1
|
Chen J, Zhang X, Millican R, Sherwood J, Martin S, Jo H, Yoon YS, Brott BC, Jun HW. Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis. Adv Drug Deliv Rev 2021; 170:142-199. [PMID: 33428994 PMCID: PMC7981266 DOI: 10.1016/j.addr.2021.01.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 12/18/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease driven by lipid accumulation in arteries, leading to narrowing and thrombosis. It affects the heart, brain, and peripheral vessels and is the leading cause of mortality in the United States. Researchers have strived to design nanomaterials of various functions, ranging from non-invasive imaging contrast agents, targeted therapeutic delivery systems to multifunctional nanoagents able to target, diagnose, and treat atherosclerosis. Therefore, this review aims to summarize recent progress (2017-now) in the development of nanomaterials and their applications to improve atherosclerosis diagnosis and therapy during the preclinical and clinical stages of the disease.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xixi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | | - Sean Martin
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States; Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Young-Sup Yoon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Brigitta C Brott
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ho-Wook Jun
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
2
|
Nakhlband A, Eskandani M, Omidi Y, Saeedi N, Ghaffari S, Barar J, Garjani A. Combating atherosclerosis with targeted nanomedicines: recent advances and future prospective. ACTA ACUST UNITED AC 2018; 8:59-75. [PMID: 29713603 PMCID: PMC5915710 DOI: 10.15171/bi.2018.08] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/21/2018] [Indexed: 12/19/2022]
Abstract
![]()
Introduction:
Cardiovascular diseases (CVDs) is recognized as the leading cause of mortality worldwide. The increasing prevalence of such disease demands novel therapeutic and diagnostic approaches to overcome associated clinical/social issues. Recent advances in nanotechnology and biological sciences have provided intriguing insights to employ targeted Nanomachines to the desired location as imaging, diagnosis, and therapeutic modalities. Nanomedicines as novel tools for enhanced drug delivery, imaging, and diagnosis strategies have shown great promise to combat cardiovascular diseases.
Methods:
In the current study, we intend to review the most recent studies on the nano-based strategies for improved management of CVDs.
Results:
A cascade of events results in the formation of atheromatous plaque and arterial stenosis. Furthermore, recent studies have shown that nanomedicines have displayed unique functionalities and provided de novo applications in the diagnosis and treatment of atherosclerosis.
Conclusion:
Despite some limitations, nanomedicines hold considerable potential in the prevention, diagnosis, and treatment of various ailments including atherosclerosis. Fewer side effects, amenable physicochemical properties and multi-potential application of such nano-systems are recognized through various investigations. Therefore, it is strongly believed that with targeted drug delivery to atherosclerotic lesions and plaque, management of onset and progression of disease would be more efficient than classical treatment modalities.
Collapse
Affiliation(s)
- Ailar Nakhlband
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazli Saeedi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Garjani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Daminelli EN, Fotakis P, Mesquita CH, Maranhão RC, Zannis VI. Tissue Uptake Mechanisms Involved in the Clearance of Non-Protein Nanoparticles that Mimic LDL Composition: A Study with Knockout and Transgenic Mice. Lipids 2017; 52:991-998. [PMID: 29094255 DOI: 10.1007/s11745-017-4306-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/28/2017] [Indexed: 10/18/2022]
Abstract
Lipid core nanoparticles (LDE) resembling LDL behave similarly to native LDL when injected in animals or subjects. In contact with plasma, LDE acquires apolipoproteins (apo) E, A-I and C and bind to LDL receptors. LDE can be used to explore LDL metabolism or as a vehicle of drugs directed against tumoral or atherosclerotic sites. The aim was to investigate in knockout (KO) and transgenic mice the plasma clearance and tissue uptake of LDE labeled with 3H-cholesteryl ether. LDE clearance was lower in LDLR KO and apoE KO mice than in wild type (WT) mice (p < 0.05). However, infusion of human apoE3 into the apoE KO mice increased LDE clearance. LDE clearance was higher in apoA-I KO than in WT. In apoA-I transgenic mice, LDE clearance was lower than in apoA-I KO and than in apoA-I KO infusion with human HDL. Infusion of human HDL into the apoA-I KO mice resulted in higher LDE clearance than in the apoA-I transgenic mice (p < 0.05). In apoA-I KO and apoA-I KO infused human HDL, the liver uptake was greater than in WT animals and apoA-I transgenic animals (p < 0.05). LDE clearance was lower in apoE/A-I KO than in WT. Infusion of human HDL increased LDE clearance in those double KO mice. No difference among the groups in LDE uptake by the tissues occurred. In conclusion, results support LDLR and apoE as the key players for LDE clearance, apoA-I also influences those processes.
Collapse
Affiliation(s)
- Elaine N Daminelli
- Heart Institute (InCor) of the Medical School Hospital, FMUSP, University of São Paulo, São Paulo, SP, Brazil.,Departments of Medicine and Biochemistry, Molecular Genetics, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Panagiotis Fotakis
- Departments of Medicine and Biochemistry, Molecular Genetics, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA.,Department of Biochemistry, University of Crete Medical School, Crete, Greece
| | - Carlos H Mesquita
- Heart Institute (InCor) of the Medical School Hospital, FMUSP, University of São Paulo, São Paulo, SP, Brazil
| | - Raul C Maranhão
- Heart Institute (InCor) of the Medical School Hospital, FMUSP, University of São Paulo, São Paulo, SP, Brazil. .,Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | - Vassilis I Zannis
- Departments of Medicine and Biochemistry, Molecular Genetics, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA.,Department of Biochemistry, University of Crete Medical School, Crete, Greece
| |
Collapse
|
4
|
Fiorelli AI, Lourenço-Filho DD, Tavares ER, Carvalho PO, Marques AF, Gutierrez PS, Maranhão RC, Stolf NAG. Methotrexate associated to lipid core nanoparticles improves cardiac allograft vasculopathy and the inflammatory profile in a rabbit heart graft model. ACTA ACUST UNITED AC 2017; 50:e6225. [PMID: 28832763 PMCID: PMC5561808 DOI: 10.1590/1414-431x20176225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/11/2017] [Indexed: 11/25/2022]
Abstract
Coronary allograft vasculopathy is an inflammatory-proliferative process that compromises the long-term success of heart transplantation and has no effective treatment. A lipid nanoemulsion (LDE) can carry chemotherapeutic agents in the circulation and concentrates them in the heart graft. The aim of the study was to investigate the effects of methotrexate (MTX) associated to LDE. Rabbits fed a 0.5% cholesterol diet and submitted to heterotopic heart transplantation were treated with cyclosporine A (10 mg·kg–1·day–1 orally) and allocated to treatment with intravenous LDE-MTX (4 mg/kg, weekly, n=10) or with weekly intravenous saline solution (control group, n=10), beginning on the day of surgery. Animals were euthanized 6 weeks later. Compared to controls, grafts of LDE-MTX treated rabbits showed 20% reduction of coronary stenosis, with a four-fold increase in vessel lumen and 80% reduction of macrophage staining in grafts. Necrosis was attenuated by LDE-MTX. Native hearts of both LDE-MTX and Control groups were apparently normal. Gene expression of lipoprotein receptors was significantly greater in grafts compared to native hearts. In LDE-MTX group, gene expression of the pro-inflammatory factors tumor necrosis factor-α, monocyte chemoattractant protein-1, interleukin-18, vascular cell adhesion molecule-1, and matrix metalloproteinase-12 was strongly diminished whereas expression of anti-inflammatory interleukin-10 increased. LDE-MTX promoted improvement of the cardiac allograft vasculopathy and diminished inflammation in heart grafts.
Collapse
Affiliation(s)
- A I Fiorelli
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - D D Lourenço-Filho
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - E R Tavares
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - P O Carvalho
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - A F Marques
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - P S Gutierrez
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - R C Maranhão
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil.,Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - N A G Stolf
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
5
|
D Lima A, Hua N, C Maranhão R, A Hamilton J. Evaluation of atherosclerotic lesions in cholesterol-fed mice during treatment with paclitaxel in lipid nanoparticles: a magnetic resonance imaging study. J Biomed Res 2017; 31:116-121. [PMID: 28808193 PMCID: PMC5445214 DOI: 10.7555/jbr.31.20160123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cholesterol-core nanoparticles (LDE) have been shown to be recognized by low-density lipoprotein receptors (LDLR) after administration; therefore, LDE is an ideal vehicle to deliver drug with targeting property. Paclitaxel, when incorporated into LDE, promotes atherosclerosis regression with reduced drug toxicity in rabbits through LDLR. Here, we tested whether LDE-paclitaxel could still be effective in reducing diet-induced atherosclerosis in a mouse model without LDLR. Nineteen LDLR knockout male mice were fed 1% cholesterol for 12 weeks. Then, 12 animals received 4-weekly intraperitoneal LDE-paclitaxel (4 mg/kg) while 7 controls received saline solution. On week 12 and 16, in vivo MRI of the aortic roots was performed. Aorta macroscopy was made after euthanasia. Reduction of atherosclerotic lesions was observed. LDE-paclitaxel treatment resulted in reduction of wall area (14%) and stenosis (22%) by MRI and 33% by macroscopy. Thus, LDE-paclitaxel may produce pharmacological effects through LDE uptake by mechanisms other than LDLR.
Collapse
Affiliation(s)
- Aline D Lima
- Laboratory of Metabolism and Lipids, Heart Institute of the Medical School Hospital, S?o Paulo, Brazil.,Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ning Hua
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Raul C Maranhão
- Laboratory of Metabolism and Lipids, Heart Institute of the Medical School Hospital, S?o Paulo, Brazil
| | - James A Hamilton
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
6
|
Shiozaki AA, Senra T, Morikawa AT, Deus DF, Paladino AT, Pinto IM, Maranhão RC. Treatment of patients with aortic atherosclerotic disease with paclitaxel-associated lipid nanoparticles. Clinics (Sao Paulo) 2016; 71:435-9. [PMID: 27626473 PMCID: PMC4975788 DOI: 10.6061/clinics/2016(08)05] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/20/2016] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE The toxicity of anti-cancer chemotherapeutic agents can be reduced by associating these compounds, such as the anti-proliferative agent paclitaxel, with a cholesterol-rich nanoemulsion (LDE) that mimics the lipid composition of low-density lipoprotein (LDL). When injected into circulation, the LDE concentrates the carried drugs in neoplastic tissues and atherosclerotic lesions. In rabbits, atherosclerotic lesion size was reduced by 65% following LDE-paclitaxel treatment. The current study aimed to test the effectiveness of LDE-paclitaxel on inpatients with aortic atherosclerosis. METHODS This study tested a 175 mg/m2 body surface area dose of LDE-paclitaxel (intravenous administration, 3/3 weeks for 6 cycles) in patients with aortic atherosclerosis who were aged between 69 and 86 yrs. A control group of 9 untreated patients with aortic atherosclerosis (72-83 yrs) was also observed. RESULTS The LDE-paclitaxel treatment elicited no important clinical or laboratory toxicities. Images were acquired via multiple detector computer tomography angiography (64-slice scanner) before treatment and at 1-2 months after treatment. The images showed that the mean plaque volume in the aortic artery wall was reduced in 4 of the 8 patients, while in 3 patients it remained unchanged and in one patient it increased. In the control group, images were acquired twice with an interval of 6-8 months. None of the patients in this group exhibited a reduction in plaque volume; in contrast, the plaque volume increased in three patients and remained stable in four patients. During the study period, one death unrelated to the treatment occurred in the LDE-paclitaxel group and one death occurred in the control group. CONCLUSION Treatment with LDE-paclitaxel was tolerated by patients with cardiovascular disease and showed the potential to reduce atherosclerotic lesion size.
Collapse
Affiliation(s)
- Afonso A. Shiozaki
- Instituto Dante Pazzanese de Cardiologia, São Paulo/SP, Brazil
- Laboratório de Metabolismo e Lípides - Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo/SP, Brazil
- Hospital Maringá, Maringá/Paraná, Brazil
| | - Tiago Senra
- Instituto Dante Pazzanese de Cardiologia, São Paulo/SP, Brazil
| | - Aleksandra T. Morikawa
- Laboratório de Metabolismo e Lípides - Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo/SP, Brazil
| | - Débora F. Deus
- Laboratório de Metabolismo e Lípides - Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo/SP, Brazil
| | | | | | - Raul C. Maranhão
- Laboratório de Metabolismo e Lípides - Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo/SP, Brazil
- Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, São Paulo/SP, Brazil
- E-mail:
| |
Collapse
|
7
|
Liu M, Chen Y, Zhang L, Wang Q, Ma X, Li X, Xiang R, Zhu Y, Qin S, Yu Y, Jiang XC, Duan Y, Han J. Regulation of Hepatic Cholesteryl Ester Transfer Protein Expression and Reverse Cholesterol Transport by Inhibition of DNA Topoisomerase II. J Biol Chem 2015; 290:14418-29. [PMID: 25914138 DOI: 10.1074/jbc.m115.643015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Indexed: 11/06/2022] Open
Abstract
Cholesteryl ester transfer protein (CETP) transfers cholesteryl esters from high density lipoprotein to triglyceride-rich lipoproteins. CETP expression can be transcriptionally activated by liver X receptor (LXR). Etoposide and teniposide are DNA topoisomerase II (Topo II) inhibitors. Etoposide has been reported to inhibit atherosclerosis in rabbits with un-fully elucidated mechanisms. In this study we determined if Topo II activity can influence cholesterol metabolism by regulating hepatic CETP expression. Inhibition of Topo II by etoposide, teniposide, or Topo II siRNA increased CETP expression in human hepatic cell line, HepG2 cells, which was associated with increased CETP secretion and mRNA expression. Meanwhile, inhibition of LXR expression by LXR siRNA attenuated induction of CETP expression by etoposide and teniposide. Etoposide and teniposide induced LXRα expression and LXRα/β nuclear translocation while inhibiting expression of receptor interacting protein 140 (RIP140), an LXR co-repressor. In vivo, administration of teniposide moderately reduced serum lipid profiles, induced CETP expression in the liver, and activated reverse cholesterol transport in CETP transgenic mice. Our study demonstrates a novel function of Topo II inhibitors in cholesterol metabolism by activating hepatic CETP expression and reverse cholesterol transport.
Collapse
Affiliation(s)
- Mengyang Liu
- From the State Key Laboratory of Medicinal Chemical Biology, Colleges of Life Sciences and
| | - Yuanli Chen
- From the State Key Laboratory of Medicinal Chemical Biology, Medicine, and Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin 300071, China
| | | | | | | | | | - Rong Xiang
- Medicine, and Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin 300071, China
| | - Yan Zhu
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Shucun Qin
- Taishan Medical University, Taian 271000, China, and
| | - Yang Yu
- Taishan Medical University, Taian 271000, China, and
| | - Xian-cheng Jiang
- State University of New York Downstate Medical Center, New York, New York 11203
| | - Yajun Duan
- From the State Key Laboratory of Medicinal Chemical Biology, Colleges of Life Sciences and Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin 300071, China,
| | - Jihong Han
- From the State Key Laboratory of Medicinal Chemical Biology, Colleges of Life Sciences and Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin 300071, China,
| |
Collapse
|
8
|
Mello SBV, Tavares ER, Bulgarelli A, Bonfá E, Maranhão RC. Intra-articular methotrexate associated to lipid nanoemulsions: anti-inflammatory effect upon antigen-induced arthritis. Int J Nanomedicine 2013; 8:443-9. [PMID: 23439784 PMCID: PMC3576886 DOI: 10.2147/ijn.s29392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective Commercial methotrexate formulations (MTX) have poor anti-inflammatory action for intra-articular treatment of rheumatoid arthritis. Our aim was to investigate whether an association between methotrexate and lipidic nanoemulsions (LDE) could improve MTX intra-articular action. Methods For its association to LDE, MTX was previously esterified with dodecyl bromide. LDE-MTX was prepared by high pressure homogenization. Antigen-induced arthritis (AIA) was achieved in rabbits sensitized with methylated bovine serum albumin, and the rabbits were subsequently intra-articularly injected with the antigen. Twenty-four hours after AIA induction, groups of four to nine rabbits were intra-articularly injected with increasing doses (0.0625–0.5 μmol/kg) of LDE-MTX, and were compared to treatment with 0.5 μmol/kg commercial MTX, LDE alone, and saline (controls). Synovial fluid was collected 48 hours after AIA induction for analysis of protein leakage and cell content. Synovial membranes were collected for histopathology. Uptake of LDE labeled with 3H-cholesteryl ether by the synovial tissue was also determined. Results Uptake of radioactive LDE by arthritic joints was 2.5-fold greater than by normal joints. Treatment with intra-articular LDE-MTX elicited a clear dose response pattern by reducing the synovial leukocyte infiltrate (P = 0.004) and protein leakage (P = 0.032) when compared with arthritic non-treated joints. In contrast, the intra-articular injection of commercial MTX and LDE did not reduce leukocyte infiltrate or protein leakage. Toxicity to treatment was not observed in any of the animals. Conclusion The association between LDE and MTX presented a marked anti-inflammatory effect that was absent after intra-articular commercial MTX treatment. Therefore, the new formulation is a candidate for future clinical studies.
Collapse
Affiliation(s)
- Suzana B V Mello
- Rheumatology Division, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
9
|
Occhiutto ML, Freitas FR, Maranhao RC, Costa VP. Breakdown of the blood-ocular barrier as a strategy for the systemic use of nanosystems. Pharmaceutics 2012; 4:252-75. [PMID: 24300231 PMCID: PMC3834913 DOI: 10.3390/pharmaceutics4020252] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/17/2012] [Accepted: 05/05/2012] [Indexed: 12/14/2022] Open
Abstract
Several drug delivery systems have been proposed to overcome physiological barriers, improving ocular bioavailability. Systemic routes are seldom used due to the blood-ocular barrier. Novel drug delivery systems based on nanotechnology techniques have been developed to overcome ocular physiological barriers. This non-systematic review suggests the utilization of a transitory blood-ocular breakdown to allow the access of drugs by nanotechnology drug delivery systems via the systemic route. We discuss the possible ways to cause the breakdown of the blood-ocular barrier: acute inflammation caused by intraocular surgery, induced ocular hypotony, and the use of inflammatory mediators. The suitability of use of the systemic route and its toxic effects are also discussed in this article.
Collapse
Affiliation(s)
- Marcelo L. Occhiutto
- Heart Institute, Medical School Hospital, University of São Paulo, São Paulo 05403-000, Brazil; (M.L.O.); (F.R.F.); (R.C.M.)
| | - Fatima R. Freitas
- Heart Institute, Medical School Hospital, University of São Paulo, São Paulo 05403-000, Brazil; (M.L.O.); (F.R.F.); (R.C.M.)
| | - Raul C. Maranhao
- Heart Institute, Medical School Hospital, University of São Paulo, São Paulo 05403-000, Brazil; (M.L.O.); (F.R.F.); (R.C.M.)
- Faculty of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, Brazil
| | - Vital P. Costa
- Department of Ophthalmology, University of Campinas, Campinas, São Paulo 13083-887, Brazil
| |
Collapse
|