. Our critical and comprehensive review presents emerging avenues of molecular diagnostics as well as therapeutics translated into clinical approaches. This manuscript critically reviews the rampant future of AuNPs in the diagnosis and treatment of the most important diseases, such as cancer and viruses of respiratory system.
Collapse
|
29
|
Al-Harbi NS, Alrashood ST, Siddiqi NJ, Arafah MM, Ekhzaimy A, Khan HA. Effect of naked and PEG-coated gold nanoparticles on histopathology and cytokines expression in rat liver and kidneys. Nanomedicine (Lond) 2020; 15:289-302. [PMID: 31774720 DOI: 10.2217/nnm-2019-0220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: To compare the effects of 5- and 50-nm naked and PEG-coated gold nanoparticles (AuNP) on proinflammatory cytokines (IL-1β, IL-6, TNF-α) expression and histopathological changes in liver and kidneys of rats. Materials & methods: Rats were injected with different nanoparticles and sacrificed after 24 h. Results: Both 5- and 50-nm AuNPs, and 50-nm PEG-AuNPs caused granular clumping of cytoplasm, edema and hydropic dystrophy in hepatic cells. Naked AuNPs of both sizes caused mild shrinkage, whereas 50-nm PEG-AuNPs enlarged the Bowman's space and capsule. Larger nanoparticles produced more profound mRNA expression of cytokines in both the organs. Conclusion: These findings suggest the roles of particle size and coating on immunological response and histopathological changes.
Collapse
Affiliation(s)
- Najla S Al-Harbi
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sara T Alrashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nikhat J Siddiqi
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maha M Arafah
- Department of Pathology, College of Medicine, King Khalid University Hospital, King Saud University 12372, Riyadh, Saudi Arabia
| | - Aishah Ekhzaimy
- Department of Medicine, Division of Endocrinology, King Khalid University Hospital, Riyadh 12372, Saudi Arabia
| | - Haseeb A Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
30
|
Alomari G, Al-Trad B, Hamdan S, Aljabali A, Al-Zoubi M, Bataineh N, Qar J, Tambuwala MM. Gold nanoparticles attenuate albuminuria by inhibiting podocyte injury in a rat model of diabetic nephropathy. Drug Deliv Transl Res 2020; 10:216-226. [PMID: 31637677 PMCID: PMC6978433 DOI: 10.1007/s13346-019-00675-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several recent studies have reported that gold nanoparticles (AuNPs) attenuate hyperglycemia in diabetic animal models without any observed side effects. The present study was intended to provide insight into the effects of 50-nm AuNPs on diabetic kidney disease. Adult male rats were divided into three groups (n = 7/group): control (non-diabetic, ND), diabetic (D), and diabetic treated intraperitoneally with 50-nm AuNPs (AuNPs + D; 2.5 mg/kg/day) for 7 weeks. Diabetes was induced by a single-dose injection of 55 mg/kg streptozotocin. The result showed that AuNP treatment prevented diabetes-associated increases in the blood glucose level. Reduction in 24-h urinary albumin excretion rate, glomerular basement membrane thickness, foot process width, and renal oxidative stress markers was also demonstrated in the AuNP-treated group. In addition, the results showed downregulation effect of AuNPs in renal mRNA or protein expression of transforming growth factor β1 (TGF-β1), fibronectin, collagen IV, tumor necrosis factor-α (TNF-α), and vascular endothelial growth factor-A (VEGF-A). Moreover, the protein expression of nephrin and podocin, podocyte markers, in glomeruli was increased in the AuNPs + D group compared with the D group. These results provide evidence that 50-nm AuNPs can ameliorate renal damage in experimental models of diabetic nephropathy through improving the renal function and downregulating extracellular matrix protein accumulation, along with inhibiting renal oxidative stress and amelioration of podocyte injury.
Collapse
Affiliation(s)
- Ghada Alomari
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
- Department of Biological Sciences, Yarmouk University, Irbid, 21163, Jordan.
| | - Bahaa Al-Trad
- Department of Biological Sciences, Yarmouk University, Irbid, 21163, Jordan.
| | - Salehhuddin Hamdan
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Alaa Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University, Irbid, Jordan
| | - Mazhar Al-Zoubi
- Faculty of Medicine, Department of Basic Medical Sciences, Yarmouk University, Irbid, Jordan
| | - Nesreen Bataineh
- Faculty of Medicine, Department of Basic Medical Sciences, Yarmouk University, Irbid, Jordan
| | - Janti Qar
- Department of Biological Sciences, Yarmouk University, Irbid, 21163, Jordan
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Science, SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, County Londonderry, Northern Ireland, UK.
| |
Collapse
|