1
|
Zhao Z, Chen Y, Sun T, Jiang C. Nanomaterials for brain metastasis. J Control Release 2024; 365:833-847. [PMID: 38065414 DOI: 10.1016/j.jconrel.2023.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Tumor metastasis is a significant contributor to the mortality of cancer patients. Specifically, current conventional treatments are unable to achieve complete remission of brain metastasis. This is due to the unique pathological environment of brain metastasis, which differs significantly from peripheral metastasis. Brain metastasis is characterized by high tumor mutation rates and a complex microenvironment with immunosuppression. Additionally, the presence of blood-brain barrier (BBB)/blood tumor barrier (BTB) restricts drug leakage into the brain. Therefore, it is crucial to take account of the specific characteristics of brain metastasis when developing new therapeutic strategies. Nanomaterials offer promising opportunities for targeted therapies in treating brain metastasis. They can be tailored and customized based on specific pathological features and incorporate various treatment approaches, which makes them advantageous in advancing therapeutic strategies for brain metastasis. This review provides an overview of current clinical treatment options for patients with brain metastasis. It also explores the roles and changes that different cells within the complex microenvironment play during tumor spread. Furthermore, it highlights the use of nanomaterials in current brain treatment approaches.
Collapse
Affiliation(s)
- Zhenhao Zhao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
2
|
Shi W, Tanzhu G, Chen L, Ning J, Wang H, Xiao G, Peng H, Jing D, Liang H, Nie J, Yi M, Zhou R. Radiotherapy in Preclinical Models of Brain Metastases: A Review and Recommendations for Future Studies. Int J Biol Sci 2024; 20:765-783. [PMID: 38169621 PMCID: PMC10758094 DOI: 10.7150/ijbs.91295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Brain metastases (BMs) frequently occur in primary tumors such as lung cancer, breast cancer, and melanoma, and are associated with notably short natural survival. In addition to surgical interventions, chemotherapy, targeted therapy, and immunotherapy, radiotherapy (RT) is a crucial treatment for BM and encompasses whole-brain radiotherapy (WBRT) and stereotactic radiosurgery (SRS). Validating the efficacy and safety of treatment regimens through preclinical models is imperative for successful translation to clinical application. This not only advances fundamental research but also forms the theoretical foundation for clinical study. This review, grounded in animal models of brain metastases (AM-BM), explores the theoretical underpinnings and practical applications of radiotherapy in combination with chemotherapy, targeted therapy, immunotherapy, and emerging technologies such as nanomaterials and oxygen-containing microbubbles. Initially, we provided a concise overview of the establishment of AM-BMs. Subsequently, we summarize key RT parameters (RT mode, dose, fraction, dose rate) and their corresponding effects in AM-BMs. Finally, we present a comprehensive analysis of the current research status and future directions for combination therapy based on RT. In summary, there is presently no standardized regimen for AM-BM treatment involving RT. Further research is essential to deepen our understanding of the relationships between various parameters and their respective effects.
Collapse
Affiliation(s)
- Wen Shi
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Liu Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Hongji Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Haiqin Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Di Jing
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Huadong Liang
- Department of Technology, Hunan SJA Laboratory Animal Co., Ltd., Changsha, Hunan Province, China
| | - Jing Nie
- Department of Technology, Hunan SJA Laboratory Animal Co., Ltd., Changsha, Hunan Province, China
| | - Min Yi
- Department of Technology, Hunan SJA Laboratory Animal Co., Ltd., Changsha, Hunan Province, China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| |
Collapse
|
3
|
Li CH, Lim SH, Jeong YI, Ryu HH, Jung S. Synergistic Effects of Radiotherapy With JNK Inhibitor-Incorporated Nanoparticle in an Intracranial Lewis Lung Carcinoma Mouse Models. IEEE Trans Nanobioscience 2023; 22:845-854. [PMID: 37022021 DOI: 10.1109/tnb.2023.3238687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Radiosurgery has been recognized as a reasonable treatment for metastatic brain tumors. Increasing the radiosensitivity and synergistic effects are possible ways to improve the therapeutic efficacy of specific regions of tumors. c-Jun-N-terminal kinase (JNK) signaling regulates H2AX phosphorylation to repair radiation-induced DNA breakage. We previously showed that blocking JNK signaling influenced radiosensitivity in vitro and in an in vivo mouse tumor model. Drugs can be incorporated into nanoparticles to produce a slow-release effect. This study assessed JNK radiosensitivity following the slow release of the JNK inhibitor SP600125 from a poly (DL-lactide-co-glycolide) (LGEsese) block copolymer in a brain tumor model. MATERIALS AND METHODS A LGEsese block copolymer was synthesized to fabricate SP600125-incorporated nanoparticles by nanoprecipitation and dialysis methods. The chemical structure of the LGEsese block copolymer was confirmed by 1H nuclear magnetic resonance (NMR) spectroscopy. The physicochemical and morphological properties were observed by transmission electron microscopy (TEM) imaging and measured with particle size analyzer. The blood-brain barrier (BBB) permeability to the JNK inhibitor was estimated by BBBflammaTM 440-dye-labeled SP600125. The effects of the JNK inhibitor were investigated using SP600125-incorporated nanoparticles and by optical bioluminescence, magnetic resonance imaging (MRI), and a survival assay in a mouse brain tumor model for Lewis lung cancer (LLC)-Fluc cells. DNA damage was estimated by histone γ H2AX expression and apoptosis was assessed by the immunohistochemical examination of cleaved caspase 3. RESULTS The SP600125-incorporated nanoparticles of the LGEsese block copolymer were spherical and released SP600125 continuously for 24h. The use of BBBflammaTM 440-dye-labeled SP600125 demonstrated the ability of SP600125 to cross the BBB. The blockade of JNK signaling with SP600125-incorporated nanoparticles significantly delayed mouse brain tumor growth and prolonged mouse survival after radiotherapy. γ H2AX, which mediates DNA repair protein, was reduced and the apoptotic protein cleaved-caspase 3 was increased by the combination of radiation and SP600125-incorporated nanoparticles.
Collapse
|
4
|
Yoon K, Jung S, Ryu J, Park HJ, Oh HK, Kook MS. Redox-Sensitive Delivery of Doxorubicin from Nanoparticles of Poly(ethylene glycol)-Chitosan Copolymer for Treatment of Drug-Resistant Oral Cancer Cells. Int J Mol Sci 2023; 24:13704. [PMID: 37762003 PMCID: PMC10531032 DOI: 10.3390/ijms241813704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Reactive oxygen species (ROS)-sensitive polymer nanoparticles were synthesized for tumor targeting of an anticancer drug, doxorubicin (DOX). For this purpose, chitosan-methoxy poly(ethylene glycol) (mPEG) (ChitoPEG)-graft copolymer was synthesized and then DOX was conjugated to the backbone of chitosan using a thioketal linker. Subsequently, the chemical structure of the DOX-conjugated ChitoPEG copolymer (ChitoPEGthDOX) was confirmed via 1H nuclear magnetic resonance (NMR) spectra. Nanoparticles of the ChitoPEGthDOX conjugates have spherical shapes and a size of approximately 100 nm. Transmission electron microscopy (TEM) has shown that ChitoPEGthDOX nanoparticles disintegrate in the presence of hydrogen peroxide and the particle size distribution also changes from a monomodal/narrow distribution pattern to a multi-modal/wide distribution pattern. Furthermore, DOX is released faster in the presence of hydrogen peroxide. These results indicated that ChitoPEGthDOX nanoparticles have ROS sensitivity. The anticancer activity of the nanoparticles was evaluated using AT84 oral squamous carcinoma cells. Moreover, DOX-resistant AT84 cells were prepared in vitro. DOX and its nanoparticles showed dose-dependent cytotoxicity in both DOX-sensitive and DOX-resistant AT84 cells in vitro. However, DOX itself showed reduced cytotoxicity against DOX-resistant AT84 cells, while the nanoparticles showed almost similar cytotoxicity to DOX-sensitive and DOX-resistant AT84 cells. This result may be due to the inhibition of intracellular delivery of free DOX, while nanoparticles were efficiently internalized in DOX-resistant cells. The in vivo study of a DOX-resistant AT84 cell-bearing tumor xenograft model showed that nanoparticles have higher antitumor efficacy than those found in free DOX treatment. These results may be related to the efficient accumulation of nanoparticles in the tumor tissue, i.e., the fluorescence intensity in the tumor tissue was stronger than that of any other organs. Our findings suggest that ChitoPEGthDOX nanoparticles may be a promising candidate for ROS-sensitive anticancer delivery against DOX-resistant oral cancer cells.
Collapse
Affiliation(s)
- Kaengwon Yoon
- El-Dental Clinic, Seomun Daero Street 625, Namgu, Gwangju 61737, Republic of Korea;
- Department of Maxillofacial Oral Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; (S.J.); (J.R.); (H.-J.P.); (H.-K.O.)
| | - Seunggon Jung
- Department of Maxillofacial Oral Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; (S.J.); (J.R.); (H.-J.P.); (H.-K.O.)
| | - Jaeyoung Ryu
- Department of Maxillofacial Oral Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; (S.J.); (J.R.); (H.-J.P.); (H.-K.O.)
| | - Hong-Ju Park
- Department of Maxillofacial Oral Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; (S.J.); (J.R.); (H.-J.P.); (H.-K.O.)
| | - Hee-Kyun Oh
- Department of Maxillofacial Oral Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; (S.J.); (J.R.); (H.-J.P.); (H.-K.O.)
| | - Min-Suk Kook
- Department of Maxillofacial Oral Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; (S.J.); (J.R.); (H.-J.P.); (H.-K.O.)
| |
Collapse
|
5
|
Qi X, Lv L, Wei D, Lee JJ, Niu M, Cui C, Guo Z. Detection of aflatoxin B 1 with a new label-free fluorescence aptasensor based on PVP-coated single-walled carbon nanohorns and SYBR Gold. Anal Bioanal Chem 2022; 414:3087-3094. [PMID: 35118572 DOI: 10.1007/s00216-022-03938-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/01/2022]
Abstract
This paper describes a novel fluorescence label-free aptasensor to detect aflatoxin B1 (AFB1) by utilizing SYBR Gold, aptamer, and single-walled carbon nanohorns (SWCNHs). In the presence of AFB1, the conformation of AFB1-specific aptamer went through and the spatial structure of this specific aptamer was transformed accordingly. Due to the resistance of the transformed aptamer when adsorbed on the surface of SWCNHs, the protection of the fluorescence of SYBR Gold was accomplished. Consequently, concentrations of AFB1 showed a strong association with fluorescence intensity. The detection limit (LOD) of AFB1 was 1.89 ng/mL, while the linear range was 5-200 ng/mL and fluorescence intensity satisfactorily correlated (R2 = 0.9919) with the logarithm of AFB1 concentration.
Collapse
Affiliation(s)
- Xin Qi
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, China.,College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Lei Lv
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, China.,College of Agriculture, Yanbian University, Yanji, 133002, China
| | - Dongxu Wei
- Technology Center of Harbin Customs, Harbin, 150008, China
| | - Jung Joon Lee
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, China
| | - Mengyu Niu
- College of Agriculture, Yanbian University, Yanji, 133002, China
| | - Chengbi Cui
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, China. .,College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Zhijun Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, China. .,College of Agriculture, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
6
|
Ri MH, Ma J, Jin X. Development of natural products for anti-PD-1/PD-L1 immunotherapy against cancer. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114370. [PMID: 34214644 DOI: 10.1016/j.jep.2021.114370] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint is one of the most promising therapeutic targets for cancer immunotherapy, but several challenges remain in current anti-PD-1/PD-L1 therapy. Natural products, mainly derived from traditional medicine, could improve and expand anti-PD-1/PD-L1 therapy because of their advantages such as large diversity and multi-target effects. AIM OF THE STUDY This review summarize natural products, raw extracts, and traditional medicines with pharmacological effects associated with the PD-1/PD-L1 axis, particularly PD-L1. MATERIALS AND METHODS Electronic literature databases, including Web of Science, PubMed, and ScienceDirect, and online drugs and chemicals databases, including DrugBank, ZINC, PubChem, STITCH, and CTD, were searched without date limitation by February 2021. 'Natural product or herb or herbal plant or traditional medicine' and 'PD-L1' and 'Cancer immunotherapy' were used as the search keywords. Among 112 articles identified in database searching, 54 articles are full text articles, reporting in silico, in vitro, in vivo and clinical trials. 68 articles included are review articles and grey literature such as thesis and congress abstracts. RESULTS Several natural products and traditional medicines have exhibited diverse and multi-functional effects including direct blockade of PD-1/PD-L1 interactions, modulation of PD-L1 expression, and cooperation with PD-1/PD-L1 inhibitors. CONCLUSION Natural products and traditional medicines can facilitate the development of more effective and acceptable diverse strategies for anti-PD-1/PD-L1 therapy, but further exploration of natural products and pharmaceutical techniques is required.
Collapse
Affiliation(s)
- Myong Hak Ri
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China; Faculty of Life Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
7
|
Yi X, Shen M, Liu X, Gu J. Emerging strategies based on nanomaterials for ionizing radiation-optimized drug treatment of cancer. NANOSCALE 2021; 13:13943-13961. [PMID: 34477676 DOI: 10.1039/d1nr03034e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Drug-radiotherapy is a common and effective combinational treatment for cancer. This study aimed to explore the ionizing radiation-optimized drug treatment based on nanomaterials so as to improve the synergistic efficacy of drug-radiotherapy against cancer and limit the adverse effect on healthy organs. In this review, these emerging strategies were divided into four parts. First, the delivery of the drug-loaded nanoparticles was optimized owing to the strengthened passive targeting process, active targeting process, and cell targeting process of nanoparticles after ionizing radiation exposure. Second, nanomaterials were designed to respond to the ionizing radiation, thus leading to the release of the loading drugs controllably. Third, radiation-activated pro-drugs were loaded onto nanoparticles for radiation-triggered drug therapy. In particular, nontoxic nanoparticles with radiosensitization capability and innocuous radio-dynamic contrast agents can be considered as radiation-activated drugs, which were discussed in this review. Fourth, according to the various synergetic mechanisms, radiotherapy could improve the drug response of cancer, obtaining optimized drug-radiotherapy. Finally, relative suggestions were provided to further optimize these aforementioned strategies. Therefore, a novel topic was selected and the emerging strategies in this region were discussed, aiming to stimulate the inspiration for the development of ionizing radiation-optimized drug treatment based on nanomaterials.
Collapse
Affiliation(s)
- Xuan Yi
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, China.
| | | | | | | |
Collapse
|
8
|
Jablonska PA, Bosch-Barrera J, Serrano D, Valiente M, Calvo A, Aristu J. Challenges and Novel Opportunities of Radiation Therapy for Brain Metastases in Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13092141. [PMID: 33946751 PMCID: PMC8124815 DOI: 10.3390/cancers13092141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/18/2021] [Accepted: 04/26/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Lung cancer is the most common primary malignancy that tends to metastasize to the brain. Owing to improved survival of lung cancer patients, the prevalence of brain metastases is a matter of growing concern. Brain radiotherapy remains the mainstay in the management of metastatic CNS disease. However, new targeted therapies such as the tyrosine kinase or immune checkpoint inhibitors have demonstrated intracranial activity and promising tumor response rates. Here, we review the current and emerging therapeutical strategies for brain metastases from non-small cell lung cancer, both brain-directed and systemic, as well as the uncertainties that may arise from their combination. Abstract Approximately 20% patients with non-small cell lung cancer (NSCLC) present with CNS spread at the time of diagnosis and 25–50% are found to have brain metastases (BMs) during the course of the disease. The improvement in the diagnostic tools and screening, as well as the use of new systemic therapies have contributed to a more precise diagnosis and prolonged survival of lung cancer patients with more time for BMs development. In the past, most of the systemic therapies failed intracranially because of the inability to effectively cross the blood brain barrier. Some of the new targeted therapies, especially the group of tyrosine kinase inhibitors (TKIs) have shown durable CNS response. However, the use of ionizing radiation remains vital in the management of metastatic brain disease. Although a decrease in CNS-related deaths has been achieved over the past decade, many challenges arise from the need of multiple and repeated brain radiation treatments, which carry along not insignificant risks and toxicity. The combination of stereotactic radiotherapy and systemic treatments in terms of effectiveness and adverse effects, such as radionecrosis, remains a subject of ongoing investigation. This review discusses the challenges of the use of radiation therapy in NSCLC BMs in view of different systemic treatments such as chemotherapy, TKIs and immunotherapy. It also outlines the future perspectives and strategies for personalized BMs management.
Collapse
Affiliation(s)
- Paola Anna Jablonska
- Brain Metastases and CNS Oncology Radiation Medicine Program, Princess Margaret Cancer Center, Toronto, ON M5G 2M9, Canada
- Department of Radiation Oncology, Clinica Universidad de Navarra, 31008 Pamplona, Spain
- Correspondence: ; Tel.: +1-416-946-2000
| | - Joaquim Bosch-Barrera
- Department of Medical Oncology, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital, 17007 Girona, Spain;
- Girona Biomedical Research Institute (IDIBGI), Salt, 17190 Girona, Spain
- Department of Medical Sciences, Medical School, University of Girona, 17071 Girona, Spain
| | - Diego Serrano
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (D.S.); (A.C.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | | | - Alfonso Calvo
- IDISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (D.S.); (A.C.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- CIBERONC, ISCIII, 28029 Madrid, Spain
| | - Javier Aristu
- Department of Radiation Oncology and Protontherapy Unit, Clinica Universidad de Navarra, 28027 Madrid, Spain;
| |
Collapse
|
9
|
Hypoxia-Induced Cancer Cell Responses Driving Radioresistance of Hypoxic Tumors: Approaches to Targeting and Radiosensitizing. Cancers (Basel) 2021; 13:cancers13051102. [PMID: 33806538 PMCID: PMC7961562 DOI: 10.3390/cancers13051102] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Some regions of aggressive malignancies experience hypoxia due to inadequate blood supply. Cancer cells adapting to hypoxic conditions somehow become more resistant to radiation exposure and this decreases the efficacy of radiotherapy toward hypoxic tumors. The present review article helps clarify two intriguing points: why hypoxia-adapted cancer cells turn out radioresistant and how they can be rendered more radiosensitive. The critical molecular targets associated with intratumoral hypoxia and various approaches are here discussed which may be used for sensitizing hypoxic tumors to radiotherapy. Abstract Within aggressive malignancies, there usually are the “hypoxic zones”—poorly vascularized regions where tumor cells undergo oxygen deficiency through inadequate blood supply. Besides, hypoxia may arise in tumors as a result of antiangiogenic therapy or transarterial embolization. Adapting to hypoxia, tumor cells acquire a hypoxia-resistant phenotype with the characteristic alterations in signaling, gene expression and metabolism. Both the lack of oxygen by itself and the hypoxia-responsive phenotypic modulations render tumor cells more radioresistant, so that hypoxic tumors are a serious challenge for radiotherapy. An understanding of causes of the radioresistance of hypoxic tumors would help to develop novel ways for overcoming this challenge. Molecular targets for and various approaches to radiosensitizing hypoxic tumors are considered in the present review. It is here analyzed how the hypoxia-induced cellular responses involving hypoxia-inducible factor-1, heat shock transcription factor 1, heat shock proteins, glucose-regulated proteins, epigenetic regulators, autophagy, energy metabolism reprogramming, epithelial–mesenchymal transition and exosome generation contribute to the radioresistance of hypoxic tumors or may be inhibited for attenuating this radioresistance. The pretreatments with a multitarget inhibition of the cancer cell adaptation to hypoxia seem to be a promising approach to sensitizing hypoxic carcinomas, gliomas, lymphomas, sarcomas to radiotherapy and, also, liver tumors to radioembolization.
Collapse
|
10
|
Sun H, Wang X, Zhai S. The Rational Design and Biological Mechanisms of Nanoradiosensitizers. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E504. [PMID: 32168899 PMCID: PMC7153263 DOI: 10.3390/nano10030504] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 01/01/2023]
Abstract
Radiotherapy (RT) has been widely used for cancer treatment. However, the intrinsic drawbacks of RT, such as radiotoxicity in normal tissues and tumor radioresistance, promoted the development of radiosensitizers. To date, various kinds of nanoparticles have been found to act as radiosensitizers in cancer radiotherapy. This review focuses on the current state of nanoradiosensitizers, especially the related biological mechanisms, and the key design strategies for generating nanoradiosensitizers. The regulation of oxidative stress, DNA damage, the cell cycle, autophagy and apoptosis by nanoradiosensitizers in vitro and in vivo is highlighted, which may guide the rational design of therapeutics for tumor radiosensitization.
Collapse
Affiliation(s)
- Hainan Sun
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China; (H.S.); (X.W.)
- Shandong Vocational College of Light Industry, Zibo 255300, Shandong, China
| | - Xiaoling Wang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China; (H.S.); (X.W.)
| | - Shumei Zhai
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China; (H.S.); (X.W.)
| |
Collapse
|