1
|
Loo YS, Yusoh NA, Lim WF, Ng CS, Zahid NI, Azmi IDM, Madheswaran T, Lee TY. Phytochemical-based nanosystems: recent advances and emerging application in antiviral photodynamic therapy. Nanomedicine (Lond) 2025:1-16. [PMID: 39848784 DOI: 10.1080/17435889.2025.2452151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025] Open
Abstract
Phytochemicals are typically natural bioactive compounds or metabolites produced by plants. Phytochemical-loaded nanocarrier systems, designed to overcome bioavailability limitations and enhance therapeutic effects, have garnered significant attention in recent years. The coronavirus disease 2019 (COVID-19) pandemic has intensified interest in the therapeutic application of phytochemicals to combat viral infections. This review explores nanoparticle-based treatment strategies incorporating phytochemicals for antiviral application, highlighting their demonstrated antiviral mechanisms. It specifically examines the antiviral activities of phytochemical-loaded nanosystems against (i) influenza virus (IAV), respiratory syncytial virus (RSV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); (ii) mosquito-borne viruses [dengue (DENV), Zika (ZIKV), and Chikungunya (CHIKV)]; and (iii) sexually transmitted/blood borne viruses [e.g. herpes simplex virus (HSV), human papillomavirus (HPV), and human immunodeficiency virus (HIV)]. Furthermore, this review highlights the emerging role of these nanosystems in photodynamic therapy (PDT)-mediated attenuation of viral proliferation, and offers a perspective on the future directions of research in this promising area of multimodal therapeutic approach.
Collapse
Affiliation(s)
- Yan Shan Loo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nur Aininie Yusoh
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan, China
| | - Wai Feng Lim
- Sunway Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Chen Seng Ng
- School of Science, Monash University Malaysia, Bandar Sunway, Subang Jaya, Selangor, Malaysia
| | - N Idayu Zahid
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Intan Diana Mat Azmi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Centre for Foundation Studies in Science of Universiti Putra Malaysia, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, IMU University, Kuala Lumpur, Malaysia
| | - Tze Yan Lee
- Clinical Laboratory Science Section, Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, Selangor, Malaysia
| |
Collapse
|
2
|
Liu H, Jin X, Liu S, Liu X, Pei X, Sun K, Li M, Wang P, Chang Y, Wang T, Wang B, Yu XA. Recent advances in self-targeting natural product-based nanomedicines. J Nanobiotechnology 2025; 23:31. [PMID: 39833846 PMCID: PMC11749302 DOI: 10.1186/s12951-025-03092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
Natural products, recognized for their potential in disease prevention and treatment, have been integrated with advanced nano-delivery systems to create natural product-based nanomedicines, offering innovative approaches for various diseases. Natural products derived from traditional Chinese medicine have their own targeting effect and remarkable therapeutic effect on many diseases, but there are some shortcomings such as poor physical and chemical properties. The construction of nanomedicines using the active ingredients of natural products has become a key step in the modernization research process, which could be used to make up for the defects of natural products such as low solubility, large dosage, poor bioavailability and poor targeting. Nanotechnology enhances the safety, selectivity, and efficacy of natural products, positioning natural product-based nanomedicines as promising candidates in medicine. This review outlines the current status of development, the application in different diseases, and safety evaluation of natural product-based nanomedicines, providing essential insights for further exploration of the synergy between natural products and nano-delivery systems in disease treatment.
Collapse
Affiliation(s)
- Haifan Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xingyue Jin
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xinyue Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao Pei
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Kunhui Sun
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Meifang Li
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Ping Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Yanxu Chang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tiejie Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xie-An Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| |
Collapse
|
3
|
Göger G, Şengel SB, Yence DY. Preparation of nano(micro)particles from Cotinus coggygria scop. Extracts and investigation of their antimicrobial effects in vivo Caenorhabditis elegans model. Microb Pathog 2025; 200:107303. [PMID: 39814110 DOI: 10.1016/j.micpath.2025.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/02/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Cotinus coggygria Scop. (Anacardiaceae) is traditionally used in Türkiye for wound and burn treatment. A series of nano/micro-sized polymeric particles were prepared from aqueous and ethanol extracts of Cotinus coggygria leaves by reverse micellar microemulsion polymerization. Optimization studies were conducted with the effect of the solvent/surfactant, crosslinker, and extract components and their amount. Thermal Gravimetric Analysis, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, and Zeta Potential measurement were conducted. In vitro antimicrobial microdilution method was utilized with minor modifications against Staphylococcus aureus ATCC 6538. Polymeric particles' toxicity and in vivo antimicrobial effect were evaluated on the life span Caenorhabditis elegans assay and C. elegans-S. aureus infection model, respectively. Synthesized microparticles (GS04) in vitro antimicrobial activity was investigated against S. aureus ATCC 6538. GS04 (Minimum Inhibitory Concentration = 62.5 μg/mL) microparticle was more effective against S. aureus, demonstrating no nematode survival changes at 500, 250, 125, 62.5, 31.25, and 15.625 μg/mL concentrations, achieving anti-infective effect at 250-15.625 μg/mL for GS04. Nanoparticles did not affect the colonization of S. aureus in the nematode model system. Therefore, concentrations of the selectively nontoxic anti-infective effect of synthesized nanoparticles from C. coggygria were identified for the first time against S. aureus ATCC 6538.
Collapse
Affiliation(s)
- Gamze Göger
- Afyonkarahisar Health Sciences University, Faculty of Pharmacy, Department of Pharmacognosy, Afyonkarahisar, Türkiye.
| | - Sultan Bütün Şengel
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Eskişehir Osmangazi University, Eskişehir, Türkiye.
| | - Deniz Yüksel Yence
- Trakya University, Faculty of Science, Department of Biology, Department of Basic and Industrial Microbiology, Edirne, Türkiye.
| |
Collapse
|
4
|
Ho JSS, Ping TL, Paudel KR, El Sherkawi T, De Rubis G, Yeung S, Hansbro PM, Oliver BGG, Chellappan DK, Sin KP, Dua K. Exploring Bioactive Phytomedicines for Advancing Pulmonary Infection Management: Insights and Future Prospects. Phytother Res 2024; 38:5840-5872. [PMID: 39385504 PMCID: PMC11634825 DOI: 10.1002/ptr.8334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 10/12/2024]
Abstract
Pulmonary infections have a profound influence on global mortality rates. Medicinal plants offer a promising approach to address this challenge, providing nontoxic alternatives with higher levels of public acceptance and compliance, particularly in regions where access to conventional medications or diagnostic resources may be limited. Understanding the pathophysiology of viruses and bacteria enables researchers to identify biomarkers essential for triggering diseases. This knowledge allows the discovery of biological molecules capable of either preventing or alleviating symptoms associated with these infections. In this review, medicinal plants that have an effect on COVID-19, influenza A, bacterial and viral pneumonia, and tuberculosis are discussed. Drug delivery has been briefly discussed as well. It examines the effect of bioactive constituents of these plants and synthesizes findings from in vitro, in vivo, and clinical studies conducted over the past decade. In conclusion, many medicinal plants can be used to treat pulmonary infections, but further in-depth studies are needed as most of the current studies are only at preliminary stages. Extensive investigation and clinical studies are warranted to fully elucidate their mechanisms of action and optimize their use in clinical practice.
Collapse
Affiliation(s)
- Joyce Siaw Syuen Ho
- Department of Pharmaceutical Chemistry, School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | - Teh Li Ping
- Department of Pharmaceutical Chemistry, School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | - Keshav Raj Paudel
- Centre for Inflammation, School of Life Sciences, Faculty of ScienceCentenary Institute and the University of Technology SydneySydneyAustralia
| | - Tammam El Sherkawi
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneySydneyAustralia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneySydneyAustralia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of HealthUniversity of Technology SydneyUltimoAustralia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneySydneyAustralia
| | - Philip M. Hansbro
- Centre for Inflammation, School of Life Sciences, Faculty of ScienceCentenary Institute and the University of Technology SydneySydneyAustralia
| | - Brian Gregory George Oliver
- School of Life ScienceUniversity of Technology SydneyUltimoAustralia
- Woolcock Institute of Medical ResearchMacquarie UniversitySydneyAustralia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | - Keng Pei Sin
- Department of Pharmaceutical Chemistry, School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneySydneyAustralia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of HealthUniversity of Technology SydneyUltimoAustralia
| |
Collapse
|
5
|
De Luca M, Casula L, Tuberoso CIG, Pons R, Morán MDC, García MT, Martelli G, Vassallo A, Caddeo C. Formulating a Horseradish Extract in Phospholipid Vesicles to Target the Skin. Pharmaceutics 2024; 16:1507. [PMID: 39771487 PMCID: PMC11728762 DOI: 10.3390/pharmaceutics16121507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Horseradish (Armoracia rusticana L.) roots-largely used in traditional medicine for their multiple therapeutic effects-are a rich source of health-promoting phytochemicals. However, their efficacy can be compromised by low chemical stability and poor bioavailability. Incorporation into phospholipid vesicles is often proposed to tackle this problem. Methods: In this study, a hydroalcoholic extract was produced from horseradish roots. The extract was characterized by UPLC-MS and HPLC-PDA and formulated in conventional liposomes and Penetration Enhancer-containing Vesicles (PEVs) for skin application. Results: The obtained nanovesicles were small in size (<100 nm), negatively charged, uni/bilamellar, and with high values of entrapment efficiency (>85%) for the flavonoids identified in the extract. Both the free and the nanoformulated extract showed optimal biocompatibility, measured as the absence of hemolysis of erythrocytes and absence of cytotoxicity in skin cell lines. Furthermore, the nanoformulations displayed antioxidant activity in vitro. Conclusions: The proposed nananoformulations could be exploited to counteract oxidative stress involved in the pathogenesis and progression of numerous skin disorders.
Collapse
Affiliation(s)
- Maria De Luca
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
- KAMABIO Srl, Via Al Boschetto 4/B, 39100 Bolzano, Italy
| | - Luca Casula
- Department of Life and Environmental Sciences, University of Cagliari, S.P. Monserrato-Sestu km 0.700, 09042 Cagliari, Italy; (L.C.); (C.C.)
| | - Carlo Ignazio Giovanni Tuberoso
- Department of Life and Environmental Sciences, University of Cagliari, S.P. Monserrato-Sestu km 0.700, 09042 Cagliari, Italy; (L.C.); (C.C.)
| | - Ramon Pons
- Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), c/Jordi Girona, 18-26, 08034 Barcelona, Spain; (R.P.); (M.T.G.)
| | - Maria del Carmen Morán
- Department of Biochemistry and Physiology, Physiology Division, Faculty of Pharmacy and Food Science, University of Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain;
- Institute of Nanoscience and Nanotechnology—IN2UB, University of Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain
| | - María Teresa García
- Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), c/Jordi Girona, 18-26, 08034 Barcelona, Spain; (R.P.); (M.T.G.)
| | - Giuseppe Martelli
- Department of Basic and Applied Sciences, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Antonio Vassallo
- Department of Health Sciences, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
- Spinoff TNcKILLERS Srl, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Carla Caddeo
- Department of Life and Environmental Sciences, University of Cagliari, S.P. Monserrato-Sestu km 0.700, 09042 Cagliari, Italy; (L.C.); (C.C.)
| |
Collapse
|
6
|
Deng L, Wang R, Xu X, Jiang H, Han J, Liu W. Characterization, in vitro elderly digestion, and organoids cell uptake of curcumin-loaded nanoparticles. Food Chem 2024; 458:140292. [PMID: 38959794 DOI: 10.1016/j.foodchem.2024.140292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/17/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Curcumin, a bioactive compound, showed versatile in anti-inflammatory and anti-cancer ability, while their biological fate in elderly is unclear. In this study, curcumin-loaded nanoparticles based on octyl succinate hydrate (OSA) starch and sodium caseinate were prepared and the in vitro elderly digestion and absorption fate was investigated. The loading capacity of curcumin-loaded nanoparticles prepared from OSA starch (HI), sodium caseinate (SC) and OSA starch‑sodium caseinate (HS) were all higher than 15%. Curcumin release behavior of the three nanoparticles during in vitro digestion conformed to first-order kinetics. Meanwhile, the transport efficiency of curcumin for HI, SC, and HS increased significantly than the free curcumin (near 1-fold), and the permeability were 1.9, 2.0, and 2.0 times, respectively. The gene expressions of TNF-α, SREBP2 and NPC1L1 in the organoids were enhanced than control group. This study provided scientific reference and guidance for encapsulation of curcumin and digestion and absorption properties in elderly.
Collapse
Affiliation(s)
- Leiyu Deng
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Ruijie Wang
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiankang Xu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hanyun Jiang
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jianzhong Han
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weilin Liu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
7
|
Li X, Xu J, Yan L, Tang S, Zhang Y, Shi M, Liu P. Targeting Disulfidptosis with Potentially Bioactive Natural Products in Metabolic Cancer Therapy. Metabolites 2024; 14:604. [PMID: 39590840 PMCID: PMC11596291 DOI: 10.3390/metabo14110604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Metabolic cancers are defined by metabolic reprogramming. Although this reprograming drives rapid tumour growth and invasion, it also reveals specific metabolic vulnerabilities that can be therapeutically exploited in cancer therapy. A novel form of programmed cell death, known as disulfidptosis, was identified last year; tumour cells with high SLC7A11 expression undergo disulfidptosis when deprived of glucose. Natural products have attracted increasing attention and have shown potential to treat metabolic cancers through diverse mechanisms. METHODS We systematically searched electronic databases involving PubMed, Web of Science, Gooale Scholar. To ensue comprehensive exploration, keywords including metabolic reprogramming, metabolic cancer, disulfidptosis, natural products and some other words were employed. RESULTS In this review, we focus on the shared characteristics and metabolic vulnerabilities of metabolic cancers. Additionally, we discuss the molecular mechanisms underlying disulfidptosis and highlight key regulatory genes. Furthermore, we predict bioactive natural products that target disulfidptosis-related genes, offering new perspectives for anticancer strategies through the modulation of disulfidptosis. CONCLUSIONS By summarizing current research progress, this review mainly analyzed the potential mechanisms of natural products in the treatment of metabolic cancer.
Collapse
Affiliation(s)
- Xinyan Li
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China;
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (J.X.); (L.Y.); (S.T.); (Y.Z.)
| | - Jiayi Xu
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (J.X.); (L.Y.); (S.T.); (Y.Z.)
| | - Liangwen Yan
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (J.X.); (L.Y.); (S.T.); (Y.Z.)
| | - Shenkang Tang
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (J.X.); (L.Y.); (S.T.); (Y.Z.)
- Department of Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Yinggang Zhang
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (J.X.); (L.Y.); (S.T.); (Y.Z.)
| | - Mengjiao Shi
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China;
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (J.X.); (L.Y.); (S.T.); (Y.Z.)
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Pengfei Liu
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China; (J.X.); (L.Y.); (S.T.); (Y.Z.)
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| |
Collapse
|
8
|
Bharadwaj R, Bora A, Sharma K. Liposomal delivery of Annona muricata leaves extract for the treatment of hepatocellular carcinoma. Drug Dev Ind Pharm 2024; 50:968-980. [PMID: 39615035 DOI: 10.1080/03639045.2024.2433618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/26/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Liver in the body plays vital role including digestion, detoxification, metabolism and even production of hormones. Hepatocellular carcinoma is recognized as one of leading cause of death worldwide. Infection with hepatitis B and C virus, nonalcoholic fatty liver disease and excessive consumption of alcohol are among the most common risk factors associated with the development of hepatocellular carcinoma. OBJECTIVE The present research study involves formulation of liposomal delivery of methanolic extract of Annona muricata as an alternative for the treatment of hepatocellular carcinoma. METHODS The methanolic extract of Annona muricata was subjected for both nonvolatile and volatile content analysis by performing phytochemical screening and GCMS. The methanolic extract was entrapped within the liposomes for its effective delivery. The prepared liposomes were characterized in-vitro, and the optimized formulation was further evaluated against hepatocellular carcinoma induced in the animal model. RESULTS The methanolic extract showed the presence of alkaloid, carbohydrate, flavonoid, tannin, proteins and acetogenins, whereas the GMCS analysis depicts presence of 12 different compounds. The optimized in-vitro analysis of prepared liposomes showed a particle size of 107.2 ± 1.7 nm, zeta potential of -30.6 mV and entrapment efficiency of 62.15%. TEM micrograph of the optimized liposome formulation has showed spherical geometry with homogenous distribution and negligible agglomeration. In-vivo anticancer study reveals the potent efficacy of the formulation for the treatment of hepatocellular carcinoma. CONCLUSION The research findings have established the efficacy of the methanolic extract of Annona muricata in the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Rituraj Bharadwaj
- Department of Bioengineering and Technology, Gauhati University, Assam, India
| | - Achyut Bora
- Department of Bioengineering and Technology, Gauhati University, Assam, India
| | | |
Collapse
|
9
|
Sharma H, Anand A, Halagali P, Inamdar A, Pathak R, Taghizadeh‐Hesary F, Ashique S. Advancement of Nanoengineered Flavonoids for Chronic Metabolic Diseases. ROLE OF FLAVONOIDS IN CHRONIC METABOLIC DISEASES 2024:459-510. [DOI: 10.1002/9781394238071.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Loke YH, Phang HC, Mohamad N, Kee PE, Chew YL, Lee SK, Goh CF, Yeo CI, Liew KB. Cocoa Butter: Evolution from Natural Food Ingredient to Pharmaceutical Excipient and Drug Delivery System. PLANTA MEDICA 2024; 90:824-833. [PMID: 39043195 DOI: 10.1055/a-2359-8097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
For decades, cocoa butter has been extensively used in food industries, particularly in the production of chocolate confectioneries. The composition of fats within cocoa butter, such as stearic acid, palmitic acid, and oleic acid, determines its properties. Studies have indicated the existence of at least six polymorphic forms of cocoa butter, each possessing distinct characteristics and melting points. Recently, cocoa butter has garnered attention for its potential as a delivery system for pharmaceutical products. This review thoroughly explores cocoa butter, encompassing its production process, composition, properties, and polymorphism. It delves into its diverse applications across various industries including food, cosmetics, and pharmaceuticals. Additionally, the review investigates cocoa butter alternatives aiming to substitute cocoa butter and their roles in different drug delivery systems. The unique properties of cocoa butter have sparked interest in pharmaceutical industries, particularly since its introduction as a drug delivery system and excipient. This has prompted researchers and industry stakeholders to explore novel formulations and delivery methods, thereby expanding the range of options available to consumers in the pharmaceutical market.
Collapse
Affiliation(s)
- Ying Hui Loke
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya, Selangor, Malaysia
| | - Hiu Ching Phang
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya, Selangor, Malaysia
| | - Najwa Mohamad
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya, Selangor, Malaysia
| | - Phei Er Kee
- Biorefinery and Bioprocessing Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Yik-Ling Chew
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Siew-Keah Lee
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia
| | - Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, 11800, Malaysia
| | - Chien Ing Yeo
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya, Selangor, Malaysia
| |
Collapse
|
11
|
Wang D, Bai Y, Cheng G, Shen S, Xiao G, Ma D, Zhao G, Chen W, Li T, Zhang L, Ge X. Exosome-drug conjugates delivery: a promising strategy for ameliorating the pharmacokinetic profile of artesunate. Front Bioeng Biotechnol 2024; 12:1437787. [PMID: 39188369 PMCID: PMC11345266 DOI: 10.3389/fbioe.2024.1437787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/02/2024] [Indexed: 08/28/2024] Open
Abstract
Artesunate (ATS) is considered the most widely employed artemisnin derivative in the treatment of Plasmodium falciparum malaria. However, poor solubility and low bioavailability of ATS limit its further clinical application. Herein, we developed a new strategy based on the exosome (exo) - drug conjugation (EDC) using the milk-derived exosomes for ATS delivery. The Exo-ATS conjugates (EACs) which formed via a facile bio-conjugation of ATS to the exosomal surface, have been demonstrated to be able to not only boost the solubility and bioavailability of ATS but also enable a sustained-release of ATS from exosomes. Maximal improvement of 71.4-fold in the solubility of ATS was attained by EACs. The corresponding entrapment efficiency and drug loading capacities were found to be 90.3% and 73.9% for EACs, respectively. Further, in vivo pharmacokinetics study manifested that maximum 2.6-fold improved bioavailability of ATS was achieved by oral delivery of EACs. Moreover, EACs displayed a distinct sustained-release profile of maximum 36.2-fold prolonged half-life of ATS via intravenous delivery. We reported that for the first time the administration of EACs could be a potential drug delivery strategy aimed at ameliorating the pharmacokinetic profile of ATS based on our encouraging results and hoped that our work opened up a new avenue for the development of EDC delivery system.
Collapse
Affiliation(s)
- Da Wang
- TINGO Exosomes Technology Co., Ltd., Tianjin, China
| | - Yunfei Bai
- TINGO Exosomes Technology Co., Ltd., Tianjin, China
| | | | | | - Gengwu Xiao
- TINGO Exosomes Technology Co., Ltd., Tianjin, China
| | - Demei Ma
- TINGO Exosomes Technology Co., Ltd., Tianjin, China
| | | | - Wei Chen
- TINGO Exosomes Technology Co., Ltd., Tianjin, China
- Exosome Origin (Shenzhen) Technology Co., Ltd., Shenzhen, China
| | - Tianshi Li
- Plastic & Cosmetic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Litao Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Xiaohu Ge
- TINGO Exosomes Technology Co., Ltd., Tianjin, China
- Exosome Origin (Shenzhen) Technology Co., Ltd., Shenzhen, China
| |
Collapse
|
12
|
Fadeel DA, Fadel M, El-Kholy AI, El-Rashedy AA, Mohsen E, Ezzat MI, Issa MY. Nano-Liposomal Beetroot Phyto-Pigment in Photodynamic Therapy as a Prospective Green Approach for Cancer Management: In Vitro Evaluation and Molecular Dynamic Simulation. Pharmaceutics 2024; 16:1038. [PMID: 39204383 PMCID: PMC11360503 DOI: 10.3390/pharmaceutics16081038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
Using plant extracts as photosensitizers in photodynamic therapy (PDT) represents a significant green approach toward sustainability. This study investigates beetroot juice (BRJ), betanin, and their liposomal formulations (Lip-BRJ, Lip-Bet) as photosensitizers in cancer PDT. BRJ was prepared, and its betanin content was quantified via HPLC. The p-nitrosodimethylaniline (RNO)/imidazole technique monitored the singlet oxygen formation. BRJ and betanin decreased the RNO absorbance at 440 nm by 12% and 9% after 45 min of irradiation, respectively. Furthermore, betanin interaction with Bcl-2 proteins was examined using binding free energy analysis and molecular dynamic simulation. The results revealed favorable interactions with ΔG values of -40.94 kcal/mol. Then, BRJ, betanin, Lip-BRJ, and Lip-Bet were tested as photosensitizers on normal (HEK 293) and human lung cancer (A549) cell lines. Irradiation significantly enhanced the cytotoxicity of Lip-Bet on HEK 293 cells (20% cell viability at 2000 µg/mL) and A549 cells (13% cell viability at 1000 µg/mL). For Lip-BRJ, irradiation significantly enhanced the cytotoxicity on HEK 293 cells at lower concentrations and on A549 cells at all tested concentrations. These results proved the positive effect of light and liposomal encapsulation on the anticancer activity of betanin and BRJ, suggesting the efficiency of liposomal beetroot pigments as green photosensitizers.
Collapse
Affiliation(s)
- Doaa Abdel Fadeel
- Pharmaceutical Nanotechnology Unit, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza 12613, Egypt; (M.F.)
| | - Maha Fadel
- Pharmaceutical Nanotechnology Unit, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza 12613, Egypt; (M.F.)
| | - Abdullah Ibrahim El-Kholy
- Pharmaceutical Nanotechnology Unit, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza 12613, Egypt; (M.F.)
| | - Ahmed A. El-Rashedy
- Chemistry of Natural and Microbial Products Department, National Research Center (NRC), Giza 12622, Egypt;
| | - Engy Mohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (E.M.); (M.I.E.); (M.Y.I.)
| | - Marwa I. Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (E.M.); (M.I.E.); (M.Y.I.)
| | - Marwa Y. Issa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (E.M.); (M.I.E.); (M.Y.I.)
| |
Collapse
|
13
|
Badoni S, Rawat D, Mahato AK, Jangwan NS, Ashraf GM, Alexiou A, Tayeb HO, Alghamdi BS, Papadakis M, Singh MF. Therapeutic Potential of Cornus Genus: Navigating Phytochemistry, Pharmacology, Clinical Studies, and Advanced Delivery Approaches. Chem Biodivers 2024; 21:e202301888. [PMID: 38403786 DOI: 10.1002/cbdv.202301888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
The genus Cornus (Cornaceae) plants are widely distributed in Europe, southwest Asia, North America, and the mountains of Central America, South America, and East Africa. Cornus plants exhibit antimicrobial, antioxidative, antiproliferative, cytotoxic, antidiabetic, anti-inflammatory, neuroprotective and immunomodulatory activities. These plants are exploited to possess various phytoconstituents such as triterpenoids, iridoids, anthocyanins, tannins and flavonoids. Pharmacological research and clinical investigations on various Cornus species have advanced significantly in recent years. Over the past few decades, a significant amount of focus has also been made into developing new delivery systems for Cornus mas and Cornus officinalis. This review focuses on the morphological traits, ethnopharmacology, phytochemistry, pharmacological activities and clinical studies on extracts and active constituents from plants of Cornus genus. The review also highlights recent novel delivery systems for Cornus mas and Cornus officinalis extracts to promote sustained and targeted delivery in diverse disorders. The overwhelming body of research supports the idea that plants from the genus Cornus have therapeutic potential and can be investigated in the future for treatingseveral ailments.
Collapse
Affiliation(s)
- Subhashini Badoni
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| | - Deepshikha Rawat
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| | - Arun Kumar Mahato
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| | - Nitish Singh Jangwan
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, Delhi, 110017, India
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, Research Institute for Medical and Health Sciences, College of Health Sciences, University of Sharjah
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, Wien, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Haythum O Tayeb
- The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Division of Neurology, Department of Internal Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marios Papadakis
- Department of SurgeryI. I., University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany
| | - Mamta F Singh
- College of Pharmacy, COER University, Roorkee, 247667, Uttarakhand, India
| |
Collapse
|
14
|
Nair AS, Sekar M, Gan SH, Kumarasamy V, Subramaniyan V, Wu YS, Mat Rani NNI, Ravi S, Wong LS. Lawsone Unleashed: A Comprehensive Review on Chemistry, Biosynthesis, and Therapeutic Potentials. Drug Des Devel Ther 2024; 18:3295-3313. [PMID: 39081702 PMCID: PMC11288359 DOI: 10.2147/dddt.s463545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/25/2024] [Indexed: 08/02/2024] Open
Abstract
Lawsone, a naturally occurring organic compound also called hennotannic acid, obtained mainly from Lawsonia inermis (Henna). It is a potential drug-like molecule with unique chemical and biological characteristics. Traditionally, henna is used in hair and skin coloring and is also a medicinal herb for various diseases. It is also widely used as a starting material for the synthesis of various drug molecules. In this review, we investigate on the chemistry, biosynthesis, physical and biological properties of lawsone. The results showed that lawsone has potential antioxidant, anti-inflammatory, antimicrobial and antitumor properties. It also induces cell cycle inhibition and programmed cell death in cancer, making it a potential chemotherapeutic agent. Additionally, inhibition of pro-inflammatory cytokine production makes it an essential treatment for inflammatory diseases. Exploration of its biosynthetic pathway can pave the way for its development into targets for new drug development. In future, well-thought-out clinical studies should be made to verify its safety and efficacy.
Collapse
Affiliation(s)
- Aathira Sujathan Nair
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Selangor, 47500, Malaysia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Selangor, 47500, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Selangor, 47500, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology & Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, 47500, Malaysia
| | - Yuan Seng Wu
- Sunway Microbiome Centre & Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, 47500, Malaysia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, 30450, Malaysia
| | - Subban Ravi
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| |
Collapse
|
15
|
Kumar N, Goel R, Ansari MN, S Saeedan A, Ali H, Sharma NK, Patil VM, Puri D, Singh M. Formulation of Phytosomes Containing Rubia cordifolia Extract for Neuropathic Pain: In Vitro and In Vivo Evaluation. ACS OMEGA 2024; 9:25381-25389. [PMID: 38882167 PMCID: PMC11170728 DOI: 10.1021/acsomega.4c03774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024]
Abstract
This study aimed to develop a delivery system for the dried aqueous extract of Rubia cordifolia leaves (RCE) that could improve the neuroprotective potential of RCE by improving the bioavailability of the chief chemical constituent rubiadin. Rubiadin, an anthraquinone chemically, is a biomarker phytoconstituent of RCE. Rubiadin is reported to have strong antioxidant and neuroprotective activity but demonstrates poor bioavailability. In order to resolve the problem related to bioavailability, RCE and phospholipids were reacted in disparate ratios of 1:1, 1:2, and 1:3 to prepare phytosome formulations PC1, PC2, and PC3, respectively. The formulation PC2 showed particle size of 289.1 ± 0.21 nm, ζ potential of -6.92 ± 0.10 mV, entrapment efficiency of 72.12%, and in vitro release of rubiadin of 89.42% at pH 7.4 for a period up to 48 h. The oral bioavailability and neuroprotective potential of PC2 and RCE were assessed to evaluate the benefit of PC2 formulation over the crude extract RCE. Formulation PC2 showed a relative bioavailability of 134.14% with a higher neuroprotective potential and significantly (p < 0.05) augmented the nociceptive threshold against neuropathic pain induced by partial sciatic nerve ligation method. Antioxidant enzyme levels and histopathological studies of the sciatic nerves in various treatment groups significantly divulged that PC2 has enough potential to reverse the damaged nerves into a normal state. Finally, it was concluded that encapsulated RCE as a phytosome is a potential carrier system for enhancing the delivery of RCE for the efficient treatment of neuropathic pain.
Collapse
Affiliation(s)
- Nitin Kumar
- Department of Pharmacy, Meerut Institute of Technology, Meerut 250103, India
| | - Radha Goel
- Department of Pharmacology, Lloyd Institute of Management and Technology, Greater Noida 201306, India
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Abdulaziz S Saeedan
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Hasan Ali
- Department of Pharmacy, Meerut Institute of Technology, Meerut 250103, India
| | - Neeraj Kant Sharma
- Department of Pharmacy, Meerut Institute of Technology, Meerut 250103, India
| | - Vaishali M Patil
- Charak School of Pharmacy, Chaudhary Charan Singh University, Meerut 250001, India
| | - Dinesh Puri
- Department of Pharmacy, Graphic Era Hill University, Dehradun 248002, India
| | - Monika Singh
- Department of Pharmacology, ITS College of Pharmacy, Ghaziabad 201206, India
| |
Collapse
|
16
|
Hameed H, Faheem S, Khan MA, Hameed A, Ereej N, Ihsan H. Ethosomes: a potential nanovesicular carrier to enhancing the drug delivery against skin barriers. J Microencapsul 2024; 41:204-225. [PMID: 38456667 DOI: 10.1080/02652048.2024.2326085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Ethosomes, which are liposomes like structures, mainly composed primarily of ethanol, have attracted considerable attention due to their potential to enhance the drug permeation via skin. The article discusses the formulation and preparation methods of ethosomes, offering insights into the various factors that influence their size, shape, and stability. Moreover, it explores the techniques used to assess the physicochemical properties of ethosomes and their impact on drug delivery effectiveness. The article also elucidates the mechanism by which ethosomes enhance skin permeation, emphasising their ability to modify the lipid structure and fluidity of the stratum corneum. Additionally, the review investigates the applications of ethosomes in diverse drug delivery scenarios, including the delivery of small molecules, peptides, and phytoconstituents. It highlights the potential of ethosomes to improve drug bioavailability, extend drug release, and achieve targeted delivery to specific skin layers or underlying tissues.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
- Institute of Clinical and Experimental Pharmacology and Toxicology, University of Lubeck, Lubeck, Germany
| | - Anam Hameed
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Lahore, Pakistan
| | - Nelofer Ereej
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Hafsa Ihsan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
17
|
Huang L, Luo S, Tong S, Lv Z, Wu J. The development of nanocarriers for natural products. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1967. [PMID: 38757428 DOI: 10.1002/wnan.1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Natural bioactive compounds from plants exhibit substantial pharmacological potency and therapeutic value. However, the development of most plant bioactive compounds is hindered by low solubility and instability. Conventional pharmaceutical forms, such as tablets and capsules, only partially overcome these limitations, restricting their efficacy. With the recent development of nanotechnology, nanocarriers can enhance the bioavailability, stability, and precise intracellular transport of plant bioactive compounds. Researchers are increasingly integrating nanocarrier-based drug delivery systems (NDDS) into the development of natural plant compounds with significant success. Moreover, natural products benefit from nanotechnological enhancement and contribute to the innovation and optimization of nanocarriers via self-assembly, grafting modifications, and biomimetic designs. This review aims to elucidate the collaborative and reciprocal advancement achieved by integrating nanocarriers with botanical products, such as bioactive compounds, polysaccharides, proteins, and extracellular vesicles. This review underscores the salient challenges in nanomedicine, encompassing long-term safety evaluations of nanomedicine formulations, precise targeting mechanisms, biodistribution complexities, and hurdles in clinical translation. Further, this study provides new perspectives to leverage nanotechnology in promoting the development and optimization of natural plant products for nanomedical applications and guiding the progression of NDDS toward enhanced efficiency, precision, and safety. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Liying Huang
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shicui Luo
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sen Tong
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhuo Lv
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Clinical Medical Research Center for Geriatric Diseases, Yunnan First People's Hospital, Kunming, Yunnan, China
| |
Collapse
|
18
|
Ranasinghe R, Mathai M, Abdullah Alshawsh M, Zulli A. Nanocarrier-mediated cancer therapy with cisplatin: A meta-analysis with a promising new paradigm. Heliyon 2024; 10:e28171. [PMID: 39839154 PMCID: PMC11747978 DOI: 10.1016/j.heliyon.2024.e28171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 01/23/2025] Open
Abstract
Aims Cisplatin is a frontline chemotherapeutic utilized to attenuate multiple cancers in the clinic. Given its side-effects, a new cisplatin formulation which could prevent cytotoxicity, metabolic deficiencies and metastasis is much needed. This study investigates whether nanocarriers can provide a better mode of drug delivery in preclinical cancer models seeking a potent anticancer therapeutic agent. Materials and methods The PubMed database was searched, and 242 research articles were screened from which 94 articles qualified for selection from those published by December 31, 2023 and the data was synthesized using the Review Manager software. Key findings Cisplatin encapsulated as a nanomedicine confirmed the versatility of nanocarriers in significantly diminishing cancer cell viability, half maximal inhibitory concentration, tumour volume, biodistribution of platinum in tumours and kidney; at p < 0.00001 and a 95% confidence interval. Significance An estimated 19.3 million global cancer incidence is reported with 50% mortality worldwide for which nanocarrier-mediated cisplatin therapy is most promising. Our findings offer new vistas for future cancer treatment when combined with chemo-immunotherapy that utilizes the recently advanced nanozymes.
Collapse
Affiliation(s)
- Ranmali Ranasinghe
- Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, Victoria, Australia
| | - Michael Mathai
- Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, Victoria, Australia
| | - Mohammed Abdullah Alshawsh
- Department of Paediatrics, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Anthony Zulli
- Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Chen J, Hu S, Sun M, Shi J, Zhang H, Yu H, Yang Z. Recent advances and clinical translation of liposomal delivery systems in cancer therapy. Eur J Pharm Sci 2024; 193:106688. [PMID: 38171420 DOI: 10.1016/j.ejps.2023.106688] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/23/2023] [Accepted: 12/31/2023] [Indexed: 01/05/2024]
Abstract
The limitations of conventional cancer treatment are driving the emergence and development of nanomedicines. Research in liposomal nanomedicine for cancer therapy is rapidly increasing, opening up new horizons for cancer treatment. Liposomal nanomedicine, which focuses on targeted drug delivery to improve the therapeutic effect of cancer while reducing damage to normal tissues and cells, has great potential in the field of cancer therapy. This review aims to clarify the advantages of liposomal delivery systems in cancer therapy. We describe the recent understanding of spatiotemporal fate of liposomes in the organism after different routes of drug administration. Meanwhile, various types of liposome-based drug delivery systems that exert their respective advantages in cancer therapy while reducing side effects were discussed. Moreover, the combination of liposomal agents with other therapies (such as photodynamic therapy and photothermal therapy) has demonstrated enhanced tumor-targeting efficiency and therapeutic efficacy. Finally, the opportunities and challenges faced by the field of liposome nanoformulations for entering the clinical treatment of cancer are highlighted.
Collapse
Affiliation(s)
- Jiayi Chen
- School of Life Sciences, Jilin University, Changchun, China
| | - Siyuan Hu
- School of Life Sciences, Jilin University, Changchun, China
| | - Man Sun
- School of Life Sciences, Jilin University, Changchun, China
| | - Jianan Shi
- School of Life Sciences, Jilin University, Changchun, China
| | - Huan Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Hongmei Yu
- China-Japan Union Hospital, Jilin University, Changchun, China.
| | - Zhaogang Yang
- School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
20
|
Segneanu AE, Vlase G, Vlase T, Bita A, Bejenaru C, Buema G, Bejenaru LE, Dumitru A, Boia ER. An Innovative Approach to a Potential Neuroprotective Sideritis scardica-Clinoptilolite Phyto-Nanocarrier: In Vitro Investigation and Evaluation. Int J Mol Sci 2024; 25:1712. [PMID: 38338989 PMCID: PMC10855864 DOI: 10.3390/ijms25031712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The cutting-edge field of nanomedicine combines the power of medicinal plants with nanotechnology to create advanced scaffolds that boast improved bioavailability, biodistribution, and controlled release. In an innovative approach to performant herb nanoproducts, Sideritis scardica Griseb and clinoptilolite were used to benefit from the combined action of both components and enhance the phytochemical's bioavailability, controlled intake, and targeted release. A range of analytical methods, such as SEM-EDX, FT-IR, DLS, and XDR, was employed to examine the morpho-structural features of the nanoproducts. Additionally, thermal stability, antioxidant screening, and in vitro release were investigated. Chemical screening of Sideritis scardica Griseb revealed that it contains a total of ninety-one phytoconstituents from ten chemical categories, including terpenoids, flavonoids, amino acids, phenylethanoid glycosides, phenolic acids, fatty acids, iridoids, sterols, nucleosides, and miscellaneous. The study findings suggest the potential applications as a promising aspirant in neurodegenerative strategy.
Collapse
Affiliation(s)
- Adina-Elena Segneanu
- Institute for Advanced Environmental Research-West University of Timisoara (ICAM-WUT), Oituz nr.4, 300223 Timisoara, Romania; (G.V.); (T.V.)
| | - Gabriela Vlase
- Institute for Advanced Environmental Research-West University of Timisoara (ICAM-WUT), Oituz nr.4, 300223 Timisoara, Romania; (G.V.); (T.V.)
- Research Centre “Thermal Anal Environm Problems”, Institute for Advanced Environmental Research-West University of Timisoara (WUT), Pestalozzi St 16, 300115 Timisoara, Romania
| | - Titus Vlase
- Institute for Advanced Environmental Research-West University of Timisoara (ICAM-WUT), Oituz nr.4, 300223 Timisoara, Romania; (G.V.); (T.V.)
- Research Centre “Thermal Anal Environm Problems”, Institute for Advanced Environmental Research-West University of Timisoara (WUT), Pestalozzi St 16, 300115 Timisoara, Romania
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, St. Petru Rareș 2, 200349 Craiova, Romania; (A.B.)
| | - Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, St. Petru Rareș 2, 200349 Craiova, Romania;
| | - Gabriela Buema
- National Institute of Research and Development for Technical Physics, 47 Mangeron Boulevard, 700050 Iasi, Romania;
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, St. Petru Rareș 2, 200349 Craiova, Romania; (A.B.)
| | - Andrei Dumitru
- Faculty of Sciences, Physical Education and Informatics—Department of Medical Assistance and Physiotherapy, National University for Science and Technology Politehnica Bucharest, University Center of Pitesti, Targu din Vale 1, 110040 Pitesti, Romania;
| | - Eugen Radu Boia
- Department of Ear, Nose, and Throat, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu, 300041 Timisoara, Romania;
| |
Collapse
|
21
|
Lv Y, Li W, Liao W, Jiang H, Liu Y, Cao J, Lu W, Feng Y. Nano-Drug Delivery Systems Based on Natural Products. Int J Nanomedicine 2024; 19:541-569. [PMID: 38260243 PMCID: PMC10802180 DOI: 10.2147/ijn.s443692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Natural products have proven to have significant curative effects and are increasingly considered as potential candidates for clinical prevention, diagnosis, and treatment. Compared with synthetic drugs, natural products not only have diverse structures but also exhibit a range of biological activities against different disease states and molecular targets, making them attractive for development in the field of medicine. Despite advancements in the use of natural products for clinical purposes, there remain obstacles that hinder their full potential. These challenges include issues such as limited solubility and stability when administered orally, as well as short durations of effectiveness. To address these concerns, nano-drug delivery systems have emerged as a promising solution to overcome the barriers faced in the clinical application of natural products. These systems offer notable advantages, such as a large specific surface area, enhanced targeting capabilities, and the ability to achieve sustained and controlled release. Extensive in vitro and in vivo studies have provided further evidence supporting the efficacy and safety of nanoparticle-based systems in delivering natural products in preclinical disease models. This review describes the limitations of natural product applications and the current status of natural products combined with nanotechnology. The latest advances in nano-drug delivery systems for delivery of natural products are considered from three aspects: connecting targeting warheads, self-assembly, and co-delivery. Finally, the challenges faced in the clinical translation of nano-drugs are discussed.
Collapse
Affiliation(s)
- Ying Lv
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wenqing Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wei Liao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Haibo Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Yuwei Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Jiansheng Cao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Wenfei Lu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| | - Yufei Feng
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, People’s Republic of China
| |
Collapse
|
22
|
Gorain B, Karmakar V, Sarkar B, Dwivedi M, Leong JTL, Toh JH, Seah E, Ling KY, Chen KY, Choudhury H, Pandey M. Biomacromolecule-based nanocarrier strategies to deliver plant-derived bioactive components for cancer treatment: A recent review. Int J Biol Macromol 2023; 253:126623. [PMID: 37657573 DOI: 10.1016/j.ijbiomac.2023.126623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
The quest for safe chemotherapy has attracted researchers to explore anticancer potential of herbal medicines. Owing to upsurging evidence of herbal drug's beneficial effects, hopes are restored for augmenting survival rates in cancer patients. However, phytoconstituents confronted severe limitations in terms of poor absorption, low-stability, and low bioavailability. Along with toxicity issues associated with phytoconstituents, quality control and limited regulatory guidance also hinder the prevalence of herbal medicines for cancer therapy. Attempts are underway to exploit nanocarriers to circumvent the limitations of existing and new herbal drugs, where biological macromolecules (e.g., chitosan, hyaluronic acid, etc.) are established highly effective in fabricating nanocarriers and cancer targeting. Among the discussed nanocarriers, liposomes and micelles possess properties to cargo hydro- and lipophilic herbal constituents with surface modification for targeted delivery. Majorly, PEG, transferrin and folate are utilized for surface modification to improve bioavailability, circulation time and targetability. The dendrimer and carbon nanotubes responded in high-loading efficiency of phytoconstituent; whereas, SLN and nanoemulsions are suited carriers for lipophilic extracts. This review emphasized unveiling the latent potential of herbal drugs along with discussing on extended benefits of nanocarriers-based delivery of phytoconstituents for safe cancer therapy owing to enhanced clinical and preclinical outcomes without compromising safety.
Collapse
Affiliation(s)
- Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Biswatrish Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Monika Dwivedi
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Janelle Tsui Lyn Leong
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Jing Hen Toh
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Even Seah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Kang Yi Ling
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Kah Yee Chen
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, SSH 17, Jant, Haryana 123031, India.
| |
Collapse
|
23
|
Jalili A, Bagherifar R, Nokhodchi A, Conway B, Javadzadeh Y. Current Advances in Nanotechnology-Mediated Delivery of Herbal and Plant-Derived Medicines. Adv Pharm Bull 2023; 13:712-722. [PMID: 38022806 PMCID: PMC10676547 DOI: 10.34172/apb.2023.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/23/2023] [Accepted: 07/14/2023] [Indexed: 12/01/2023] Open
Abstract
Phytomedicine has been used by humans since ancient times to treat a variety of diseases. However, herbal medicines face significant challenges, including poor water and lipid solubility and instability, which lead to low bioavailability and insufficient therapeutic efficacy. Recently, it has been shown that nanotechnology-based drug delivery systems are appropriate to overcome the above-mentioned limitations. The present review study first discusses herbal medicines and the challenges involved in the formulation of these drugs. The different types of nano-based drug delivery systems used in herbal delivery and their potential to improve therapeutic efficacy are summarized, and common techniques for preparing nanocarriers used in herbal drug delivery are also discussed. Finally, a list of nanophyto medicines that have entered clinical trials since 2010, as well as those that the FDA has approved, is presented.
Collapse
Affiliation(s)
- Amir Jalili
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus
| | - Rafieh Bagherifar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Arundel Building, Brighton BNI 9QJ, UK
- Lupin Research Center, Coral Springs, Florida, USA
| | - Barbara Conway
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
- Institute of Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield, UK
| | - Yousef Javadzadeh
- Biotechnology Research Center, and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
24
|
Segneanu AE, Vlase G, Vlase T, Sicoe CA, Ciocalteu MV, Herea DD, Ghirlea OF, Grozescu I, Nanescu V. Wild-Grown Romanian Helleborus purpurascens Approach to Novel Chitosan Phyto-Nanocarriers-Metabolite Profile and Antioxidant Properties. PLANTS (BASEL, SWITZERLAND) 2023; 12:3479. [PMID: 37836219 PMCID: PMC10574898 DOI: 10.3390/plants12193479] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
The current nanomedicinal approach combines medicinal plants and nanotechnology to create new scaffolds with enhanced bioavailability, biodistribution and controlled release. In an innovative approach to herb encapsulation in nanosized chitosan matrices, wild-grown Romanian Helleborus purpurascens was used to prepare two new chitosan nanocarriers. The first carrier preparation involved the nanoencapsulation of hellebore in chitosan. The second carrier emerged from two distinct stages: hellebore-AgNPs phyto-carrier system succeeded by nanoencapsulation in chitosan. The morphostructural characteristics and thermal behavior of these newly prepared nanocarriers were examined using FT-IR, XRD, DLS, SEM, EDS and thermogravimetric analyses. In addition, the encapsulation yield, encapsulation efficiency and encapsulation contents were investigated. The antioxidant activity was estimated using four in vitro, noncompetitive methods: total phenolic assay; 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay; phosphomolybdate (i.e., total antioxidant capacity); and iron(III)-phenanthroline antioxidant assay. Moreover, this study reports the first low-molecular-weight metabolite profile of wild-grown Romanian Helleborus purpurascens Waldst. & Kit. A total of one hundred and five secondary metabolites were identified in the mass spectra (MS)-positive mode from fourteen secondary metabolite categories (alkaloids, butenolides, bufadienolides, phytoecdysteroids, amino acids and peptides, terpenoids, fatty acids, flavonoids, phenolic acids, sterols, glycosides, carbohydrates, nucleosides and miscellaneous). The collective results suggest the potential application is a promising new antioxidant vehicle candidate in tumor therapeutic strategy.
Collapse
Affiliation(s)
- Adina-Elena Segneanu
- Institute for Advanced Environmental Research-West, University of Timisoara (ICAM-WUT), Oituz Nr. 4, 300086 Timisoara, Romania; (G.V.); (T.V.)
| | - Gabriela Vlase
- Institute for Advanced Environmental Research-West, University of Timisoara (ICAM-WUT), Oituz Nr. 4, 300086 Timisoara, Romania; (G.V.); (T.V.)
- Research Centre for Thermal Analysis Environmental Problems, West University of Timisoara, Pestalozzi St. 16, 300115 Timisoara, Romania
| | - Titus Vlase
- Institute for Advanced Environmental Research-West, University of Timisoara (ICAM-WUT), Oituz Nr. 4, 300086 Timisoara, Romania; (G.V.); (T.V.)
- Research Centre for Thermal Analysis Environmental Problems, West University of Timisoara, Pestalozzi St. 16, 300115 Timisoara, Romania
| | - Crina Andreea Sicoe
- Faculty of Chemistry, Biology, Geography, West University of Timisoara, Pestalozzi St. 16, 300115 Timisoara, Romania;
| | - Maria Viorica Ciocalteu
- Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, St. Petru Rareș 2, 200349 Craiova, Romania; (M.V.C.); (V.N.)
| | - Dumitru Daniel Herea
- National Institute of Research and Development for Technical Physics, 47 Mangeron Blvd., 700050 Iasi, Romania;
| | - Ovidiu-Florin Ghirlea
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, square Eftimie Murgu No. 2, 300041 Timisoara, Romania;
| | - Ioan Grozescu
- CAICON Department, University Politehnica Timisoara, 300006 Timisoara, Romania;
| | - Valentin Nanescu
- Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, St. Petru Rareș 2, 200349 Craiova, Romania; (M.V.C.); (V.N.)
| |
Collapse
|
25
|
Ortega-Pérez LG, Ayala-Ruiz LA, Magaña-Rodríguez OR, Piñón-Simental JS, Aguilera-Méndez A, Godínez-Hernández D, Rios-Chavez P. Development and Evaluation of Phytosomes Containing Callistemon citrinus Leaf Extract: A Preclinical Approach for the Treatment of Obesity in a Rodent Model. Pharmaceutics 2023; 15:2178. [PMID: 37765149 PMCID: PMC10535757 DOI: 10.3390/pharmaceutics15092178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
Callistemon citrinus has several biological effects; it is anti-inflammatory, anti-obesogenic, antioxidant, hepatoprotection, and chemoprotective. Its bioactive compounds include terpenoids, phenolic acids, and flavonoids which have low oral bioavailability and absorption. This study aimed at developing phytosomes of C. citrinus to improve oral bioavailability and absorption. Phytosomes were formulated with soybean phosphatidylcholine and C. citrinus leaf extract using the thin layer sonication method. Phytosomes were evaluated by scanning electron microscopy (SEM), entrapment efficiency, solubility, and particle size determination. Antioxidant capacity and total phenolic, flavonoid, and terpenoid contents were also measured. The in vivo anti-obesogenic activity was evaluated. Phytosomes loaded with C. citrinus (P C.c) extract had small spherical shapes. The average particle size was 129.98 ± 18.30 nm, encapsulation efficiency 80.49 ± 0.07%, and solubility 90.00%; the stability study presented no significant changes in the average particle size at 20 °C. P C.c presented high antioxidant capacity. For the first time, ellagic acid is reported in this plant. The in vivo obesity study showed a strong anti-obesogenic activity of phytosomes with C. citrinus to reduce 40% body weight as well as morphometric and biochemical parameters.
Collapse
Affiliation(s)
- Luis Gerardo Ortega-Pérez
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico; (L.G.O.-P.); (L.A.A.-R.); (O.R.M.-R.); (J.S.P.-S.)
| | - Luis Alberto Ayala-Ruiz
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico; (L.G.O.-P.); (L.A.A.-R.); (O.R.M.-R.); (J.S.P.-S.)
| | - Oliver Rafid Magaña-Rodríguez
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico; (L.G.O.-P.); (L.A.A.-R.); (O.R.M.-R.); (J.S.P.-S.)
| | - Jonathan Saúl Piñón-Simental
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico; (L.G.O.-P.); (L.A.A.-R.); (O.R.M.-R.); (J.S.P.-S.)
| | - Asdrubal Aguilera-Méndez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico; (A.A.-M.); (D.G.-H.)
| | - Daniel Godínez-Hernández
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico; (A.A.-M.); (D.G.-H.)
| | - Patricia Rios-Chavez
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico; (L.G.O.-P.); (L.A.A.-R.); (O.R.M.-R.); (J.S.P.-S.)
| |
Collapse
|
26
|
Smriti, Singla M, Gupta S, Porwal O, Nasser Binjawhar D, Sayed AA, Mittal P, El-Demerdash FM, Algahtani M, Singh SK, Dua K, Gupta G, Bawa P, Altyar AE, Abdel-Daim MM. Theoretical design for covering Engeletin with functionalized nanostructure-lipid carriers as neuroprotective agents against Huntington's disease via the nasal-brain route. Front Pharmacol 2023; 14:1218625. [PMID: 37492081 PMCID: PMC10364480 DOI: 10.3389/fphar.2023.1218625] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Objective: To propose a theoretical formulation of engeletin-nanostructured lipid nanocarriers for improved delivery and increased bioavailability in treating Huntington's disease (HD). Methods: We conducted a literature review of the pathophysiology of HD and the limitations of currently available medications. We also reviewed the potential therapeutic benefits of engeletin, a flavanol glycoside, in treating HD through the Keap1/nrf2 pathway. We then proposed a theoretical formulation of engeletin-nanostructured lipid nanocarriers for improved delivery across the blood-brain barrier (BBB) and increased bioavailability. Results: HD is an autosomal dominant neurological illness caused by a repetition of the cytosine-adenine-guanine trinucleotide, producing a mutant protein called Huntingtin, which degenerates the brain's motor and cognitive functions. Excitotoxicity, mitochondrial dysfunction, oxidative stress, elevated concentration of ROS and RNS, neuroinflammation, and protein aggregation significantly impact HD development. Current therapeutic medications can postpone HD symptoms but have long-term adverse effects when used regularly. Herbal medications such as engeletin have drawn attention due to their minimal side effects. Engeletin has been shown to reduce mitochondrial dysfunction and suppress inflammation through the Keap1/NRF2 pathway. However, its limited solubility and permeability hinder it from reaching the target site. A theoretical formulation of engeletin-nanostructured lipid nanocarriers may allow for free transit over the BBB due to offering a similar composition to the natural lipids present in the body a lipid solubility and increase bioavailability, potentially leading to a cure or prevention of HD. Conclusion: The theoretical formulation of engeletin-nanostructured lipid nanocarriers has the potential to improve delivery and increase the bioavailability of engeletin in the treatment of HD, which may lead to a cure or prevention of this fatal illness.
Collapse
Affiliation(s)
- Smriti
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Indore, Madhya Pradesh
| | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Dalal Nasser Binjawhar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Fatma M. El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Australian Research Consortium in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, Australia
| | - Kamal Dua
- Australian Research Consortium in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
- Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Puneet Bawa
- Center of Excellence for Speech and Multimodel Laboratory, Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
27
|
Barboza ADS, Ribeiro de Andrade JS, Ferreira ML, Peña CLD, da Costa JS, Fajardo AR, Lund RG. Propolis Controlled Delivery Systems for Oral Therapeutics in Dental Medicine: A Systematic Review. Dent J (Basel) 2023; 11:162. [PMID: 37504228 PMCID: PMC10378523 DOI: 10.3390/dj11070162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 07/29/2023] Open
Abstract
This systematic review synthesizes the existing evidence in the literature regarding the association of propolis with controlled delivery systems (DDSs) and its potential therapeutic action in dental medicine. Two independent reviewers performed a literature search up to 1 June 2023 in five databases: PubMed/Medline, Web of Science, Cochrane Library, Scopus, and Embase, to identify the eligible studies. Clinical, in situ, and in vitro studies that investigated the incorporation of propolis as the main agent in DDSs for dental medicine were included in this study. Review articles, clinical cases, theses, dissertations, conference abstracts, and studies that had no application in dentistry were excluded. A total of 2019 records were initially identified. After carefully examining 21 full-text articles, 12 in vitro studies, 4 clinical, 1 animal model, and 3 in vivo and in vitro studies were included (n = 21). Relevant data were extracted from the included studies and analyzed qualitatively. The use of propolis has been reported in cariology, endodontics, periodontics, stomatology, and dental implants. Propolis has shown non-cytotoxic, osteoinductive, antimicrobial, and anti-inflammatory properties. Moreover, propolis can be released from DDS for prolonged periods, presenting biocompatibility, safety, and potential advantage for applications in dental medicine.
Collapse
Affiliation(s)
- Andressa da Silva Barboza
- Graduate Program in Dentistry, Pelotas Dental School, Federal University of Pelotas, Gonçalves Chaves Street, 457/Rm 702-3, Downtown Pelotas, Pelotas 96015-560, RS, Brazil
| | - Juliana Silva Ribeiro de Andrade
- Graduate Program in Dentistry, Pelotas Dental School, Federal University of Pelotas, Gonçalves Chaves Street, 457/Rm 702-3, Downtown Pelotas, Pelotas 96015-560, RS, Brazil
- Department of Dentistry, Federal University of Santa Catarina (UFSC), Av. Delfino Conti, s/n-Trindade, Florianópolis 88040-900, SC, Brazil
| | - Monika Lamas Ferreira
- Graduate Program in Dentistry, Pelotas Dental School, Federal University of Pelotas, Gonçalves Chaves Street, 457/Rm 702-3, Downtown Pelotas, Pelotas 96015-560, RS, Brazil
| | - Carla Lucía David Peña
- Graduate Program in Dentistry, Pelotas Dental School, Federal University of Pelotas, Gonçalves Chaves Street, 457/Rm 702-3, Downtown Pelotas, Pelotas 96015-560, RS, Brazil
| | - Juliê Silveira da Costa
- Laboratory of Technology and Development of Composites and Polymeric Materials (LaCoPol), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, UFPel, Campus Capão do Leão, Pelotas 96010-900, RS, Brazil
| | - André Ricardo Fajardo
- Laboratory of Technology and Development of Composites and Polymeric Materials (LaCoPol), Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, UFPel, Campus Capão do Leão, Pelotas 96010-900, RS, Brazil
| | - Rafael Guerra Lund
- Graduate Program in Dentistry, Pelotas Dental School, Federal University of Pelotas, Gonçalves Chaves Street, 457/Rm 702-3, Downtown Pelotas, Pelotas 96015-560, RS, Brazil
| |
Collapse
|
28
|
Kim M, Jang H, Kim W, Kim D, Park JH. Therapeutic Applications of Plant-Derived Extracellular Vesicles as Antioxidants for Oxidative Stress-Related Diseases. Antioxidants (Basel) 2023; 12:1286. [PMID: 37372016 PMCID: PMC10295733 DOI: 10.3390/antiox12061286] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Extracellular vesicles (EVs) composed of a lipid bilayer are released from various cell types, including animals, plants, and microorganisms, and serve as important mediators of cell-to-cell communication. EVs can perform a variety of biological functions through the delivery of bioactive molecules, such as nucleic acids, lipids, and proteins, and can also be utilized as carriers for drug delivery. However, the low productivity and high cost of mammalian-derived EVs (MDEVs) are major barriers to their practical clinical application where large-scale production is essential. Recently, there has been growing interest in plant-derived EVs (PDEVs) that can produce large amounts of electricity at a low cost. In particular, PDEVs contain plant-derived bioactive molecules such as antioxidants, which are used as therapeutic agents to treat various diseases. In this review, we discuss the composition and characteristics of PDEVs and the appropriate methods for their isolation. We also discuss the potential use of PDEVs containing various plant-derived antioxidants as replacements for conventional antioxidants.
Collapse
Affiliation(s)
| | | | | | | | - Ju Hyun Park
- Department of Biomedical Science, Kangwon National University, Chuncheon-si 24341, Republic of Korea; (M.K.); (H.J.); (W.K.); (D.K.)
| |
Collapse
|
29
|
Ezike TC, Okpala US, Onoja UL, Nwike CP, Ezeako EC, Okpara OJ, Okoroafor CC, Eze SC, Kalu OL, Odoh EC, Nwadike UG, Ogbodo JO, Umeh BU, Ossai EC, Nwanguma BC. Advances in drug delivery systems, challenges and future directions. Heliyon 2023; 9:e17488. [PMID: 37416680 PMCID: PMC10320272 DOI: 10.1016/j.heliyon.2023.e17488] [Citation(s) in RCA: 133] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
Advances in molecular pharmacology and an improved understanding of the mechanism of most diseases have created the need to specifically target the cells involved in the initiation and progression of diseases. This is especially true for most life-threatening diseases requiring therapeutic agents which have numerous side effects, thus requiring accurate tissue targeting to minimize systemic exposure. Recent drug delivery systems (DDS) are formulated using advanced technology to accelerate systemic drug delivery to the specific target site, maximizing therapeutic efficacy and minimizing off-target accumulation in the body. As a result, they play an important role in disease management and treatment. Recent DDS offer greater advantages when compared to conventional drug delivery systems due to their enhanced performance, automation, precision, and efficacy. They are made of nanomaterials or miniaturized devices with multifunctional components that are biocompatible, biodegradable, and have high viscoelasticity with an extended circulating half-life. This review, therefore, provides a comprehensive insight into the history and technological advancement of drug delivery systems. It updates the most recent drug delivery systems, their therapeutic applications, challenges associated with their use, and future directions for improved performance and use.
Collapse
Affiliation(s)
- Tobechukwu Christian Ezike
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Ugochukwu Solomon Okpala
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Ufedo Lovet Onoja
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Chinenye Princess Nwike
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Emmanuel Chimeh Ezeako
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Osinachi Juliet Okpara
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Charles Chinkwere Okoroafor
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Shadrach Chinecherem Eze
- Department of Clinical Pharmacy and Pharmacy Management, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Onyinyechi Loveth Kalu
- Department of Clinical Pharmacy and Pharmacy Management, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | | | - Ugochukwu Gideon Nwadike
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - John Onyebuchi Ogbodo
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
- Department of Science Laboratory Technology, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Bravo Udochukwu Umeh
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Emmanuel Chekwube Ossai
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Bennett Chima Nwanguma
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| |
Collapse
|
30
|
Choi JC, Jung SW, Choi IY, Kang YL, Lee DH, Lee SW, Park SY, Song CS, Choi IS, Lee JB, Oh C. Rottlerin-Liposome Inhibits the Endocytosis of Feline Coronavirus Infection. Vet Sci 2023; 10:380. [PMID: 37368766 DOI: 10.3390/vetsci10060380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/02/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Rottlerin (R) is a natural extract from Mallotus philippensis with antiviral properties. Feline infectious peritonitis (FIP) is a fatal disease caused by feline coronavirus (FCoV) that is characterized by systemic granulomatous inflammation and high mortality. We investigated the antiviral effect of liposome-loaded R, i.e., rottlerin-liposome (RL), against FCoV. We demonstrated that RL inhibited FCoV replication in a dose-dependent manner, not only in the early endocytosis stage but also in the late stage of replication. RL resolved the low solubility issue of rottlerin and improved its inhibition efficacy at the cellular level. Based on these findings, we suggest that RL is worth further investigation as a potential treatment for FCoV.
Collapse
Affiliation(s)
- Jong-Chul Choi
- Qvet Co., Ltd., 606, Alumini Association Building of Konkuk University, 5 Achasan-ro 36-gil, Gwangjin-gu, Seoul 05066, Republic of Korea
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sung-Won Jung
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - In-Yeong Choi
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yeong-Lim Kang
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Dong-Hun Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- KU Research Center for Zoonosis, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sang-Won Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- KU Research Center for Zoonosis, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seung-Yong Park
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- KU Research Center for Zoonosis, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Chang-Seon Song
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- KU Research Center for Zoonosis, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - In-Soo Choi
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- KU Research Center for Zoonosis, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Joong-Bok Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- KU Research Center for Zoonosis, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Changin Oh
- Department of Genetics, Yale School of Medicine, P.O. Box 208005, New Haven, CT 06520-8005, USA
| |
Collapse
|
31
|
Pani S, Pappalardo I, Santarsiero A, Vassallo A, Radice RP, Martelli G, Siano F, Todisco S, Convertini P, Caddeo C, Infantino V. Immunometabolism Modulation by Extracts from Pistachio Stalks Formulated in Phospholipid Vesicles. Pharmaceutics 2023; 15:pharmaceutics15051540. [PMID: 37242782 DOI: 10.3390/pharmaceutics15051540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Several studies have demonstrated the effectiveness of plant extracts against various diseases, especially skin disorders; namely, they exhibit overall protective effects. The Pistachio (Pistacia vera L.) is known for having bioactive compounds that can effectively contribute to a person's healthy status. However, these benefits may be limited by the toxicity and low bioavailability often inherent in bioactive compounds. To overcome these problems, delivery systems, such as phospholipid vesicles, can be employed. In this study, an essential oil and a hydrolate were produced from P. vera stalks, which are usually discarded as waste. The extracts were characterized by liquid and gas chromatography coupled with mass spectrometry and formulated in phospholipid vesicles intended for skin application. Liposomes and transfersomes showed small size (<100 nm), negative charge (approximately -15 mV), and a longer storage stability for the latter. The entrapment efficiency was determined via the quantification of the major compounds identified in the extracts and was >80%. The immune-modulating activity of the extracts was assayed in macrophage cell cultures. Most interestingly, the formulation in transfersomes abolished the cytotoxicity of the essential oil while increasing its ability to inhibit inflammatory mediators via the immunometabolic citrate pathway.
Collapse
Affiliation(s)
- Simone Pani
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, Italy
| | - Ilaria Pappalardo
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Anna Santarsiero
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Antonio Vassallo
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
- Spinoff TNcKILLERS s.r.l., Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Rosa Paola Radice
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Giuseppe Martelli
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Francesco Siano
- Institute of Food Science, National Research Council, Via Roma 64, 83100 Avellino, Italy
| | - Simona Todisco
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Paolo Convertini
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Carla Caddeo
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, Italy
| | - Vittoria Infantino
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
32
|
Damani M, Singh P, Sawarkar S. Delivery of Immunomodulators: Challenges and Novel Approaches. NATURAL IMMUNOMODULATORS: PROMISING THERAPY FOR DISEASE MANAGEMENT 2023:275-322. [DOI: 10.2174/9789815123258123010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Immunomodulators can be either synthetic in origin or naturally obtained.
Natural plant-based compounds can influence the immune system by either affecting
antibody secretion to control the infection or affecting the functions of immune cells,
thus contributing to maintaining immune homeostasis. Phytochemicals in plants, such
as polysaccharides, lactones, flavonoids, alkaloids, diterpenoids and glycosides, have
been reported to possess immunomodulating properties. However, there are many
challenges limiting the clinical use of natural immunomodulators. In this chapter, we
have discussed in detail standardization, formulation development, route of
administration and regulatory concerns of natural immunomodulators. In order to
overcome these challenges and ensure that natural immunomodulators reach the target
site at therapeutic concentrations, different polymer and lipid-based nanocarrier
delivery systems have been developed. These nanocarriers by virtue of their size, can
easily penetrate and reach the target site and deliver the drugs. Many nanocarriers like
liposomes, niosomes, nanoparticles, microemulsions, phytosomes and other vesicular
systems designed for natural immunomodulators are discussed in this chapter.<br>
Collapse
Affiliation(s)
- Mansi Damani
- University of Mumbai,Department of Pharmaceutics,Mumbai,India,
| | - Prabha Singh
- University of Mumbai,Department of Pharmaceutics,Mumbai,India,
| | - Sujata Sawarkar
- University of Mumbai,Department of Pharmaceutics,Mumbai,India,
| |
Collapse
|
33
|
Bahloul B, Castillo-Henríquez L, Jenhani L, Aroua N, Ftouh M, Kalboussi N, Vega-Baudrit J, Mignet N. Nanomedicine-based potential phyto-drug delivery systems for diabetes. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
34
|
Romeiras MM, Essoh AP, Catarino S, Silva J, Lima K, Varela E, Moura M, Gomes I, Duarte MC, Duarte MP. Diversity and biological activities of medicinal plants of Santiago island (Cabo Verde). Heliyon 2023; 9:e14651. [PMID: 37009246 PMCID: PMC10060590 DOI: 10.1016/j.heliyon.2023.e14651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
Plants continue to constitute key elements of medical practice in West African countries. The Cabo Verde archipelago hosts a great diversity of medicinal plants and local markets are considered important sites for trading plants harvested by rural communities. This study has two main goals: (i) to assess the medicinal uses of native species in Santiago, the biggest island of the archipelago, and (ii) to evaluate the antioxidant, antimicrobial and antidiabetic/antihyperglycemic activities of two native trees (Tamarix senegalensis and Sideroxylon marginatum) used in traditional medicine and traded in local markets. Our results revealed that on Santiago Island, 24 native plants are used in traditional medicine. The main uses of these species (e.g., forage, timber, food and fibres), their medicinal applications, the plant parts used, their mode of administration and conservation status are presented here for the first time. Moreover, the pharmacological characterization of two native tree species revealed that hydroethanolic extracts were richer in phenolic compounds and more active than their aqueous counterparts. All the studied extracts revealed significant antioxidant properties (DPPH and FRAP assays) and were generally moderately active against Gram-positive bacteria. All the extracts inhibited the activities of the carbohydrate digestive enzymes α-glucosidase and α-amylase in a dose-dependent manner. For α-glucosidase, the detected inhibitory activity (IC50 values from 2.0 ± 0.2 μg/mL to 9.9 ± 1.2 μg/mL) was significantly higher than that of acarbose, suggesting that extracts of both species can delay glucose absorption, thereby assisting in slowing down the progression of diabetes. Our findings highlight the crucial importance that medicinal plants have for the Cabo Verdean population, while also raising awareness on the need for sustainable use and conservation of native flora, and of tree species traded in local markets in particular.
Collapse
|
35
|
Caddeo C, Tuberoso CIG, Floris S, Masala V, Sanna C, Pintus F. A Nanotechnological Approach to Exploit and Enhance the Bioactivity of an Extract from Onopordum illyricum L. Leaves. PLANTS (BASEL, SWITZERLAND) 2023; 12:1453. [PMID: 37050078 PMCID: PMC10096861 DOI: 10.3390/plants12071453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Plant-derived products have been used for preventive and curative purposes from the ancient era to the present day. Several studies have demonstrated the efficacy of either multicomponent-based extracts, enriched fractions, or isolated bioactives. However, they often display low solubility and bioavailability, chemical instability, poor absorption, and even toxicity, which restrict application in therapy. The use of drug delivery systems, especially nanocarriers, can overcome these physicochemical and pharmacokinetic limitations. In this study, an extract from Onopordum illyricum leaves was produced by maceration in 80% ethanol, characterized by liquid chromatography coupled to mass spectrometry, and formulated in phospholipid vesicles with the aim of exploiting and possibly enhancing its bioactivity for skin delivery. The results showed that phenolic compounds were abundantly present in the extract, especially hydroxycinnamic acid and flavonol derivatives. The extract-loaded vesicles showed small size (<100 nm), high entrapment efficiency (even >90% for most phenolic compounds), and good long-term stability. Moreover, the extract-loaded vesicles exhibited remarkable antioxidant activity, as demonstrated by colorimetric assays and by enhanced reduction of intracellular reactive oxygen species (ROS) levels in cultured skin cells. Hence, our findings support the key role of nanotechnological approaches to promote the potential of plant extracts and strengthen their application in therapy.
Collapse
Affiliation(s)
- Carla Caddeo
- Department of Life and Environmental Sciences, University of Cagliari, SS 554—Bivio per Sestu, Monserrato, 09042 Cagliari, Italy
| | - Carlo Ignazio Giovanni Tuberoso
- Department of Life and Environmental Sciences, University of Cagliari, SS 554—Bivio per Sestu, Monserrato, 09042 Cagliari, Italy
| | - Sonia Floris
- Department of Life and Environmental Sciences, University of Cagliari, SS 554—Bivio per Sestu, Monserrato, 09042 Cagliari, Italy
| | - Valentina Masala
- Department of Life and Environmental Sciences, University of Cagliari, SS 554—Bivio per Sestu, Monserrato, 09042 Cagliari, Italy
| | - Cinzia Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Via S. Ignazio da Laconi 13, 09123 Cagliari, Italy
| | - Francesca Pintus
- Department of Life and Environmental Sciences, University of Cagliari, SS 554—Bivio per Sestu, Monserrato, 09042 Cagliari, Italy
| |
Collapse
|
36
|
Kaurav M, Ruhi S, Al-Goshae HA, Jeppu AK, Ramachandran D, Sahu RK, Sarkar AK, Khan J, Ashif Ikbal AM. Dendrimer: An update on recent developments and future opportunities for the brain tumors diagnosis and treatment. Front Pharmacol 2023; 14:1159131. [PMID: 37006997 PMCID: PMC10060650 DOI: 10.3389/fphar.2023.1159131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
A brain tumor is an uncontrolled cell proliferation, a mass of tissue composed of cells that grow and divide abnormally and appear to be uncontrollable by the processes that normally control normal cells. Approximately 25,690 primary malignant brain tumors are discovered each year, 70% of which originate in glial cells. It has been observed that the blood-brain barrier (BBB) limits the distribution of drugs into the tumour environment, which complicates the oncological therapy of malignant brain tumours. Numerous studies have found that nanocarriers have demonstrated significant therapeutic efficacy in brain diseases. This review, based on a non-systematic search of the existing literature, provides an update on the existing knowledge of the types of dendrimers, synthesis methods, and mechanisms of action in relation to brain tumours. It also discusses the use of dendrimers in the diagnosis and treatment of brain tumours and the future possibilities of dendrimers. Dendrimers are of particular interest in the diagnosis and treatment of brain tumours because they can transport biochemical agents across the BBB to the tumour and into the brain after systemic administration. Dendrimers are being used to develop novel therapeutics such as prolonged release of drugs, immunotherapy, and antineoplastic effects. The use of PAMAM, PPI, PLL and surface engineered dendrimers has proven revolutionary in the effective diagnosis and treatment of brain tumours.
Collapse
Affiliation(s)
- Monika Kaurav
- Department of Pharmaceutics, KIET Group of Institutions (KIET School of Pharmacy), Delhi NCR, Ghaziabad, India
- Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Sakina Ruhi
- Department of Biochemistry, IMS, Management and Science University, University Drive, Shah Alam, Selangor, Malaysia
| | - Husni Ahmed Al-Goshae
- Department of Anantomy, IMS, Management and Science University, University Drive, Shah Alam, Selangor, Malaysia
| | - Ashok Kumar Jeppu
- Department of Biochemistry, IMS, Management and Science University, University Drive, Shah Alam, Selangor, Malaysia
| | - Dhani Ramachandran
- Department of Pathology, IMS, Management and Science University, University Drive, Shah Alam, Selangor, Malaysia
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand, India
- *Correspondence: Ram Kumar Sahu,
| | | | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, Shah Alam, Selangor, Malaysia
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar, Assam, India
| |
Collapse
|
37
|
Kakhar Umar A, Zothantluanga JH, Luckanagul JA, Limpikirati P, Sriwidodo S. Structure-based computational screening of 470 natural quercetin derivatives for identification of SARS-CoV-2 M pro inhibitor. PeerJ 2023; 11:e14915. [PMID: 36935912 PMCID: PMC10022500 DOI: 10.7717/peerj.14915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/26/2023] [Indexed: 03/16/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a global pandemic infecting the respiratory system through a notorious virus known as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to viral mutations and the risk of drug resistance, it is crucial to identify new molecules having potential prophylactic or therapeutic effect against SARS-CoV-2 infection. In the present study, we aimed to identify a potential inhibitor of SARS-CoV-2 through virtual screening of a compound library of 470 quercetin derivatives by targeting the main protease-Mpro (PDB ID: 6LU7). The study was carried out with computational techniques such as molecular docking simulation studies (MDSS), molecular dynamics (MD) simulations, and molecular mechanics generalized Born surface area (MMGBSA) techniques. Among the natural derivatives, compound 382 (PubChem CID 65604) showed the best binding affinity to Mpro (-11.1 kcal/mol). Compound 382 interacted with LYS5, TYR126, GLN127, LYS137, ASP289, PHE291, ARG131, SER139, GLU288, and GLU290 of the Mpro protein. The SARS-CoV-2 Mpro-382 complex showed acceptable stability during the 100 ns MD simulations. The SARS-CoV-2 Mpro-382 complex also showed an MM-GBSA binding free energy value of -54.0 kcal/mol. The binding affinity, stability, and free energy results for 382 and Mpro were better than those of the native ligand and the standard inhibitors ledipasvir and cobicistat. The conclusion of our study was that compound 382 has the potential to inhibit SARS-Cov-2 Mpro. However, further investigations such as in-vitro assays are recommended to confirm its in-silico potency.
Collapse
Affiliation(s)
- Abd. Kakhar Umar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Padjadjaran University, Sumedang, Jawa barat, Indonesia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Chulalongkorn University, Bangkok, Thailand
| | - James H. Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Dibrugarh University, Assam, India
| | - Jittima Amie Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Chulalongkorn University, Bangkok, Thailand
| | - Patanachai Limpikirati
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmacy, Chulalongkorn University, Bangkok, Thailand
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Padjadjaran University, Sumedang, Jawa barat, Indonesia
| |
Collapse
|
38
|
Pandey P, Khan F, Upadhyay TK. Deciphering the modulatory role of apigenin targeting oncogenic pathways in human cancers. Chem Biol Drug Des 2023; 101:1446-1458. [PMID: 36746671 DOI: 10.1111/cbdd.14206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/14/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
Cancer is a complicated malignancy controlled by numerous intrinsic and extrinsic pathways. There has been a significant increase in interest in recent years in the elucidation of cancer treatments based on natural extracts that have fewer side effects. Numerous natural product-derived chemicals have been investigated for their anticancer effects in the search for an efficient chemotherapeutic method. Therefore, the rationale behind this review is to provide a detailed insights about the anticancerous potential of apigenin via modulating numerous cell signaling pathways. An ingestible plant-derived flavonoid called apigenin has been linked to numerous anticancerous potential in numerous experimental and biological studies. Apigenin has been reported to induce cell growth arrest and apoptotic induction by modulating multiple cell signaling pathways in a wider range of human tumors including those of the breast, lung, liver, skin, blood, colon, prostate, pancreatic, cervical, oral, and stomach. Oncogenic protein networks, abnormal cell signaling, and modulation of the apoptotic machinery are only a few examples of diverse molecular interactions and processes that have not yet been thoroughly addressed by scientific research. Thus, keeping this fact in mind, we tried to focus our review towards summarizing the apigenin-mediated modulation of oncogenic pathways in various malignancies that can be further utilized to develop a potent therapeutic alternative for the treatment of various cancers.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, Gujarat, India
| |
Collapse
|
39
|
Ashwagandha-loaded nanocapsules improved the behavioral alterations, and blocked MAPK and induced Nrf2 signaling pathways in a hepatic encephalopathy rat model. Drug Deliv Transl Res 2023; 13:252-274. [PMID: 35672652 PMCID: PMC9726678 DOI: 10.1007/s13346-022-01181-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2022] [Indexed: 12/14/2022]
Abstract
Ashwagandha (ASH), a vital herb in Ayurvedic medicine, demonstrated potent preclinical hepato- and neuroprotective effects. However, its efficacy is limited due to low oral bioavailability. Accordingly, we encapsulated ASH extract in chitosan-alginate bipolymeric nanocapsules (ASH-BPNCs) to enhance its physical stability and therapeutic effectiveness in the gastrointestinal tract. ASH-BPNC was prepared by emulsification followed by sonication. The NCs showed small particle size (< 220 nm), zeta-potential of 25.2 mV, relatively high entrapment efficiency (79%), physical stability at acidic and neutral pH, and in vitro release profile that extended over 48 h. ASH-BPNC was then investigated in a thioacetamide-induced hepatic encephalopathy (HE) rat model. Compared with free ASH, ASH-BPNC improved survival, neurological score, general motor activity, and cognitive task-performance. ASH-BPNC restored ALT, AST and ammonia serum levels, and maintained hepatic and brain architecture. ASH-BPNC also restored GSH, MDA, and glutathione synthetase levels, and Nrf2 and MAPK signaling pathways in liver and brain tissues. Moreover, ASH-BPNC downregulated hepatic NF-κB immunohistochemical expression. Moreover, the in vivo biodistribution studies demonstrated that most of the administered ASH-BPNC is accumulated in the brain and hepatic tissues. In conclusion, chitosan-alginate BPNCs enhanced the hepatoprotective and neuroprotective effects of ASH, thus providing a promising therapeutic approach for HE.
Collapse
|
40
|
Anwar I, Ashfaq UA. Impact of Nanotechnology on Differentiation and Augmentation of Stem Cells for Liver Therapy. Crit Rev Ther Drug Carrier Syst 2023; 40:89-116. [PMID: 37585310 DOI: 10.1615/critrevtherdrugcarriersyst.2023042400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The liver is one of the crucial organs of the body that performs hundreds of chemical reactions needed by the body to survive. It is also the largest gland of the body. The liver has multiple functions, including the synthesis of chemicals, metabolism of nutrients, and removal of toxins. It also acts as a storage unit. The liver has a unique ability to regenerate itself, but it can lead to permanent damage if the injury is beyond recovery. The only possible treatment of severe liver damage is liver transplant which is a costly procedure and has several other drawbacks. Therefore, attention has been shifted towards the use of stem cells that have shown the ability to differentiate into hepatocytes. Among the numerous kinds of stem cells (SCs), the mesenchymal stem cells (MSCs) are the most famous. Various studies suggest that an MSC transplant can repair liver function, improve the signs and symptoms, and increase the chances of survival. This review discusses the impact of combining stem cell therapy with nanotechnology. By integrating stem cell science and nanotechnology, the information about stem cell differentiation and regulation will increase, resulting in a better comprehension of stem cell-based treatment strategies. The augmentation of SCs with nanoparticles has been shown to boost the effect of stem cell-based therapy. Also, the function of green nanoparticles in liver therapies is discussed.
Collapse
Affiliation(s)
- Ifrah Anwar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
41
|
Picos-Corrales LA, Licea-Claverie A, Sarmiento-Sánchez JI, Ruelas-Leyva JP, Osuna-Martínez U, García-Carrasco M. Methods of nanoencapsulation of phytochemicals using organic platforms. PHYTOCHEMICAL NANODELIVERY SYSTEMS AS POTENTIAL BIOPHARMACEUTICALS 2023:123-184. [DOI: 10.1016/b978-0-323-90390-5.00002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
42
|
Kumari P, Sharma S, Sharma PK, Alam A. Treatment Management of Diabetic Wounds Utilizing Herbalism: An Overview. Curr Diabetes Rev 2023; 19:92-108. [PMID: 35306989 DOI: 10.2174/1573399818666220318095320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Diabetes Mellitus, commonly known as DM, is a metabolic disorder which is characterized by high blood glucose level, i.e., chronic hyperglycemia. If it is not managed properly, DM can lead to many severe complexities with time and can cause significant damage to the kidneys, heart, eyes, nerves and blood vessels. Diabetic foot ulcers (DFU) are one of those major complexities which affect around 15-25% of the population diagnosed with diabetes. Due to diabetic conditions, the body's natural healing process slows down leading to longer duration for healing of wounds only when taken care of properly. Herbal therapies are one of the approaches for the management and care of diabetic foot ulcer, which utilizes the concept of synergism for better treatment options. With the recent advancement in the field of nanotechnology and natural drug therapy, a lot of opportunities can be seen in combining both technologies and moving towards a more advanced drug delivery system to overcome the limitations of polyherbal formulations. METHODS During the writing of this document, the data was derived from existing original research papers gathered from a variety of sources such as PubMed, ScienceDirect, Google Scholar. CONCLUSION Hence, this review includes evidence about the current practices and future possibilities of nano-herbal formulation in treatment and management of diabetic wounds.
Collapse
Affiliation(s)
- Priya Kumari
- Department of Pharmacy, School of Medical and Allied Science, Galgotias University, 201310, India
| | - Shaweta Sharma
- Department of Pharmacy, School of Medical and Allied Science, Galgotias University, 201310, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Science, Galgotias University, 201310, India
| | - Aftab Alam
- Department of Pharmacy, School of Medical and Allied Science, Galgotias University, 201310, India
| |
Collapse
|
43
|
Moslehi M, Rezaei S, Talebzadeh P, Ansari MJ, Jawad MA, Jalil AT, Rastegar-Pouyani N, Jafarzadeh E, Taeb S, Najafi M. Apigenin in cancer therapy: Prevention of genomic instability and anticancer mechanisms. Clin Exp Pharmacol Physiol 2023; 50:3-18. [PMID: 36111951 DOI: 10.1111/1440-1681.13725] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/18/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022]
Abstract
The incidence of cancer has been growing worldwide. Better survival rates following the administration of novel drugs and new combination therapies may concomitantly cause concern regarding the long-term adverse effects of cancer therapy, for example, second primary malignancies. Moreover, overcoming tumour resistance to anticancer agents has been long considered as a critical challenge in cancer research. Some low toxic adjuvants such as herb-derived molecules may be of interest for chemoprevention and overcoming the resistance of malignancies to cancer therapy. Apigenin is a plant-derived molecule with attractive properties for chemoprevention, for instance, promising anti-tumour effects, which may make it a desirable adjuvant to reduce genomic instability and the risks of second malignancies among normal tissues. Moreover, it may improve the efficiency of anticancer modalities. This paper aims to review various effects of apigenin in both normal tissues and malignancies. In addition, we explain how apigenin may have the ability to protect usual cells against the genotoxic repercussions following radiotherapy and chemotherapy. Furthermore, the inhibitory effects of apigenin on tumours will be discussed.
Collapse
Affiliation(s)
- Masoud Moslehi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sepideh Rezaei
- Department of Chemistry, University of Houston, Houston, Texas, USA
| | - Pourya Talebzadeh
- Student Research Committee, Tehran Medical Faculty, Islamic Azad University, Tehran, Iran
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
| | - Nima Rastegar-Pouyani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Emad Jafarzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran.,Medical Biotechnology Research Center, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
44
|
Natesan V, Kim SJ. The Trend of Organic Based Nanoparticles in the Treatment of Diabetes and Its Perspectives. Biomol Ther (Seoul) 2023; 31:16-26. [PMID: 36122910 PMCID: PMC9810454 DOI: 10.4062/biomolther.2022.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/04/2022] [Accepted: 08/27/2022] [Indexed: 01/13/2023] Open
Abstract
Diabetes is an untreatable metabolic disorder characterized by alteration in blood sugar homeostasis, with submucosal insulin therapy being the primary treatment option. This route of drug administration is attributed to low patient comfort due to the risk of pain, distress, and local inflammation/infections. Nanoparticles have indeed been suggested as insulin carriers to allow the drug to be administered via less invasive routes other than injection, such as orally or nasally. The organic-based nanoparticles can be derived from various organic materials (for instance, polysaccharides, lipids, and so on) and thus are prevalently used to enhance the physical and chemical consistency of loaded bioactive compounds (drug) and thus their bioavailability. This review presents various forms of organic nanoparticles (for example, chitosan, dextron, gums, nanoemulsion, alginate, and so on) for enhanced hypoglycemic drug delivery relative to traditional therapies.
Collapse
Affiliation(s)
- Vijayakumar Natesan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamil Nadu, India
| | - Sung-Jin Kim
- Department of Pharmacology and Toxicology, Metabolic Diseases Research Laboratory, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea,Corresponding Author E-mail: , Tel: +82-2-961-0868
| |
Collapse
|
45
|
Jing S, Wan J, Wang T, He Z, Ding Q, Sheng G, Wang S, Zhao H, Zhu Z, Wu H, Li W. Flavokawain A alleviates the progression of mouse osteoarthritis: An in vitro and in vivo study. Front Bioeng Biotechnol 2022; 10:1071776. [PMID: 36545678 PMCID: PMC9760749 DOI: 10.3389/fbioe.2022.1071776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is one of the most prevalent chronic degenerative joint diseases affecting adults in their middle or later years. It is characterized by symptoms such as joint pain, difficulty in movement, disability, and even loss of motion. Moreover, the onset and progression of inflammation are directly associated with OA. In this research, we evaluated the impact of Flavokawain A (FKA) on osteoarthritis. In-vitro effects of FKA on murine chondrocytes have been examined using cell counting kit-8 (CCK-8), safranin o staining, western blot, immunofluorescence staining, senescence β-galactosidase staining, flow cytometry analysis, and mRFP-GFP-LC3 adenovirus infection. An in-vivo model of destabilization of the medial meniscus (DMM) was employed to investigate FKA's effect on OA mouse. An analysis of bioinformatics was performed on FKA and its potential role in OA. It was observed that FKA blocked interleukin (IL)-1β-induced expression of inflammatory factors, i.e., cyclooxygenase-2 (COX2) and inducible nitric oxide synthase (iNOS) in chondrocytes. In addition, FKA also downregulated the catabolic enzyme expression, i.e., aggrecanase-2 (ADAMTS5) and matrix metalloproteinases (MMPs), and helped in the upregulation of the anabolic protein expression, i.e., type II collagen (Col2), Aggrecan, and sry-box transcription factor 9 (SOX9). Moreover, FKA ameliorated IL-1β-triggered autophagy in chondrocytes, and it was observed that the FKA causes anti-inflammatory effects by the mitogen-activated protein kinase (MAPK) and phosphoinositide-3-kinase/Akt/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathways inhibition. The results of immunohistochemical analysis and microcomputed tomography from the in vivo OA mouse model confirmed the therapeutic effect of FKA. Finally, we assessed the anti-arthritic impacts of FKA by conducting in vivo and in vitro analyses. We concluded that FKA can be employed as a useful therapeutic agent for OA therapy, but the findings require needs further clinical investigation.
Collapse
Affiliation(s)
- Shaoze Jing
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Junlai Wan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianqi Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Ding
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanxi Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongqi Zhao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziqing Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,*Correspondence: Hua Wu, ; Wenkai Li,
| | - Wenkai Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Hua Wu, ; Wenkai Li,
| |
Collapse
|
46
|
Pei Z, Chen S, Ding L, Liu J, Cui X, Li F, Qiu F. Current perspectives and trend of nanomedicine in cancer: A review and bibliometric analysis. J Control Release 2022; 352:211-241. [PMID: 36270513 DOI: 10.1016/j.jconrel.2022.10.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
The limitations of traditional cancer treatments are driving the creation and development of new nanomedicines. At present, with the rapid increase of research on nanomedicine in the field of cancer, there is a lack of intuitive analysis of the development trend, main authors and research hotspots of nanomedicine in the field of cancer, as well as detailed elaboration of possible research hotspots. In this review, data collected from the Web of Science Core Collection database between January 1st, 2000, and December 31st, 2021, were subjected to a bibliometric analysis. The co-authorship, co-citation, and co-occurrence of countries, institutions, authors, literature, and keywords in this subject were examined using VOSviewer, Citespace, and a well-known online bibliometrics platform. We collected 19,654 published papers, China produced the most publications (36.654%, 7204), followed by the United States (29.594%, 5777), and India (7.780%, 1529). An interesting fact is that, despite China having more publications than the United States, the United States still dominates this field, having the highest H-index and the most citations. Acs Nano, Nano Letters, and Biomaterials are the top three academic publications that publish articles on nanomedicine for cancer out of a total of 7580 academic journals. The most significant increases were shown for the keywords "cancer nanomedicine", "tumor microenvironment", "nanoparticles", "prodrug", "targeted nanomedicine", "combination", and "cancer immunotherapy" indicating the promising area of research. Meanwhile, the development prospects and challenges of nanomedicine in cancer are also discussed and provided some solutions to the major obstacles.
Collapse
Affiliation(s)
- Zerong Pei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuting Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Liqin Ding
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Xinyi Cui
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Fengyun Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
47
|
Jampilek J, Kralova K. Anticancer Applications of Essential Oils Formulated into Lipid-Based Delivery Nanosystems. Pharmaceutics 2022; 14:2681. [PMID: 36559176 PMCID: PMC9781429 DOI: 10.3390/pharmaceutics14122681] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
The use of natural compounds is becoming increasingly popular among patients, and there is a renewed interest among scientists in nature-based bioactive agents. Traditionally, herbal drugs can be taken directly in the form of teas/decoctions/infusions or as standardized extracts. However, the disadvantages of natural compounds, especially essential oils, are their instability, limited bioavailability, volatility, and often irritant/allergenic potential. However, these active substances can be stabilized by encapsulation and administered in the form of nanoparticles. This brief overview summarizes the latest results of the application of nanoemulsions, liposomes, solid lipid nanoparticles, and nanostructured lipid carriers used as drug delivery systems of herbal essential oils or used directly for their individual secondary metabolites applicable in cancer therapy. Although the discussed bioactive agents are not typical compounds used as anticancer agents, after inclusion into the aforesaid formulations improving their stability and bioavailability and/or therapeutic profile, they indicated anti-tumor activity and became interesting agents with cancer treatment potential. In addition, co-encapsulation of essential oils with synthetic anticancer drugs into nanoformulations with the aim to achieve synergistic effect in chemotherapy is discussed.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
48
|
Li Z, Li D, Su H, Xue H, Tan G, Xu Z. Autophagy: An important target for natural products in the treatment of bone metabolic diseases. Front Pharmacol 2022; 13:999017. [PMID: 36467069 PMCID: PMC9716086 DOI: 10.3389/fphar.2022.999017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/08/2022] [Indexed: 12/28/2024] Open
Abstract
Bone homeostasis depends on a precise dynamic balance between bone resorption and bone formation, involving a series of complex and highly regulated steps. Any imbalance in this process can cause disturbances in bone metabolism and lead to the development of many associated bone diseases. Autophagy, one of the fundamental pathways for the degradation and recycling of proteins and organelles, is a fundamental process that regulates cellular and organismal homeostasis. Importantly, basic levels of autophagy are present in all types of bone-associated cells. Due to the cyclic nature of autophagy and the ongoing bone metabolism processes, autophagy is considered a new participant in bone maintenance. Novel therapeutic targets have emerged as a result of new mechanisms, and bone metabolism can be controlled by interfering with autophagy by focusing on certain regulatory molecules in autophagy. In parallel, several studies have reported that various natural products exhibit a good potential to mediate autophagy for the treatment of metabolic bone diseases. Therefore, we briefly described the process of autophagy, emphasizing its function in different cell types involved in bone development and metabolism (including bone marrow mesenchymal stem cells, osteoblasts, osteocytes, chondrocytes, and osteoclasts), and also summarized research advances in natural product-mediated autophagy for the treatment of metabolic bone disease caused by dysfunction of these cells (including osteoporosis, rheumatoid joints, osteoarthritis, fracture nonunion/delayed union). The objective of the study was to identify the function that autophagy serves in metabolic bone disease and the effects, potential, and challenges of natural products for the treatment of these diseases by targeting autophagy.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hui Su
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haipeng Xue
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoqing Tan
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhanwang Xu
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
49
|
Shree D, Patra CN, Sahoo BM. Novel Herbal Nanocarriers for Treatment of Dermatological Disorders. Pharm Nanotechnol 2022; 10:246-256. [PMID: 35733305 DOI: 10.2174/2211738510666220622123019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/14/2022] [Accepted: 04/13/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVE In the present scenario, the use of novel nanocarriers to provide a better therapy regimen is noteworthy. Nanotechnology with the advanced system enables the herbs for encapsulation within the smart carrier and boosts the nanotherapeutic. These emerging innovations of herbal nanocarriers have paved the way for dermal targeting by eliciting the desired response for particular diseases. METHODS In this current manuscript, an extensive search is conducted for the original research papers using databases, viz., Google Scholar, PubMed, Science Direct, etc. Furthermore, painstaking efforts are made to compile and update the novel herbal nanocarriers, such as liposomes, ethosomes, transferosomes, niosomes, nanoemulsions, nanogels, nanostructured lipid carriers, solid lipid carriers, etc., which are mostly used for the treatment of several skin maladies, viz., eczema, psoriasis, acne, etc. This article highlights the recent findings that the innovators are exclusively working on herbal drug delivery systems for dermal targeting, and these are enumerated in the form of tables. CONCLUSION Herbal formulations employing a suitable nanocarrier could be a promising approach for the treatment of several pathological conditions, including skin ailments. Therefore, scientific research is still being carried out in this specific area for a better perspective in herbal drug delivery and targeting.
Collapse
Affiliation(s)
- Dipthi Shree
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur 760010, Odisha, India
| | - Chinam Niranjan Patra
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur 760010, Odisha, India
| | - Biswa Mohan Sahoo
- Department of Pharmaceutical Chemistry, Roland Institute of Pharmaceutical Sciences, Berhampur 760010, Odisha, India
| |
Collapse
|
50
|
Tan LF, Yap VL, Rajagopal M, Wiart C, Selvaraja M, Leong MY, Tan PL. Plant as an Alternative Source of Antifungals against Aspergillus Infections: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:3009. [PMID: 36432738 PMCID: PMC9697101 DOI: 10.3390/plants11223009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Aspergillus species consists of a group of opportunistic fungi that is virulent when the immunity of the host is compromised. Among the various species, Aspergillus fumigatus is the most prevalent species. However, the prevalence of fungal infections caused by non-fumigatus Aspergillus has been increasing. Polyenes, echinocandins and azoles are the three main classes of antifungal agents being used for the treatment of aspergillosis. Nevertheless, the incidence of resistance towards these three classes has been rising over the years among several Aspergillus spp. The side effects associated with these conventional antifungal agents have also limited their usage. This urges the need for the discovery of a safe and effective antifungal agent, which presents a major challenge in medicine today. Plants present a rich source of bioactive molecules which have been proven effective against a wide range of infections and conditions. Therefore, this present review intends to examine the current literature available regarding the efficacy and mechanism of action of plant extracts and their compounds against Aspergillus spp. In addition, novel drug delivery systems of plant extracts against Aspergillus spp. were also included in this review.
Collapse
Affiliation(s)
- Lee Fang Tan
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Vi Lien Yap
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Christophe Wiart
- Institute for Tropical Biology & Conservation, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Malarvili Selvaraja
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mun Yee Leong
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Puay Luan Tan
- Faculty of Pharmaceutical Sciences, UCSI University, UCSI Heights 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|